
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

1

Abstractð Memristors are novel devices, useful as memory at

all hierarchies. These devices can also behave as logic circuits.

In this paper, the IMPLY logic gate, a memristor-based logic

circuit, is described. In this memristive logic family, each

memristor is used as an input, output, computational logic

element, and latch in different stages of the computing process.

The logical state is determined by the resistance of the

memristor. This logic family can be integrated within a

memristor-based crossbar, commonly used for memory. In this

paper, a methodology for designing this logic family is proposed.

The design methodology is based on a general design flow,

suitable for all deterministic memristive logic families, and

includes some additional design constraints to support the

IMPLY logic family. An IMPLY 8 -bit full adder based on this

design methodology is presented as a case study.

Index Termsð memristor, memristive systems, logic, IMPLY,

design methodology, Von Neumann architecture.

I. INTRODUCTION

emristors [1] and memristive devices [2] are novel

structures, useful in many applications. These devices

are basically resistors with varying resistance, which depends

on the history of the device. It can be used for memory, where

the data is stored as a resistance. While memory is the

common application for memristive devices, additional

applications can also use memristive devices as functional

blocks, such as analog circuits, neuromorphic systems, and

logic circuits. Although the definition of memristive devices

is broader than the definition of memristors, it is common to

use the term 'memristor' for all memristive devices [10], [11].

In this paper, for simplicity, the terms memristor and

memristive device are used interchangeably.

The use of memristors to perform logical operations has

been proposed in several different ways. In some logic

families, memristors are integrated with CMOS structures to

perform the logical operation, while the logical values are

Manuscript received 23

rd
 February, 2013; revised 1

st
 June, 2013; accepted 8

th

September 2013. This work was partially supported by Hasso Plattner Institute,

by the Advanced Circuit Research Center at the Technion, and by the Intel

Collaborative Research Institute for Computational Intelligence (ICRI-CI).

S. Kvatinsky, A. Kolodny, and U. C. Weiser are with the Department of

Electrical Engineering, Technion ï Israel Institute of Technology, Haifa 32000,

Israel. (S. Kvatinsky corresponding author phone: 972-77887-1923; fax: 972-

4829-5757; e-mail: skva@tx.technion.ac.il).

E. G. Friedman is with the Department of Electrical Engineering and

Computer Engineering, University of Rochester, Rochester, NY 14627, USA.

represented by voltage levels. In [3], memristors are used as a

reconfigurable switch. In [4], a hybrid memristor-CMOS

logic family is proposed - MRL (Memristor Ratioed Logic).

In MRL, the memristors act as computational elements,

performing OR and AND Boolean functions, while the

CMOS transistors perform logical inversion and

amplification of the logical voltage signals. A similar

approach is proposed in [5].

Another approach for logic with memristors is to treat

resistance as the logical state, where the high and low

resistance are considered, respectively, as logical zero and

one. For this approach, the memristors are the primary

building blocks of the logic gate. Each memristor acts as an

input, output, computational logic element, and latch in

different stages of the computing process [6]. This approach

is suitable for crossbar array architectures and can therefore

be integrated within a standard memristor-based crossbar,

commonly used for memory. This approach is appealing since

it provides an opportunity to explore advanced computer

architectures different from the classical von Neumann

architecture. In these architectures, the memory can perform

logic operations on the same devices that store data, i.e.,

performing computation inside the memory. This paper

focuses on this approach.

Material implication (IMPLY logic gate) [7] is one

example of a basic logical element using this approach,

combining state memory and a Boolean operator. Additional

logic families, which extends the IMPLY logic gate by using

certain variations of a regular memristor-based crossbar, have

also been proposed [8], [9] and are not considered in this

paper. A specific modification of the crossbar structure is,

however, presented in this paper to enhance the performance

of the logic gate.

In this paper, the IMPLY logic gate is described in Section

III, and a memristor-based crossbar in Section IV. A design

methodology for the IMPLY logic gate is proposed in Section

V. This design methodology consists of a design flow

appropriate for all memristor-based logic families, as well as

the IMPLY logic family. This design methodology is

demonstrated by a case study of an eight-bit IMPLY full

adder in Section VI. Logic inside a memristor-based memory

is discussed in Section VII. The paper is concluded in Section

VIII.

Memristor-Based Material Implication (IMPLY)

Logic: Design Principles and Methodologies

Shahar Kvatinsky, Student Member, IEEE, Guy Satat, Nimrod Wald, Eby G. Friedman, Fellow, IEEE,

Avinoam Kolodny, Senior Member, IEEE, and Uri C. Weiser, Fellow, IEEE

M

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

2

Figure 1. Memristive device symbol. The thick black line on the left

side of the device represents the polarity of the device. If the current

flows into the device, the resistance of the device decreases. If the

current flows out of the device, the resistance increases.

II. MEMRISTORS

Memristors were conceived in 1971 by Leon Chua based

on fundamental principles of symmetry [1]. Chua proposed a

forth fundamental electronic component in addition to the

three already well known fundamental electronic components:

the resistor, capacitor, and inductor. The memristor has

varying resistance (also named memristance). Changes in the

memristance depend upon the history of the device (e.g., the

memristance may depend on the total charge passing through

the device, or alternatively, on the integral over time of the

applied voltage across the ports of the device).

The theory of memristors was extended to memristive

devices in 1976 [2]. Formally, a current-controlled time-

invariant memristive system is represented by

 (,),
dx

f x i
dt
 (1)

 () (,) (),v t R x i i t (2)

where x is an internal state variable, i(t) is the memristive

device current, v(t) is the voltage of the memristive device,

R(x, i) is the memristance, and t is time. The symbol of a

memristor is illustrated in Figure 1. Note that the polarity of

the symbol defines the sign (positive or negative) of the

current.

Since Hewlett-Packard announced the fabrication of a

working memristor in 2008 [12], there has been increasing

interest in memristors and memristive systems. New devices

exhibiting memristive behavior have been announced [13],

[14], and existing devices such as spin-transfer torque

magnetoresistive random access memory (STT-MRAM) have

been redescribed in terms of memristive systems [15].

Actually, most emerging memory technologies obey (1) and

(2) and can therefore be described as memristive devices or

memristors [11].

Several memristor models have been proposed to describe

the behavior of physical memristors [16 ï 23]. These models

are deterministic and do not consider stochastic switching

[40], [41]. In this paper, the ThrEshold Adaptive Memristor

(TEAM) model [23] is used. In the TEAM model, memristors

have an adaptive nonlinearity and a current threshold. For

this model, (1) becomes

()
1 (), 0 ,

()
0, ,

()
1 (), 0,

off

on

off off off

off

on off

on on on

on

i t
k f x i i

i
dx t

i i i
dt

i t
k f x i i

i

where koff and kon are fitting parameters, Ŭon and Ŭoff are the

adaptive nonlinearity parameters, ioff and ion are the current

threshold parameters, and fon(x) and foff(x) are window

functions. An I-V curve for the TEAM model is shown in

Figure 2 for memristors where (2) is

 () (),OFF ON
ON on

off on

R R
v t R x x i t

x x

 (4)

where RON and ROFF are, respectively, the minimum and

maximum resistance of the memristor, and xon and xoff are,

respectively, the minimum and maximum allowed value of

the internal state variable x.

Memristors are nonvolatile and compatible with standard

CMOS technologies [24]. These devices are fabricated in the

metal layers of an integrated circuit, where the memristive

effects occur in the oxide between the metal layers (e.g., in

TiO2 and TaOx) [25] or within the metal layers (e.g., in STT-

MRAM). The physical model of a TiO2 memristor, proposed

in [20], is shown in Figure 3. The size of a typical memristor

is relatively small, since the fabrication process is similar to

processing the cross-layer via between metal layers.

Memristors therefore exhibit high density and good

scalability. The read and write time for these devices can be

as fast as 120 picoseconds [25]. Currently, except for STT-

MRAM, memristors suffer from endurance limitations, where

the number of allowed writes per cell is approximately 1010

[26]. It is believed however that this limit will increase to at

least 1015 [27]. Memristors may therefore solve many

significant problems in the semiconductor industry, providing

nonvolatile, dense, fast, and power efficient memory.

III. IMPLY LOGIC GATE

The logic function pŸq or 'p IMPLY q' (also known as "p

IMPLIES q," "material implication," and "if p then q") is

described in [7] and a truth table is listed in Table 1. The

IMPLY logic function together with FALSE (a function that

always yields the value zero as an output) comprises a

computationally complete logic structure. Since the IMPLY

function can be integrated within a memristor-based crossbar,

IMPLY logic provides a basic logic element for a memristor-

based circuit.

A. Basic logic gate operation

The proposed memristor-based IMPLY logic gate uses a

resistor RG (RON < RG < ROFF) connected to two memristors,

named P and Q, acting as digital switches. The corresponding

initial memristances p and q are the inputs of the gate; while

the output of the gate is the final memristance of Q (the result

is written into the logic state q). Note that the memristance of

both memristors changes during operation, i.e., the

computation is destructive to both inputs. A schematic of an

IMPLY gate is shown in Figure 4.

The basic concept is to apply two different voltages to P

(3a)

(3b)

(3c)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

3

Figure 2. I-V curve of a memristor based on the TEAM model driven

with a sinusoidal input of 1 volt, where RON = 50 ɋ, ROFF = 1 kɋ, koff =

1.46e-9 nm/sec, Ŭoff = 10, ioff = 115µA, kon = -4.68e-13 nm/sec, Ŭon = 10,

and ion = 8.9µA, xon = 1.2nm, and xoff = 1.8nm.

Figure 3. A schematic of the physical model proposed in [20] for a

TiO 2 memristor.

TABLE 1. TRUTH TABLE OF IMPLY FUNCTION.

Case p q pŸq

1 0 0 1

2 0 1 1

3 1 0 0

4 1 1 1

and Q, where VSET, the applied voltage on Q, has a higher

magnitude than VCOND, the applied magnitude on P (|VCOND|

< |VSET |). If p = 1 (low resistance), the voltage on the

common terminal is approximately VCOND and the voltage on

the memristor Q is approximately VSET - VCOND, which is

sufficiently small to maintain the logic state of q. In the case

of p = 0 and q = 0 (high resistances), the applied voltage on Q

is approximately VSET and Q is switched ON (q = 1). In the

case of p = 0 and q = 1, the logic state of q is maintained. The

memristance of an ideal IMPLY logic gate (zero delay time)

for input cases 1 and 3 is shown in Figure 5.

B. Analyzing the behavior of a logic gate

VSET and VCOND, the applied voltages on P and Q, are fixed.

For any initial state, the memristor state q tends to drift

towards the ON state. For digital operation, the state of q

should either stay unchanged or switch fully ON (changing

the logic state from logical zero to logical one).

The different input combinations are listed in Table 1. Due

to the polarity of the memristors and the applied voltages, the

memristance of memristor Q can only be reduced. Note that

in cases 2 and 4, the initial logic state of q is logical one and

the logic gate output q is also logical one. The gate operation,

therefore, electrically reinforces the logic state of q since the

memristance of Q is reduced.

In case 1, the initial state of q is logical zero; after applying

the external voltages, q is switched ON. This case determines

the time required to apply VSET and VCOND until the logic state

of q reaches the desired state (above a certain level of

conduction that maintains correct logical behavior). This case

determines the write time of the circuit (the delay time of the

logic gate).

In case 3, the initial state of q is logical zero. This logic

state should remain unchanged after applying VSET and VCOND,

although the voltages tend to change the internal state of q

towards the ON state of logical one. This phenomenon is

"state drift." The logical zero state of q, which is the output of

the gate, is electrically "weaker" than the input logical state of

q (the memristance of Q after applying the voltages is lower

than the initial memristance). State drift may require

refreshing the state; otherwise, repeated or prolonged sensing

action may incorrectly switch the logic state of q. Note that

the state drift phenomenon is a deterministic phenomenon.

Stochastic switching [40], [41] even change the logical state

of the memristors, and is not considered in this paper.

C. Speed ï robustness tradeoff

The permissible value of the time required to apply VCOND

and VSET is determined from case 1. This write time is the

delay time of the logic gate and determines the performance

of the logic gate. Since the initial logical state of the

memristors is unknown during operation (no preliminary read

operation is applied), the voltages are applied at the same

time for all input cases.

The state drift is determined from case 3, which depends

upon the write time determined for case 1. Furthermore, any

improvement in the performance due to changes in the

applied voltage increases the state drift and degrades the

robustness of the logic gate [28].

D. Extended Logic Functions based on IMPLY

Any general Boolean function f: Bn ŸB can be

implemented with only n + 3 memristors [29], where three

additional memristors carry out the computation. Only two

memristors are required for up to three inputs. Computation

of the function is performed in steps. In each step, either

FALSE is applied to one memristor, or an IMPLY is applied

to two memristors, where the output is written to a memristor

(which is one of the inputs of the computational IMPLY

stage). This process requires a long sequence of operations

depending upon the number of inputs. This methodology has

been improved in [30], where only two additional memristors

are used rather than three. While a general algorithm to

compute any Boolean function with a minimal number of

memristors has been developed [29], [30], the computational

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

4

Figure 4. The IMPLY logic gate. The initial state of memristors p and

q is the input of the logic gate and the output is the final state of the

memristor q after applying the voltages VSET and VCOND. A load

resistor RG is connected to both memristors.

Figure 5. Behavior of an ideal IMPLY logic gate. (a) Applied voltages

on both memristors P and Q. (b) Memristance of Q for cases 1 and 3.

While the memristance in case 1 decreases to RON within a zero write

time, the memristance in case 3 does not change. (c) Current of

memristor Q. The current in case 1 is sufficiently high to decrease the

resistance of Q.

process requires a large number of functional stages, and

therefore requires significant computational time.

The schematic and sequence of a two input NAND, based

on a memristor-based IMPLY gate and a FALSE logic gate,

are shown in Figure 6. This NAND gate is designed to

minimize the computational time and number of memristors

and is comprised of three memristors. The operation of this

NAND logic gate changes the function of each memristor

during the computing process. Two memristors act as inputs

in the initial stage, one memristor acts as the output in the

last stage, and all memristors act together as a computational

logic element (as a memristor-based IMPLY gate) during

different stages of the computing process. This application

requires three computing stages (one FALSE and two

IMPLY).

The IMPLY logic gate can also be extended to a multiple

input NOR logic gate [31]. In this extension, as illustrated in

Figure 7a, k input memristors P1, P2 ... Pk, and a separate

output memristor Q are assumed. The operation of this NOR

gate requires two computational stages, the first stage

initializes Q to logical zero (q = 0) and the second stage

applies VSET and VCOND in a manner similar to regular

IMPLY. The extended NOR suffers from low fan-in since RG

needs to be scaled to all possible number of inputs. To solve

this issue, a different structure has been proposed where a

load resistor RG is connected to every memristor and the load

resistance varies, as shown in Figure 7b.

IV. IMPLY INSIDE A MEMRISTOR-BASED CROSSBAR

The IMPLY logic gate cannot be easily integrated with

standard CMOS logic since both circuit structures are

significantly different. In the IMPLY logic family, a

resistance, rather than a voltage, represents the logical state.

Furthermore, to operate the logic gate, a sequence of specific

voltages is applied to the memristors. The IMPLY logic gate

therefore requires several computational stages (usually a

different computational stage is executed during each clock

cycle), and a separate mechanism to read the result of the

computation and control the voltages. To integrate the

IMPLY logic gate with standard voltage-based CMOS logic,

a conversion mechanism is required. This mechanism

includes a sense amplifier as well as additional components.

The additional circuitry reduces the efficiency of integrating

CMOS with a memristor-based IMPLY logic gate.

Alternatively, the IMPLY logic gate can be integrated

inside a memristor-based crossbar array, commonly used for

memory, where the input and output are values stored in the

memory cells. This integration reduces power and provides an

opportunity for novel non-von Neumann architectures. In this

section, the basic structure of a memristor-based crossbar is

presented, and a version of the IMPLY logic gate is

illustrated.

A. Memristor-based crossbar

The basic structure of a memristor-based crossbar consists

of two sets of parallel conductive (metal) lines. The

conductive lines are perpendicular and behave as top and

bottom electrodes to the memristive material, located between

the lines [33]. The basic structure of a memristor-based

crossbar is shown in Figure 8. The write operation to a cell

within the crossbar is achieved by applying a specific voltage

to the junction, where a voltage is applied to both lines. For

example, to write a logical one (low resistance), a positive

voltage is applied to the column line and ground is connected

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

5

Figure 6. IMPLY NAND logic gate. (a) Logical operation of an

IMPLY -based NAND, the logic gate requires three sequential steps,

and (b) schematic of IMPLY-based NAND gate.

Figure 7. An extension to IMPLY ï a k-input NOR. (a) Schematic

based on execution of multiple implications in a single step, and (b) an

improved fan-in structure, where the load resistors are dedicated to

the participating logic devices.

Figure 8. Basic structure of a memristor-based crossbar. Each

junction of the parallel lines is a memory cell with varying resistance

Rjunction.

to the row line (a positive voltage is applied to the

memristor). To write a logical zero (high resistance), the

column line is connected to ground and a positive voltage is

connected to the row line (a negative voltage is applied to the

memristor). These voltages are sometimes called VSET

(positive voltage to write a logical one, not necessarily the

same voltage as in IMPLY) and VRESET (negative voltage to

write a logical zero). Since memristors are nonvolatile, the

data does not change when no voltage is applied to the lines.

The crossbar structure allows the density of the memory to be

relatively high, since CMOS transistors are not used for each

memory cell, but rather only to select the line. This memory

structure is more than twenty times denser than DRAM [34].

The read operation of the crossbar is achieved by applying

a relatively low voltage (e.g., lower than VSET) to a junction

and measuring the current. From Ohm's law, the resistance of

the memristor is determined from this measured current. The

current measurement is usually achieved by converting the

current into a voltage through a voltage divider with a known

resistance Rpu. The sensed voltage vs is compared to a known

voltage.

An undesired phenomenon in crossbars is sneak paths [35 -

38], which are undesired paths for the current flow. When a

voltage is applied to a junction in the crossbar, current also

flows through paths different than the desired path. These

paths cross more than one memristor and add a resistance in

parallel to the resistance of the memristor in the junction

being read. An illustration of the sneak path phenomenon is

shown in Figure 9. This parallel resistance depends upon the

stored data in the memristors in the undesired paths and

changes the sensed voltage vs from a simple voltage divider

between Rpu and the resistance of the memristor to a voltage

divider between Rpu and the total resistance of all memristors

in all paths. A practical sensing operation should therefore

consider all possible sneak paths. A schematic of a crossbar,

including the read and write mechanisms, is depicted in

Figure 10. Several approaches exist to eliminate or reduce

sneak paths, e.g., grounding inactive rows. In this paper, it is

assumed that these approaches are used.

B. IMPLY in a crossbar

The IMPLY logic gate can be integrated inside a crossbar,

where P and Q are two memristors in the same row within

the crossbar. The voltages VSET and VCOND are the voltages of

the word line, and the bit line is connected to a resistor RG.

To compute different Boolean functions with more than two

memristors, the memristors are placed within the same row

within the crossbar. Since the IMPLY operation is destructive

to P and Q, if the data of the input to P is significant, a copy

is assigned to a designated memristor. A schematic of a

crossbar-based IMPLY logic gate is shown in Figure 11.

V. LOGIC GATE DESIGN METHODOLOGY

In this section, design considerations and constraints for a

memristor-based IMPLY logic gate in a crossbar are

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

6

Figure 9. Sneak path in a memristive crossbar. (a) An example sneak

path. Every node in the grid is a memristor. The desired path is

marked by a solid line and a sneak path is marked by a dashed line,

and (b) the equivalent circuit. All sneak paths have an equivalent

resistance RSP connected in parallel to the resistance of the

memristor RM.

Figure 10. m x n memristive crossbar. The columns show the word

lines and the rows identify the bit lines. Each M ij is a memristor. The

resistance of the conductive line is nrw for the column line and mrw for

the row line. Rw and Rb are, respectively, the word and bit line

resistance.

Figure 11. An IMPLY logic gate inside a memristor-based crossbar.

described. It is assumed that the memristor behavior is

deterministic, rather than stochastic.

A. Design flow and constraints

Although no complete and accurate memristor model yet

exists, all of the proposed memristor models are relatively

complicated and the exact behavior of a memristive logic

circuit is therefore mathematically cumbersome. A need

therefore exists for heuristics for designing memristive

circuits. For memristor-based IMPLY logic gates, the

appropriate circuit parameters (RG, VSET, VCOND, and the time

to apply the voltages T) need to be determined under some

general constraints. These constraints include minimizing

power consumption (only dynamic power consumption in a

memristor-based crossbar), reducing area (the number of

active memristors in a crossbar and the number of transistors

in the controller), lowering the delay time of the logic gate,

and increasing the robustness of the circuit (by reducing

resistance drift during operation for those input cases where

the logical output does not change). The parasitic capacitance

of the CMOS transistors connected to the crossbar and the

parasitic resistance of the metal lines as well as the sneak

path phenomenon also need to be considered.

A general flow for the design of a memristor-based IMPLY

logic gate is shown in Figure 12. The design of a general

Boolean function is demonstrated through a case study in

section VI. After determining the topology of the circuit, the

conditions at the beginning of operation need to be

determined. These static conditions do not depend on the

memristor model and provide necessary conditions for correct

circuit behavior. Simplified memristor models use several

heuristics to approximate the circuit characteristics. The

TEAM model [23] is used here to estimate the circuit

parameters.

B. Design constraints and parameter determination for

IMPLY logic gate

In the design of a basic IMPLY logic gate, the circuit

parameters VSET, VCOND, and RG and the time to apply the

voltages T need to be determined. The memristor parameters

(RON, ROFF, kon, koff, Ŭon, Ŭoff, ion, and ioff in the TEAM model)

are fixed for a given technology.

Although difficult to compute the time evolution of the

voltage at Q (Figure 4), it is possible to determine the voltage

at Q at the beginning of the logic gate activity. The initial

applied voltage at Q is different for each input case (a

different initial memristance for Q and P). The initial

voltages at P and Q are listed in Table 2 under the

assumptions that the memristance of the logic one and logic

zero is, respectively, RON and ROFF, where ROFF >> RON.

From the initial applied voltages, some necessary

conditions for correct logic behavior can be determined. The

basic design principle is that the write (delay) time of the

logic gate is determined from input case 1 (see Table 2), but

the circuit should also not exceed a specific state drift in input

case 3.

A useful switching model is a binary memristance model

[28]. Assume only two allowed memristances, RON and ROFF.

A total charge Q' flows through the memristor to cause the

memristance ROFF to switch to memristance RON. Under these

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

7

Figure 12. Design flow for memristor-based IMPLY logic gates.

Figure 13. Allowed write time T in case 1 for three values of ROFF (5

kɋ, 10 kɋ, and 100 kɋ) under the assumptions of a binary resistance

model and Q' = 5Ț10
-14

 C.

Figure 14. Allowed values of VSET for limited state drift in case 3 of

Q'/4. VSET is allowed if qq(T) is smaller than Q'/4 (the horizontal line in

the figure).

assumptions and by solving both the switching behavior in

case 1 and the write time T as a function of Q', the circuit

parameter T is

2 2
'.OFF OFF G

OFF SET G SET COND

R R R
T Q

R V R V V

 (14)

The write time for different circuit parameters and varying

VSET is shown in Figure 13. Note that the logic gate is faster

with a higher applied voltage or a smaller ROFF.

Under this model, it is possible to limit the state drift (case

3 in Table 2) for a fixed drift. The state drift is

2

() ',G OFF G
q SET COND

ON G OFF SET G SET COND

R R R
q T V V Q

R R R V R V V

(15)

where qq(T) is the total charge flowing through memristor Q

after time T, as in case 3. If the state drift is limited to a value

of Q'/4 as the maximum state drift, after four executions of

the logic gate in case 3 the state drift would change the

memristive logic state of q. This phenomenon requires a

refresh every three executions of the logic gate since the logic

state would change to an invert value during the fourth time.

The allowed value of VSET for several circuit parameters is

shown in Figure 14. Note that the state drift is more

significant with a higher applied voltage, or with a smaller

ROFF. Combining Figures 13 and 14, the tradeoff between the

speed and robustness of a memristive IMPLY logic gate is

illustrated in Figure 15.

Another simple and useful memristor model assumes

nonlinear behavior with a fixed threshold voltage VON [28].

Under this model, for an applied voltage below VON, the

memristance is unchanged. To produce correct logical

behavior, the initial applied voltage on Q must be above the

threshold voltage in case 1 and below the threshold voltage in

case 3. Adding this assumption to the initial applied voltage

(see Table 2) leads to the following two conditions on the

circuit parameters,

,

2

SET ON SET ON
ON G OFF

ON SET COND ON SET COND

V V V V
R R R

V V V V V V

 (16)

.SET OFF

COND ON

V R

V R

 (17)

The allowed value for RG for several circuit parameters

with varying VSET is shown in Figure 16. A reasonable value

of RG is the geometric mean of RON and ROFF,

 ,G ON OFFR R R (18)

to maintain a constant ratio between each pair of resistances,

RON and RG, and RG and ROFF. Other values of RG are also

possible.

C. An example of one bit IMPLY logic gate

As a specific example of applying the flow chart of Figure

12, assume the requirement is a maximum write time (delay)

of 0.5 µsec. Note that the actual write time of a practical

memristor is significantly faster [25]. The maximum allowed

state drift is 0.00001ROFF (0.001% of the state drift as

compared to full switching, equivalent to 105 executions of

the logic gate before completely switching).

Assume a memristor with RON and ROFF, respectively, of 1

kɋ and 100 kɋ. Set one circuit parameter VCOND to 0.5 Volts.

From Figures 13 and 14, note that as VSET rises, the logic gate

write time T decreases and the gate response is faster;

however, the state drift phenomenon is more significant.

From (17),

 0.5 50SETV V V . (19)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

8

TABLE 2. INPUT GATE VOLTAGES VQ AND VP, RESPECTIVELY, AT MEMRISTORS

P AND Q AT t = 0, UNDER THE ASSUMPTIONS THAT THE MEMRISTANCE OF

LOGIC ONE AND LOGIC ZERO IS, RESPECTIVELY, RON AND ROFF, WHERE ROFF

>>RON.

Case VQ(t=0) VP(t=0)

1
2 2

OFF G G
SET COND

OFF G OFF G

R R R
V V

R R R R

 2 2

G OFF G
SET COND

OFF G OFF G

R R R
V V

R R R R

2 ON OFF G

SET SET

OFF ON G

R R R
V V

R R R

G

SET COND

ON G

R
V V

R R

3 G

SET COND

ON G

R
V V

R R

CONDV

4
2 2

ON G G
SET COND

ON G ON G

R R R
V V

R R R R

 2 2

G ON G
SET COND

ON G ON G

R R R
V V

R R R R

TABLE 3. WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF RG. ALL

VALUES SATISFY (19) AND (21). VCOND IS SET TO 0.5 V, KON = 0.05,

ION = 7 µA, AND ŬON = 3

RG [kɋ] T [µsec] State Drift [%ROFF] Writes Before

Refresh [#]

1 0.1307 0.4655 215

3.5 0.1782 0.00244 4.09E4

5 0.2144 0.00184 5.43E4

10 0.3971 0.00069 1.45E5

15 0.7472 0.0009 1.15E6

17.5 1.038 0.00001 1.743E7

20 1.46 0 Ð

30 3.063 0 Ð

TABLE 4. WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF VSET AND

MEMRISTOR PARAMETERS. ALL VALUES SATISFY (19) AND (21).

USING THE SAME DEFAULT VALUES AS TABLE 3. RG = 10 Kɋ

Parameter T [µsec] State Drift [%ROFF] Writes Before

Refresh [#]

Base 0.3971 0.00069 1.45E5

VSET = 1.2 V 0.0945 0.31208 320

kon = 0.1 0.1986 0.00069 1.45E5

kon = 0.01 1.9866 0.0007 1.44E5

Ŭon = 1 0.1587 0.3669 273

Ŭon = 4 0.7927 0.0004 2.52E5

TABLE 5. THE RESISTANCE OF A CMOS DRIVER FOR 0.12 UM CMOS

PROCESS.
W [µm] W/L CMOS Driver

Resistance [ɋ]

Voltage Drop with a

Load of 100 kɋ

0.13 1 12.8k 11.33%

0.3 2.3 6.4k 6.00%

0.5

3.8 3.8k 3.67%

0.75 5.8 2.5k 2.42%

1 7.7 1.8k 1.83%

1.3 10 1.4k 1.33%

2.5 19.2 708 0.67%

5 38.5 349 0.33%

10 76.9 173 0.17%

20 153.8 86 0.08%

This expression only produces a lower bound on VSET, since

the upper bound is significantly higher than practical on-chip

supply voltages. For a current-controlled memristor (e.g.,

TEAM model), it is unrealistic to determine an exact

equivalent voltage threshold (which depends on the transient

memristance of the device). A sufficient approximation for an

equivalent threshold voltage is

ON ON OFFV i R , (20)

where VON is the voltage threshold, and iON is the current

threshold. For a memristor with a current threshold of 7 µA,

the equivalent voltage threshold is 0.7 volts. From (16), RG is

 1.5 33.3Gk R k . (21)

The widely used linear ion drift memristor model [12, 23]

is incompatible with IMPLY logic gates. In this model, the

memristance changes linearly for any applied voltage; the

state drift phenomenon is therefore significant and intolerable

for IMPLY logic gates [28]. Hence, a different memristor

model with a current threshold, such as the TEAM model

[23], is preferable. The TEAM model accurately describes the

physical behavior of memristors. The chosen circuit

parameters for this example are RON = 1 kɋ, ROFF = 100 kɋ,

VCOND = 0.5 V, VSET = 1 V, and RG = 10 kɋ. SPICE

simulation based on these parameters for the memristance of

q are shown in Figure 17, where the write time (delay) of this

logic gate is 397.1 nsec and the state drift is 0.00069%,

equivalent to about 145,000 executions before switching. The

write time (delay) and state drift for varying RG and VSET are

listed in Tables 3 and 4. An increase in the resistance of RG or

decrease in the voltage level of VSET increases the delay of the

gate, but lowers the state drift phenomenon (and vice versa).

The write time (delay) and state drift for different memristor

parameters are listed in Table 4. An increase in the

nonlinearity of the memristors (ŬON) increases the delay of the

gate, but lowers the state drift phenomenon (and vice versa).

An increase in kon decreases the delay of the gate without

changing the state drift phenomenon.

D. Variations in VSET and VCOND

In previous sections, it is assumed that ideal voltage

sources are used for VSET and VCOND. Practical

implementations, however, suffer from variations in the

voltage level, mainly due to the resistance of the CMOS

drivers. The CMOS drivers add resistance in series with the

circuit and change the applied voltages. These voltage drops

change the performance (as determined from input case 1)

and the state drift (as determined from input case 3).

To evaluate the influence of CMOS drivers on performance

and state drift, the IMPLY logic gate is simulated with

similar circuit parameters as in section V-C. The equivalent

resistance of the CMOS driver for various CMOS widths is

listed in Table 5. The write time for different driver widths is

shown in Figure 18. For a W/L ratio of 10, the write time of

the IMPLY logic gate with CMOS drivers increases by

approximately 15%, as compared to ideal voltage sources. For

a W/L ratio of 75, the increase in the write time is negligible

(less than 1%).

To evaluate the change in the state drift phenomenon, the

IMPLY logic gate is evaluated for input case 3. The

difference in the state drift is listed in Table 6, showing

negligible difference for all W/L ratios. To overcome

variations in the voltage source, the applied voltages (VSET

and VCOND) can be increased. Alternatively, the resistance of

the circuit can be increased, by increasing RG or using

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

9

Figure 15. Tradeoff between the speed (write time) and robustness

(the state drift in case 3 for memristor Q) for three values of ROFF (5

kɋ, 10 kɋ, and 100 kɋ) under the assumptions of a binary resistance

model and Q' = 5Ț10
-14

 C.

Figure 16. Allowed value of RG depends on VSET. The upper line is the

upper bound for allowed RG and the lower line is the lower allowed

bound for RG. Under the assumption of a threshold voltage VON = 0.55

V, VCOND = 0.5 V, RON = 100 ɋ, and ROFF = 10 kɋ.

Figure 17. State variable of q when applying an IMPLY logic gate for

cases 1 (dashed line) and 3 (solid line). The parameters of the circuit

are VSET = 1V, VCOND = 0.5V, and RG = 10 kɋ. The parameters of the

memristors are kon = 0.05, ion = 7 µA, and Ŭon = 3. The delay of the

IMPLY logic gate is 397.1 ns and the state drift is 0.0007%,

equivalent to 145,000 executions before the need to refresh.

Figure 18. Write time of an IMPLY logic gate with CMOS drivers for

various CMOS widths (blue line) as compared to the write time with

ideal voltage source (dashed red line). A 0.12 µm CMOS process is

used; other circuit parameters are as in Figure 17.
memristors with higher RON and ROFF (e.g., the memristors in

[42] have RON of approximately 300 kɋ), or the resistance of

the CMOS driver can be decreased by increasing the W/L

ratio.

VI. EIGHT BIT IMPLY FULL ADDER - A CASE STUDY

IMPLY together with FALSE (the function that always

yields zero as an output) provide a complete logical structure.

While any Boolean function can be executed, an efficient

procedure is required to reduce the area and computational

time. In this section, a case study of an eight-bit full adder is

presented to discuss several design constraints and issues for

general Boolean functions. In this case study, three

approaches are considered: a general algorithm [29] is

considered first, which requires a long sequence and only two

additional memristors. Two other specific approaches ï serial

and parallel ï are also considered. These approaches

significantly reduce the required sequence of operation steps,

where the parallel approach requires more memristors for

faster execution as compared to the serial approach.

A. General Boolean Functions

An algorithm to implement any general Boolean function

using only IMPLY and FALSE has been proposed in [29].

This algorithm requires n + 3 memristors for any general

Boolean function f: Bn ŸB. While this algorithm is efficient

in terms of area (the number of memristors to compute a

function), it is inefficient in terms of computational time and

requires O(2kn) computational steps, where n is the number of

input memristors and k is the number of additional functional

memristors for the computation process. A different approach

is therefore required to improve the computational time. This

new approach is demonstrated in this section through a case

study.

Several Boolean functions being implemented by IMPLY

and FALSE are listed in Table 7. These functions are the

basic building blocks of any general Boolean function.

Choosing the proper building blocks and computing sequence

are key when the objective is to minimize the number of

computational steps and memristors. To reduce the number of

computational steps, parallelism can be exploited, where

several IMPLY and FALSE operations occur during the same

clock cycle. Since the operation is accomplished within the

crossbar structure, the topology of the entire array needs to be

considered, including possible sneak paths. Other methods for

parallelism that do not suffer from sneak paths use unipolar

memristors or, alternatively, insert switches between rows,

which deviates from the crossbar structure. Modifying the

crossbar structure to parallelize the execution is discussed in

section VI.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

10

TABLE 6. STATE DRIFT OF THE IMPLY LOGIC GATE WITH CMOS BUFFERS

AS COMPARED TO IDEAL VOLTAGE SOURCES FOR VARIOUS W/L RATIO.

W [µm] W/L Difference in the State

Drift 0.13 1 -0.000502%

0.3 2.3 -0.000150%

0.5 3.8 0.000009%

0.75 5.8 0.000053%

1 7.7 0.000059%

1.3 10 0.000056%

2.5 19.2 0.000038%

5 38.5 0.000021%

10 76.9 0.000011%

20 153.8 0.000006%

TABLE 7. BASIC BOOLEAN OPERATIONS BASED ONLY ON IMPLY AND

FALSE.

Structure Operation Comments

0 Ÿ q q' = 1

1 Ÿ q q' = q

p Ÿ 0 q' = NOT(p)

(A Ÿ (B Ÿ 0)) Ÿ 0 q' = A AND B Result in different

memristor than the inputs

(A Ÿ 0) Ÿ B B' = A OR B

(A Ÿ B) Ÿ ((B Ÿ A) Ÿ 0) q' = A XOR B Requires copying of the

inputs, separate output q

FALSE(B),

FALSE(C),

A Ÿ C,

C Ÿ B

B' = A Copy operation ï copy A

to B

TABLE 8. COMPARISON OF N-BIT FULL ADDERS. THE NUMBERS IN THE

BRACKETS ARE FOR AN EIGHT-BIT FULL ADDER
 Base [29] Optimized Approaches

Serial Parallel

Execution steps 89N (712) 29N (232) 5N+18 (58)

Memristors Input 2N 2N 2N

Output N+1 N+1 N+1

Functional 4 2 6N-1

Total 3N+5 (29) 3N+3 (27) 9N (72)

Special

functions

required

Parallel

FALSE

- - V

IMPLY

between

lines

- - V

TRUE V - -

It is sometimes necessary to copy the value from a memory

cell to other cells. The copy operation is also required when

data is used multiple times, since the destruction of the input

is undesired, or there is a need to transfer data to different

rows within the crossbar. The copy operation is also listed in

Table 7.

B. CMOS Full Adder

The input of the full adder are two eight-bit numbers and

the output is one eight-bit number S7, S6,é, S0 and one-bit

carry Cout. The basic structure of a CMOS eight-bit ripple

carry adder consists of eight full adders, where the logical

operation of each adder is

,i i i iS A B C (22)

 .out i i i i iC A B C A B (23)

A single CMOS eight-bit adder consists of 400 CMOS

transistors, as shown in Figure 19 for a basic full adder.

C. IMPLY Full Adder

Several approaches exist to design an eight-bit full adder

based solely on IMPLY and FALSE operations. The basic

approach is to follow the algorithm proposed in [29]. Two

additional approaches are considered ï serial and parallel. To

evaluate these approaches, the total number of memristors

and the number of computation steps are compared. The

general algorithm from [29] requires 712 computational

steps, while the serial approach lowers the computational

time to 232 computational steps with approximately the same

number of memristors, and the parallel approach has the best

performance of 58 computational steps but requires double

the number of memristors. A comparison among the

approaches is listed in Table 8.

 To execute a XOR operation, two functional memristors

M1 and M2 are required, where the complete sequence, as

listed in Table 7, is

 A XOR B: FALSE(M1), FALSE (S), AŸ S, S Ÿ M1

 FALSE(M2), FALSE (S), BŸ S, S Ÿ M2

 B Ÿ M1, FALSE (S), M1 Ÿ S

 A Ÿ M2, M2 Ÿ S.

The first two rows are copy operations of A and B,

respectively, to M1 and M2 since the IMPLY operation

destroys both inputs. To execute Si, the execution process is

divided into two XOR operations, where (22) is

 .i i i iS A B C (24)

This execution requires two functional memristors and 26

computational steps for Si, while the intermediate XOR of Ai

and Bi is also used for Cout,i, where (23) becomes

 , '0 ' '0 ' '0 ' .out i i i i i iC A B C A B (25)

 Several possible sequences exist for executing Ci using

three functional memristors to decrease the number of

computational steps. Furthermore, Ai, Bi, and Ci can also be

treated as functional memristors after the initial value is

changed during the execution process. The complete sequence

is described in the supplementary material.

 For an eight-bit full adder, two approaches have been

examined in the case study. The serial approach executes one

operation every clock cycle ï IMPLY or FALSE. For the

serial approach, all memristors are in the same row, as shown

in Figure 20a. In the parallel approach, independent

operations are executed during the same clock cycle, reducing

the number of required computational stages. For the parallel

approach, each bit in the full adder is in a different row, as

shown in Figure 20b. The carry is passed between the

different rows and the FALSE operations are simultaneously

completed for several memristors. The parallel approach

requires some modifications which differ from the crossbar

structure, adding connections between the rows of the

crossbar. These modifications also eliminate the sneak path

phenomenon while increasing the area as compared to a

conventional crossbar.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

11

Figure 19. Full adder consisting of two XOR gates, two AND gates,

and an OR gate.

Figure 20. An eight-bit full adder for (a) serial approach, and (b)

parallel approach. For the serial approach 27 memristors are used in

the same row of a standard crossbar structure. The parallel approach

requires a more complex crossbar structure, where a switched

connection between rows exists. Each bit execution is done in a

different row using nine memristors.

VII. BEYOND VON NEUMANN ï LOGIC INSIDE THE MEMORY

IMPLY logic is a natural method to execute logical

operations within the memristors. Memristor-based IMPLY

logic has the same crossbar structure as a memristor-based

memory and therefore enables the capability of performing

logic operations inside the memory with the same cells used

to store data. This combination enables innovative computing

architectures, rather than the classical von Neumann

architecture where the computing operations and the data

storage are separated.

For these novel architectures, part of the computation is

achieved inside the memory, with no separation with the data

read and write operations. These architectures are particularly

appropriate for massive parallel applications, where vast

amount of data need to be processed. In von Neumann

architecture for massive parallel applications, the data

transfer requires a wide data bus, long latency, and consumes

relatively high power. In these novel architectures, the

memory and logical operations are in the same crossbar

structure, almost no data transfer is required, and the latency

and power are significantly reduced, although the memristor

IMPLY logic delay is greater than the CMOS logic delay.

In these innovative architectures, the memristive memory

serves two roles ï as memory to store data and as a

computational unit. The function of a specific memristor can

be decided dynamically. Each memristor can act as either a

memory cell or as part of an IMPLY logic gate in different

stages of the operation. The effective size of the memory and

the computational unit is flexible and can vary for different

applications. A memristor-based memory requires a relatively

complex controller that can act as a regular memory

controller and also send control signals (VSET and VCOND) to

the IMPLY logic gates. This novel architecture requires a

new instruction set, requiring specific instructions for logic

operations inside the memory.

VIII. CONCLUSIONS

An IMPLY logic gate is a natural way to perform logic

operations with memristors. This logic gate can be integrated

within a memristor-based memory and, together with FALSE,

provide a complete logic family. This memristive logic gate

also enables non-von Neumann architectures which may open

a new era in computer architecture.

The potential benefits of memristive circuits in terms of

density and power support further work in this field. The

results described in this paper can be used to direct further

research on device structure optimization, logic synthesis

methods, array structures, and computing architectures.

REFERENCES

[1] L. O. Chua, ñMemristor ï The Missing Circuit Element,ò IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, September

1971.

[2] L. O. Chua and S. M. Kang, ñMemristive Devices and Systems,ò

Proceedings of the IEEE, Vol. 64, No. 2, pp. 209- 223, February 1976.

[3] D. B. Strukov and K. K. Likharev, "CMOL FPGA: a Reconfigurable

Architecture for Hybrid Digital Circuits with Two-Terminal Nanodevices,"

Nanotechnology, Vol. 16, No. 6, pp. 888-900, June 2005.

[4] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.

Weiser, "Hybrid CMOS-Memristor Logic," submitted to IEEE

Transactions on Very Large Scale Integration (VLSI), 2013.

[5] M. Klimo and O. Such, "Memristors Can Implement Fuzzy Logic,"

arXiv:1110.2074 [cs.ET], October 2011.

http://iopscience.iop.org/0957-4484/16/6/045
http://iopscience.iop.org/0957-4484/16/6/045

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

12

[6] G. Snider, "Computing with Hysteretic Resistor Crossbars," Applied

Physics A: Materials Science and Processing, Vol. 80, No. 6, pp. 1165-

1172, March 2005.

[7] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.

Williams, "Memristive Switches Enable 'Stateful' Logic Operations via

Material Implication," Nature, Vol. 464, pp. 873-876, April 2010.

[8] Y. V. Pershin and M. Di Ventra, "Neuromorphic, Digital and Quantum

Computation with Memory Circuit Elements," Proceedings of the IEEE,

Vol. 100, No. 6, pp. 2071-2080, June 2012.

[9] S. Shin, K. Kim, and S.-M. Kang, "Reconfigurable Stateful NOR Gate for

Large-Scale Logic-Array Integrations," IEEE Transactions on Circuits

and Systems II: Express Briefs, Vol. 58, No. 7, pp. 442-446, July 2011.

[10] D. Biolek, Z. Biolek, and V. Biolkova, "Pinched Hysteresis Loops of Ideal

Memristors, Memcapacitors, and Meminductors Must be 'Self-Crossing',"

Electronics Letters, Vol. 47, No. 25, pp. 1385-1387, December 2011.

[11] L. O. Chua, "Resistance Switching Memories are Memristors," Applied

Physics A: Materials Science & Processing, Vol. 102, No. 4, pp. 765-

783, March 2011.

[12] D. B. Strukov, G. S.Snider, D. R. Stewart, and R. S. Williams, "The

Missing Memristor Found,ò Nature, Vol. 453, pp. 80-83, May 2008.

[13] D. Sacchetto, M. H. Ben-Jamaa, S. Carrara, G. DeMicheli, and Y.

Leblebici, "Memristive Devices Fabricated with Silicon Nanowire

Schottky Barrier Transistors," Proceedings of the IEEE International

Symposium on Circuits and Systems, pp. 9-12, May/June 2010.

[14] K. A. Campbell, A. Oblea, and A. Timilsina, "Compact Method for

Modeling and Simulation of Memristor Devices: Ion Conductor

Chalcogenide-based Memristor Devices," Proceedings of the IEEE/ACM

International Symposium on Nanoscale Architectures, pp. 1-4, June

2010.

[15] X. Wang, Y. Chen, H. Xi, and D. Dimitrov, ñSpintronic Memristor

through Spin-Torque-Induced Magnetization Motion,ò IEEE Electron

Device Letters, Vol. 30, No. 3, pp. 294-297, March 2009.

[16] Z. Biolek, D. Biolek, and V. Biolkova, "SPICE Model of Memristor with

Nonlinear Dopant Drift," Radioengineering, Vol. 18, No. 2, Part 2, pp.

210-214, June 2009.

[17] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, ñA

Versatile Memristor Model with Non-Linear Dopant Kinetics,ò IEEE

Transactions on Electron Devices, Vol. 58, No. 9, pp. 3099-3105,

September 2011.

[18] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R.

S. Williams, "Memristive Switching Mechanism for Metal/Oxide/Metal

Nanodevices," Nature Nanotechnology, Vol. 3, pp. 429-433, July 2008.

[19] E. Lehtonen and M. Laiho, "CNN Using Memristors for Neighborhood

Connections," Proceedings of the International Workshop on Cellular

Nanoscale Networks and their Applications, pp. 1-4, February 2010.

[20] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D.

R. Stewart, and R. S. Williams, "Switching Dynamics in Titanium

Dioxide Memristive Devices," Journal of Applied Physics, Vol. 106, No.

7, pp. 1-6, October 2009.

[21] H. Abdalla and M. D. Pickett, "SPICE Modeling of Memristors," IEEE

International Symposium on Circuits and Systems, pp.1832-1835, May

2011.

[22] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers,

"A Memristor Device Model," IEEE Electron Device Letters, Vol. 32,

No. 10, pp. 1436-1438, October 2011.

[23] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM -

ThrEshold Adaptive Memristor Model," IEEE Transactions on Circuits

and Systems I: Regular Papers, Vol. 60, No. 1, pp. 211-221, January

2013.

[24] J. Borghetti, Z. Li, J. Strasnicky, X. Li, D. A. A. Ohlberg, W. Wu, D. R.

Stewart, and R. S. Williams, "A Hybrid Nanomemristor/Transistor Logic

Circuit Capable of Self-Programming," Proceedings of the National

Academy of Sciences, Vol. 106, No. 6, pp. 1699-1703, February 2009.

[25] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,

"Sub-Nanosecond Switching of a Tantalum Oxide Memristor,"

Nanotechnology, Vol. 22, No. 48, pp. 1-7, November 2011.

[26] J. J. Yang et al., "High Switching Endurance in TaOx Memristive

Devices," Applied Physics Letters, Vol. 97, No. 23, pp. 1-3, December

2010.

[27] J. Nickel, "Memristor Materials Engineering: From Flash Replacement

towards a Universal Memory," Proceedings of the IEEE IEDM Advanced

Memory Technology Workshop, December 2011.

[28] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Memristor-

based IMPLY Logic Design Procedure," Proceedings of the IEEE

International Conference on Computer Design, pp. 142-147, October

2011.

[29] E. Lehtonen and M. Laiho, "Stateful Implication Logic with Memristors,"

Proceedings of the IEEE/ACM International Symposium on Nanoscale

Architectures, pp. 33-36, July 2009.

[30] E. Lehtonen, J. H. Poikonen, and M. Laiho, "Two Memristors Suffice to

Compute All Boolean Functions," Electronics Letters, Vol. 46, No. 3, pp.

239-240, February 2010.

[31] S. Shin, K. Kim, and S.-M. Kang, "Reconfigurable Stateful NOR Gate for

Large-Scale Logic-Array Integrations," IEEE Transactions on Circuits

and Systems II: Express Briefs, Vol. 58, No. 7, pp. 442-446, July 2011.

[32] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, "Complementary Resistive

Switches for Passive Nanocrossbar Memories," Nature Materials, Vol. 9,

No. 5, pp. 403ï406, April 2010.

[33] A. Flocke and T. G. Noll, "Fundamental Analysis of Resistive Nano-

Crossbars for the Use in Hybrid Nano/CMOS-memory," Proceedings of

the European Solid State Circuits Conference, pp. 328-331, September

2007.

[34] M. A. Zidan and K. N. Salama, ñMemristor Based Memory: The Sneak

Paths Problem and Solutions,ò Microelectronics Journal, 2012 (in press).

[35] C. A. David and B. Feldman, "High-Speed Fixed Memories Using Large-

Scale Integrated Resistor Matrices," IEEE Transactions on Computers,

Vol. C-17, No. 8, pp. 721-728, August 1968.

[36] W. T. Lynch, "Worst-Case Analysis of a Resistor Memory Matrix," IEEE

Transactions on Computers, Vol. C-18, No. 10, pp. 940-942, October

1969.

[37] S. Shin, K. Kim, and S.-M. Kang, "Analysis of Passive Memristive Devices

Array: Data-Dependent Statistical Model and Self-Adaptable Sense

Resistance for RRAMs," Proceedings of the IEEE, Vol. 100, No. 6, pp.

2021-2032, June 2012.

[38] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, "Sneak-Path Constraints in

Memristor Crossbar Arrays," Proceeding of the IEEE International

Symposium on Information Theory, July 2013 (in press).

[39] O. Kavehei, S. Al-Sarawi, K-R. Cho, K. Eshraghian, and D. Abbot, "An

Analytical Approach for Memristive Nanoarchitectures," IEEE

Transactions on Nanotechnology, Vol. 11, No. 2, pp. 374-385, March

2012.

[40] T. Devolder et al., "Single-Shot Time-Resolved Measurement of

Nanosecond-Scale Spin-Transfer Induced Switching: Stochastic Versus

Deterministic Aspects,ò Physical Review Letters, Vol. 100, No. 5, pp.

057206-1-4, February 2008.

[41] R. Soni et al., ñOn the Stochastic Nature of Resistive Switching in Cu

Doped Ge0.3Se0.7 Based Memory Devices,ò Journal of Applied Physics,

Vol. 110, No.5, pp.054509-1-10, September 2011.

[42] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu,

"Synaptic Behaviors and Modeling of Metal Oxide Memristive Device,"

Applied Physics A, Vol. 102, No. 4, pp. 857-863, February 2011.

http://www.springerlink.com/content/p72h6j6023501401/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6035950&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6035950&tag=1
http://www.springerlink.com/content/0947-8396/
http://www.springerlink.com/content/0947-8396/
http://www.springerlink.com/content/0947-8396/102/4/

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

13

Shahar Kvatinsky is a Ph.D. candidate at the

electrical engineering department at the

Technion ï Israel Institute of Technology. He

received his B.Sc. in computer engineering

and applied physics, and an MBA at 2009

and 2010, respectively, both from the Hebrew

University of Jerusalem. Prior to his Ph.D.

studies he worked for Intel as a circuit designer.

 Guy Satat received his B.Sc in Electrical

Engineering and B.Sc. in Physics from the

Technion - Israel Institute of Technology as

part of the Technion's program for excellent

students. In 2011 he joined Intel Inc. and

worked on interconnect architecture. In 2013

he joined the Media Lab at the

Massachusetts Institute of Technology as a graduate student

in the Camera Culture group, where he works on ultra-fast

imaging and health imaging.

Nimrod Wald received his B.Sc degree in

Electrical Engineering and Physics from

TechnionðIsrael Institute of Technology,

Haifa, in 2013. In 2011 he joined Qualcomm

Inc. as a hardware designer and as of 2013

he is working as a hardware architect in the

area of performance analysis.

 Eby G. Friedman received the B.S. degree

from Lafayette College in 1979, and the M.S.

and Ph.D. degrees from the University of

California, Irvine, in 1981 and 1989,

respectively, all in electrical engineering.

From 1979 to 1991, he was with Hughes

Aircraft Company, rising to the position of

manager of the Signal Processing Design and Test

Department, responsible for the design and test of high

performance digital and analog IC's. He has been with the

Department of Electrical and Computer Engineering at the

University of Rochester since 1991, where he is a

Distinguished Professor, and the Director of the High

Performance VLSI/IC Design and Analysis Laboratory. He is

also a Visiting Professor at the Technion - Israel Institute of

Technology. His current research and teaching interests are

in high performance synchronous digital and mixed-signal

microelectronic design and analysis with application to high

speed portable processors and low power wireless

communications.

He is the author of over 400 papers and book chapters, 11

patents, and the author or editor of 15 books in the fields of

high speed and low power CMOS design techniques, 3-D

design methodologies, high speed interconnect, and the

theory and application of synchronous clock and

power distribution networks. Dr. Friedman is the Regional

Editor of the Journal of Circuits, Systems and Computers, a

Member of the editorial boards of the Analog Integrated

Circuits and Signal Processing, Microelectronics Journal,

Journal of Low Power Electronics, Journal of Low Power

Electronics and Applications, and IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, Chair

of the IEEE Transactions on Very Large Scale Integration

(VLSI) Systems steering committee, and a Member of the

technical program committee of a number of conferences.

He previously was the Editor-in-Chief of the IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, a Member of the editorial board of the Proceedings

of the IEEE, IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, and Journal of Signal

Processing Systems, a Member of the Circuits and Systems

(CAS) Society Board of Governors, Program and Technical

chair of several IEEE conferences, and a recipient of the

University of Rochester Graduate Teaching Award and a

College of Engineering Teaching Excellence Award. Dr.

Friedman is a Senior Fulbright Fellow and an IEEE Fellow.

Avinoam Kolodny received his doctorate in

microelectronics from Technion - Israel

Institute of Technology in 1980. He joined

Intel Corporation, where he was engaged in

research and development in the areas of

device physics, VLSI circuits, electronic

design automation, and organizational

development. He has been a member of the Faculty of

Electrical Engineering at the Technion since 2000. His

current research is focused primarily on interconnects in

VLSI systems, at both physical and architectural levels.

Dr. Uri Weiser is a visiting Professor at the

Electrical Engineering department, Technion

IIT and acts as an advisor at numerous

startups. He received his bachelor and master

degrees in EE from the Technion and a Ph.D

in CS from the University of Utah, Salt Lake

City.

Uri worked at Intel from 1988 to 2006. At Intel, Uri initiated

the definition of the first Pentium® processor, drove the

definition of Intel's MMXÊ technology, invented (with A.

Peleg) the Trace Cache, he co-managed and established the

Intel Microprocessor Design Center at Austin, Texas and

later initiated an Advanced Media applications research

activity.

Uri was appointed Intel Fellow in 1996, in 2002 he became

IEEE Fellow and in 2005 ACM Fellow.

Prior to his career at Intel, Uri worked for the Israeli

Department of Defense as a research and system engineer and

later with National Semiconductor Design Center in Israel,

where he led the design of the NS32532 microprocessor.

Uri was an Associate Editor of IEEEMicro Magazine (1992-

2004) and was Associate Editor of Computer Architecture

Letters.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL.

XXX, NO. XXX, XXX 201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for

any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

14

SP1: COMPUTATIONAL SEQUENCE FOR A ONE-BIT SERIAL FULL ADDER

Step Goal Operation
Input Memristors

Carry Memristor

(In/Out) Functional Memristors Output Memristor

A B C M1 M2 S

0 Initial value

A B Cin Unkown Unkown Unkown

1 False(S)

0

2 Copy A to M2 False(M2)

0

3 (via S) A Ÿ S

A'

4 S Ÿ M2

A

5 False(S)

0

6 Copy B to M1 False(M1)

0

7 (via S) B Ÿ S

B'

8 S Ÿ M1

B

9

S = A XOR B

B Ÿ M2

B Ÿ A

10 A Ÿ M1

A Ÿ B

11 False(S)

0

12 M2 Ÿ S

(B Ÿ A) Ÿ 0

13 M1 Ÿ S

A XOR B

14

Copy S to M1

(via M2)

False (M2)

0

15 False(M1)

0

16 S Ÿ M2

(A XOR B)'

17 M2 Ÿ M1

A XOR B

18
Execute part of Cout

C Ÿ M2

CinŸ ((A XOR B)

Ÿ 0)

19

Continue S

execution

C Ÿ M1

C Ÿ (A XOR B)

20 S Ÿ C

(A XOR B) Ÿ C

21 False(S)

0

22 M1 Ÿ S

(C Ÿ (A XOR B)) Ÿ 0

23 C Ÿ S

S

24

Finish Cout

execution

False (C)

0

25 M2 Ÿ C

(Cin Ÿ ((A XOR B)

Ÿ 0)) Ÿ 0

26 False(M1)

0

27 B Ÿ M1

B Ÿ 0

28 A Ÿ M1

A Ÿ (B Ÿ 0)

29 M1 Ÿ C

Cout

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL.

XXX, NO. XXX, XXX 201X

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for

any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

15

SP2: COMPUTATIONAL SEQUENCE FOR A ONE-BIT PARALLEL FULL ADDER

Step Goal Operation

Input Memristors
Carry

Memristor - In
Functional Memristors

Output Memristors

A B C0 M1 M2 M3 T0 S C1

0 Initial value

A B Unkown Unkown Unkown Unkown Unkown Unkown Unkown

1

Copy A to M2 (via T0),

copy B to M1 (via M3)

False (M1,M2,M3, S, T0, C1)

 0 0 0 0 0 0

2 A Ÿ T0

AŸ 0

3 T0 Ÿ M2

A

4 B Ÿ M3

B Ÿ 0

5 M3 Ÿ M1

B

6 Execute part of Cout A Ÿ M3

A Ÿ (B Ÿ 0)

7

A XOR B

B Ÿ M2

B Ÿ A

8 A Ÿ M1

A Ÿ B

9 M2 Ÿ S

(B Ÿ A) Ÿ

0

10 M1 Ÿ S

A XOR B

11

Copy S to M1 (via M2)

False (M1, M2, T0)

0 0

0

12 S Ÿ M2

(A XOR B)

Ÿ 0

13 M2 Ÿ M1

A XOR B

14

Execute part of Cout

C0 Ÿ M2

Cin

(before step 14)

Cin Ÿ ((A

XOR B) Ÿ 0)

15 M2 Ÿ C1

(Cin Ÿ

((A XOR

B)

Ÿ 0)) Ÿ 0

16 M3 Ÿ C1

Cout

17

Copy Cout to next stage

Cin (via T0)

C1iŸ T0i+1

(IMPLY between lines)
Cout Ÿ 0

18 T0i+1 Ÿ C0i+1

Cin

19

Continue S execution

C0 Ÿ M1

C Ÿ

(A XOR B)

20 S Ÿ C0

(A XOR B)

Ÿ C

21 False (S)

0

22 M1 Ÿ S

(C Ÿ(A

XOR B))

Ÿ 0

23 C0 Ÿ S

S

To compute an eight-bit full adder:

- Steps 1-13 are done in parallel for each bit lines.

- Steps 14-18 execute carry of each bit independently, and are repeated for each bit lines. The value of Cin

is required to be ready for these steps (previous bit line completed its step 18).

- Steps 19-23 are done in parallel to complete the computation.

