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Abstract—Memristors have extended their influence beyond
memory to logic and in-memory computing. Memristive logic
design, the methodology of designing logic circuits using mem-
ristors, is an emerging concept whose growth is fueled by the
quest for energy efficient computing systems. As a result, many
memristive logic families have evolved with different attributes,
and a mature comparison among them is needed to judge
their merit. This paper presents a framework for comparing
logic families by classifying them on the basis of fundamental
properties such as statefulness, proximity (from the memory
array), and flexibility of computation. We propose metrics to
compare memristive logic families using analytic expressions for
performance (latency), energy efficiency, and area. Then, we
provide guidelines for a holistic comparison of logic families and
set the stage for the evolution of new logic families.

I. INTRODUCTION

Memristive technologies are promising for nonvolatile
memory (NVM) design because of their high speed, low
power, scalability, data retention, endurance, and compatibility
with conventional CMOS in terms of fabrication and operating
voltages [1]. A memristive device (or a ‘memristor’ in short)
is a two-terminal device whose resistance is determined by
an internal state, which can be varied by the application of a
voltage/current. The capability to toggle resistance (between
a Low Resistance State - LRS, and a High Resistance State
- HRS) in response to voltage/current is perhaps the most
desirable property of memristors, extending their use from
memory to computing. Logic design using memristors is the
field of designing logic circuits that use memristors as the
primary computing device. The emergence of the memristor
as an NVM device which can compute, at a time when
modern computers are facing the memory wall problem, has
set the stage for memristors to be efficiently deployed for
in-memory computing. The memory wall problem has two
facets: the mismatch in the performance of processor and
memory, and the energy for memory access, which is growing
exponentially along the memory hierarchy (from cache to
off–chip DRAM) [2]. There has been a continuous effort to
move processing closer to where data resides, to alleviate the
memory wall problem. Memristive logic can integrate process-
ing and storage seamlessly, an attribute which, if exploited
well, can be a promising solution to scale the memory wall.
Consequently, many memristive logic families have emerged

with different characteristics and capabilities, with the goal of
exploiting memristors for logic and for in-memory computing.

A memristive logic family defines the manner of voltage
application and connection pattern between circuit elements,
including memristors, to compute a certain primitive logic
(AND, OR, NOR, NOT, XOR, etc.). Complex Boolean func-
tions can be executed using these primitive gates as building
blocks. Some memristive logic families are listed in Table I.
Although this is only a partial list, it represents the different
types of logic families proposed in recent years, and will be
used to facilitate our comparison. Despite their fundamentally
different characteristics and capabilities, most of these logic
families share the goal of trying to solve the memory wall
problem by computing in memory.

However, there is no clear method for classifying memris-
tive logic families according to their fundamental properties.
This has lead to unfair comparison of memristive logic families
in recent research literature. Furthermore, as we show in this
paper, not all of the proposed memristive logic families can
perform logic within memory, and if they can, comparing their
attributes to other logic families (memristive, as well as non-
memristive) is not straightforward.

This paper establishes a framework for classifying and
comparing different logic families from both circuit and
system point of view. First, we classify memristive logic
families by certain fundamental properties. Then, we propose
various metrics to compare them holistically. We limit our
discussion to memristive Boolean logic, although other types
of memristive logic, such as threshold logic and neural logic,
exist as well [3]. We classify memristive logic families into
three categories. First, we classify them according to the
consistency of representing data throughout the computation
using one physical quantity. We call this category as state-
fulness (Section II-A). The second category is the location
where the computation is performed and the hardware that
participates in the computation. We call this category the
proximity of computation (Section II-B). The third category
is the flexibility (Section II-C) to compute different logic
operations. After categorizing the memristive logic families,
we present the desirable characteristics of a logic enabled
memory and the peripheral circuit around it (Section III).
We then propose the evaluation metrics to compare different



TABLE I
DIFFERENT MEMRISTIVE LOGIC FAMILIES

Acronym (logic family name) Reference
IMPLY (material implication) [4], [5]

MAGIC (Memristor Aided loGIC) [6], [7]
FBLC (Fast Boolean Logic Circuit) [8], [9]

MAJ (Majority based logic) [10]
IMEC (In MEmory Computing) [11]
MRL (Memristor Ratioed Logic) [12]

MAD (Memristor As Driver) [13]
PIPM (Parallel Input Processing Memristor) [14],[15]

PINATUBO [16]
Akers (memristive Akers logic array) [17]
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Fig. 1. In CMOS logic, inputs (a-g), outputs (p, q) and intermediate values
(h, i, j, k, l, m, n) are represented as voltages; in memristive logic,
inputs, outputs and intermediate values are represented as either voltages or
resistances.
logic families (Section III). We present three metrics for
evaluation: performance in terms of latency (Section IV),
energy efficiency (Section V), and area efficiency (Section VI).
Then, we show how to estimate each of these metrics in a
generic manner (not specific to a particular logic family or
technology implementation) based on the proposed classes
of the logic family. Using this framework, we will set the
foundation for a fair comparison among different memristive
logic families and also with CMOS based computation.

II. CLASSIFICATION OF MEMRISTIVE LOGIC FAMILIES

Memristive logic differs fundamentally from conventional
CMOS logic. In CMOS logic, there is only a single logic
state variable, i.e., voltage. The input data is represented as
voltage and is processed as voltage throughout the computation
(including in all of the intermediate stages), and is finally also
represented as voltage at the output, as illustrated in Fig. 1.
Furthermore, the state variable is regenerated throughout the
computation by the CMOS gates. This seamless flow is
disrupted in memristive logic because the internal state of
memristors governs their resistance, introducing resistance, in
addition to voltage, as a logic state variable for computation.
The computation techniques in memristive logic usually rely
on these two state variables through Ohm’s law. The interac-
tion between resistive states of the memristors and voltages
are used to produce different dynamic behaviors that enable
the circuit to execute the desired logic operation.

This fundamental difference has manifested in two different
types of memristive logic families: one where resistance is
the only logic state variable for representing inputs, output,
and intermediate results of computation, and the other where
voltage and resistance are both used as part of the computation.

This forms the basis for our first classification category, i.e.,
statefulness. The second classification category stems from
the fact that memristive logic can integrate processing and
storage; hence, it is necessary to determine how tightly a
logic family can couple processing and storage. The third
classification category, flexibility, is based on the extent to
which a memristive logic circuit can be reconfigured to execute
different logic functions using the same computing fabric.

A. Statefulness

A memristive logic family is said to be stateful if the
Boolean variable is represented only as the state of the
memristor (i.e., resistance) and computation is performed
by manipulating this state [18]. In other words, inputs are
represented as resistance and the output(s) after computation
is (are) also stored as resistance of the memristor. IMPLY and
MAGIC are examples of stateful memristive logic families.
In some logic families, the input state variable is a voltage
and the output is stored as resistance (e.g., MAJ), which
is not stateful. Similarly, there can be logic families where
the input is represented as resistance and the output after
logic computation is sensed as voltage (e.g., PINATUBO and
Akers). Such families are not stateful either. In the MRL
family, the input and output state variables are both voltages
(as in CMOS logic) and memristors are used as voltage
dividers only to determine the output.

Statefulness is a fundamental classification because the
statefulness of a logic family has far reaching effects on its
compatibility with other units, such as CMOS-based circuits
and memristive memory cells. If the circuits are incompatible,
state conversion (from resistance to voltage or vice versa)
of consecutive logic operations will be required, influencing
performance, power, and area. Consequently, statefulness is
a desired characteristic for computation within memristive
memory since computation is performed using the same logic
state variables as represented in the memory cells and, as a
result, no conversion is required. On the other hand, non-
stateful families benefit from better integration with CMOS.
Additional stateful logic families include MAD and FBLC;
additional non-stateful families include PIPM and IMEC.

B. Proximity of Computation

From the early ’90s, many researchers have been searching
for ways to scale the memory wall by bridging the gap
between where data is stored and where it is processed. Early
researchers used the term processing-in-memory (PIM) to refer
to the effort to move the processing closer to where data
resides [19]. The term processing-in-memory broadly referred
to processing in the memory using computing units placed in
the memory chip. For example, in [19], processing units like
ALU were placed in the periphery of the memory array in the
memory chip. Later researchers used the term near-memory
computing or near data processing to refer to the same effort
and they exploited 3D stacking of DRAM dies over logic die
to compute near memory [20].



The terms processing-in-memory and near-memory com-
puting meant the same effort towards the goal of processing
data without requiring costly off-chip data transfer. The term
processing-in-memory can be misconstrued because it has a
broader meaning and does not specify whether processing is
done in the memory cells inside the memory array or in an
area outside the memory array in the memory chip. It is a
system-level definition which is agnostic to the underlying
device/circuit technology. Traditionally, memory cells could
only store data. Emerging NVM technologies, however, can
compute as well as store. In light of this, we need to re-define
‘near memory’ computing and ‘processing in-memory’ more
precisely.

Our terminology is ruled by the data movement requirement
of the memristive logic family, since computation is dominated
by data movement and not by the computation itself [2].
Therefore, we re-define PIM and near-memory computing
based on the location of data with respect to the memory
array, during computation, i.e, the proximity of computation.
We define the memory array as a regular array of memory
cells to store data, replicated in two dimensions, the wordline
and the bitline, and not including its auxiliary circuit. We re-
define processing-in-memory as ‘in-memory computing’ and
define it as the computing model in which data resides only
within the memory array during the entire computation.

We re-define ‘near-memory computing’ as the computing
model which requires data movement to the auxiliary circuit
(e.g., for state conversion) during the course of computation,
even if some (or most) of the computation is carried out by
the memory cells. Note that according to this terminology,
the recently proposed “in-memory computing” techniques for
SRAM [21] and DRAM [22] that use sense amplifiers to sense
charge sharing among memory cells are actually near-memory
computing. When the data is moved out of the memory
array and the entire computation is performed in a dedicated
processing area outside the memory array, the proximity is
defined as ‘out-of-memory computing’. Hence, the memory
array is the point of reference in our definition. In out-of
memory computing, computation may be performed in an area
outside the memory array or even in another die (e.g., a logic
die beneath a DRAM die as in the hybrid memory cube) or
in another chip (as in conventional von Neumann machines).

Consider a simple Boolean logic function which, due to
data dependencies, has to be executed as four logic levels,
as shown in Fig. 1. A logic family implements in-memory
computing if it does not require any data to be read out of the
memory array untill all the four levels are computed, as shown
in Fig. 2(a). In MAJ, two out of the three inputs to a MAJ gate
are voltages, resulting in a need for state conversion. Hence,
MAJ requires that data (intermediate values of computation)
be moved out of the array between every logic level and
written to the array as inputs of the next stage (Fig. 2 (b)). In
IMEC, each memory subarray implements minterms and two
subarrays together implement logic in SOP form, requiring
data movement to implement a two-level logic (Fig. 2 (c)). In
PIPM, the data from the memory array has to be passed to

a summing amplifier (in CMOS), resulting in data movement
for every logic gate evaluation, as shown in Fig. 2 (d).

C. Flexibility

A memristive logic family is said to be flexible if a variety
of operations can be executed using the same computing
elements. To achieve flexibility, a logic family has to provide
a basic operation (or a set thereof) which is functionally
complete, and allow different control signal sequences to
result in different outcomes. Some of the logic families are
similar to ASIC, where the functionality of each computing
element is determined prior to the fabrication process. Hence,
they can perform a fixed function (or set of functions). For
example, MRL, MAD and FBLC are all non-flexible since
each design yields specific logic operations. On the other hand,
IMPLY, MAGIC, MAJ and IMEC are all flexible, i.e., different
computations can be executed using the same computing units
at different execution times, and therefore the functionality can
be dynamically chosen during runtime.

All flexible families require a controller that conducts the
execution of the desired program using the adjustable com-
puting elements and synchronizes the sequence of basic logic
operations supported by the family. Some sort of compiler
or logic synthesis tool is necessary in order to generate an
efficient sequence of basic logic operations to realize a desired
function. Using an inadequate synthesis tool can lead to
an inefficient logic implementation in terms of performance
and/or power, while the proper use of it can result in a cost-
effective design.

Non-flexible families can become programmable in a similar
manner to a general-purpose CPU, where the designed fixed-
functions are sufficient to perform any required task and con-
struct a desired datapath. Programmable non-flexible families
can compute any desired operation, but cannot be used in or
near memory since they cannot be made compatible with the
memory array.

III. LOGIC ENABLED MEMORY AND EVALUATION
METRICS FOR MEMRISTIVE LOGIC FAMILIES

The conventional memory used for storage needs a simple
controller and the associated peripheral circuitry that supports
read/write operations. The in-memory and near-memory com-
putation models presented in section II-B require a memory
which can support logic operations, a logic enabled memory.

A. Logic Enabled Memory

A logic enabled memory should enable logic with mini-
mal modifications to the memory structure. As defined, the
memory array has to be a uniform replication of cells and the
uniformity should not be disturbed in the process of enabling
logic in it. Each cell may have a selector (e.g., a transistor or
a diode) in addition to the memory device, but nevertheless
uniform. Similarly, the peripheral circuit and controller should
be modified carefully to enable logic, while still supporting the
memory operations. To support logic operations in a memory
array, the major requirements are:
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1) The topology of circuits constructed in a memristive logic
family must be compatible with the memory array.

2) The peripheral circuitry and controller (together called
auxiliary circuit) have to support the logic family and
therefore be augmented with extra circuitry (e.g., additional
voltage sources, different cell selection schemes, state
conversion, etc.).

1) Memory array compatibility: A memristive logic family
cannot be fully exploited for in-memory/near-memory com-
putation if its basic logic gate cannot be realized in the array
structure of the memory. Many memristive logic families are
array compatible (e.g., IMPLY, MAGIC, IMEC, MAJ, and
PINATUBO). Some of those that are not can be modified to
have some compatibility. For example, Akers can be integrated
in a memory array with modified memory cells that have
four transistors and two memristors in each cell. A different
modification can be made to the periphery circuits to add
compatibility with memory arrays. For example, the original
PIPM [14] was not array compatible, and was made array
compatible by adding extra peripheral circuitry [15]. FBLC,
as presented in [8], requires special arrays with disabled
memristors, which cannot co-exist with the normal array used
for storage, and hence it is said to be array incompatible.

2) Peripheral Circuitry: Peripheral circuitry around the
memory array has not been proposed in many logic families
(e.g., MAGIC, IMPLY and MAJ), and the lack of this circuitry
blurs the system view. The peripheral circuitry for in-memory
and near-memory logic families should enhance the capability
of the peripheral circuitry used for memory, and the enhance-
ments should include:

• The ability to select multiple rows/columns to enable more
parallel execution of logic operations.

• The ability to apply additional distinct voltages beyond the
voltages used for memory operation (VREAD, VSET , etc.).

• Additional devices required to support the logical opera-
tions. For example, an additional resistor in each row in
IMPLY.
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To facilitate comparison among different families, we need
a generic peripheral circuitry with this enhanced capability. To
this end, we adopt the circuitry proposed in [23]. As shown in
Fig. 3(a), the wordlines and bitlines are fed through analog
muxes, and sense amplifiers at the end of the bitlines are
used to read the data from memory. The analog mux is used
to select the voltage that needs to be applied at every clock
cycle based on the ‘voltage select’ signal received from the
controller. The controller is a Finite State Machine (FSM)
that orchestrates the computation. The analog mux has a
dlogk2e:k decoder which selects one of the k voltages and
pulls up the wordline to the selected voltage (Fig. 3(b)). The
voltages (VSET , ..., VRESET/2) are the basic voltages required
for memory operations and are common to all logic families.
We assume a memristor with asymmetric switching and use
VSET/2 and VRESET/2 as half-select voltages [6]. Voltages
Vcntrli are the extra control voltages required to execute logic
and they are specific to a logic family. For example, IMPLY
requires two control voltages, while MAGIC requires only a
single control voltage. Some logic families, such as MAJ,
do not require these extra control voltages since they can
perform computation using the voltages used for memory
operations. The number of distinct control voltages used in
a logic family is an important parameter since it determines



the size/complexity of the peripheral circuitry. Each control
voltage makes the size of each multiplexer larger. In addition
to this basic circuit, some logic families require extra hardware
in the peripheral circuit. For example, PIPM requires summing
amplifiers in the peripheral circuit.

B. Evaluation Metrics

Energy to compute a task and time taken to compute a
task (latency) are the fundamental performance metrics or
figures of merit of any computing model. It is not possible to
define a baseline operation to compare the latency and energy
efficiency of logic families, since each family is different in
the logic primitives it supports and the degree of parallelism
it offers. Consequently, a good memristive logic family is
one which consumes the least energy and takes the least
time to compute a common benchmarking task. Additionally,
the area to compute a task must also be considered. This
needs a new perspective when we consider in-memory and
near-memory computing. In memristive logic, a sequence of
control voltages are applied to execute combinational logic.
The latency of an operation in a logic family depends on
the switching time of the memristors in the memory array, as
well as the latency of other tasks that are carried out between
consecutive operations, like reading from and writing to the
memory array (in the case of near memory computing). We
discuss performance (latency per operation) of logic families
in Section IV. During a logic operation, the on-chip controller
commands the peripheral circuit to apply appropriate voltages,
which switches the memristors, resulting in the desired output.
Hence, an insight into energy per operation can be obtained by
analyzing the energy consumption in each of these parts – the
controller, peripheral circuit and memristors (in the memory
array or elsewhere), during the operation. In section V, we
discuss the energy efficiency of different logic families. The
area efficiency of logic families is a measure of the area
overhead to the basic memory to enable computation and is
discussed in Section VI. We base our comparison on proximity
of computation since proximity gives the structural view of the
system and makes the comparison clear.

IV. LATENCY OF MEMRISTIVE LOGIC FAMILIES

The computational latency of in-memory and near-memory
logic families depends on the frequency at which control
signals are applied, which in turn depends on physical factors
such as the memristor technology used, wire parasitics, array
size etc. We define Tclk to be the clock period of the memory
clock, and Twrite, Tread, and Tlogic to be the time to perform
write, read, and logic operations, respectively. Depending on
the memristive technology and logic family, values of these
timing parameters could be one to several Tclk.

We define Tsw to be the switching time of a single memris-
tor. Depending on the location of the memristor in the memory
array, the switching time varies because of array parasitic
effects. For example, the switching time will be the highest for
the memristor farthest from the voltage driver due to IR drop
across array interconnect [24]. Hence, Twrite and Tlogic must

be sufficiently long to accommodate the charging/discharging
time of the wordlines/bitlines and the worst case switching
time of the memristor.

To compute complex logic functions, each memristive fam-
ily executes a series of basic logic operations: NOR operations
in the MAGIC family, for example, or IMPLY and FALSE
operations in the IMPLY family. Depending on the parallelism
offered by the logic family, in each step, one or more of
these basic functions can be executed. We define the number
of computational steps, NCS, as the number of steps for a
particular operation where, in each step, a basic operation(s)
of the logic family is (are) executed.

A. In-Memory Logic Families

For in-memory logic families, the latency is the time to
compute a given operation and is

Tcompute = NCS · Tlogic. (1)
Note that, in addition to the difference in NCS among
different memristive logic families, each logic family has its
own Tlogic, since the delay of the basic logic operation depends
on the connection pattern among circuit elements and the
voltage levels. For example, the NCS for a 1-bit full adder
operation in a serial execution of IMPLY logic is 29 [4] and
in the MAGIC family, it is 15 [6]. Hence, the latency for a
1-bit full-adder operation is 29·Tlogic IMPLY for IMPLY and
15·Tlogic MAGIC for MAGIC.

B. Near-Memory Logic Families

In near-memory logic families, there is data movement
in and out of the memory array during the computation,
since the peripheral circuit is also partially involved in the
computation. Sometimes data movement is required for logic
state conversion (from resistance to voltage, or to any other
conversion form) for the subsequent stages of computation.
In MAJ, for example, the output of a logic level is stored as
resistance, and is needed as voltage for the next logic level. In
some logic families, data is processed in the peripheral circuit,
and written back to memory array, if it is needed as resistance
for the next stage of computation. The time for reading data
out of the memory array, processing it, and writing back to the
memory array during the course of computation must be added
to (1). The read time depends on the delay in the memory array
and the CMOS-based sensing circuit. For example, an RRAM
memory fabricated by Panasonic has read-out time of 25 ns,
while the bipolar switching time is only 10 ns [25], implying
that the read-out time cannot be ignored when determining the
time to compute. The latency of a near-memory logic family
is therefore
Tcompute =NCS · Tlogic +Nread(NCS) · Tread+

NP (NCS) · TP +Nwrite(NCS) · Twrite,
(2)

where Nread, Nwrite, and NP are, respectively, the number
of reads, writes, and processing (in the auxiliary circuit), and
are dependent in NCS (the exact dependency varies among
different memristive logic families). Tread, Twrite, and TP are,
respectively, the time to read, write and process the data (if



needed) using the auxiliary circuit. In MAJ, for example, data
is written back during logic phase as the input of the next logic
stage, thus requiring no overhead for the write operation (i.e.,
Twrite=0). Furthermore, TP can be considered as the time to
convert the read voltage to the corresponding control signals to
be applied at the appropriate wordline/bitline, i.e., the latency
through the controller. As discussed in Section II-B, Nread

and Nwrite will increase as we move away from in-memory
computing, resulting in increased time to compute. This is
why NCS and Tlogic alone cannot be used to determine and
compare the latency of memristive logic families.

C. Out-of-Memory Logic Families

Out-of-memory computation is a conventional von Neu-
mann computation, even if the (external to the memory array)
processing units are made of memristors. The latency for out-
of-memory computation is therefore

ToMem = Tread + Tcompute + Twriteback. (3)
Each parameter of the latency depends on the computation
model, memory hierarchy, technology, application, etc. Nu-
merous examples of computation models that fall under this
category exist including MRL, FBLC, computing using Hybrid
Memory Cube (HMC), conventional von Neumann architec-
ture, etc. For example, modern computers are designed using
memory hierarchy (three to four levels of cache, main memory,
and storage) and CPUs. To perform computation, data has to
be fetched from respective memory using a bandwidth-limited
bus (Tread), processed in CPU (Tcompute), and stored back
(Twriteback) to the memory, which accounts for all the timing
parameters throughout the execution of an application.

V. ENERGY EFFICIENCY OF MEMRISTIVE LOGIC FAMILIES

To determine energy of in-memory and near-memory fam-
ilies, all of the units that participate in the computation must
be considered. Hence, the energy of the memory array, the
peripheral circuit and the controller needs to be determined.
For out-of-memory families, the energy depends on data move-
ment and the processing circuit outside the memory array. In
this section, we give expressions for energy per operation. The
exact definition of ‘an operation’ varies between different logic
families and therefore a fair comparison must be on equivalent
computational tasks.

A. Energy of In-Memory Logic Families

1) Energy consumed in the memory array: We divide
the energy consumed in the array into static and dynamic
contributions, i.e.,

Earray = Edynamic + Estatic. (4)
During an in-memory logic operation, dynamic energy

Edynamic is consumed by the memristors that switch during
the operation and by the charging/discharging of the array
wire capacitance. Assume the average switching energy of a
single memristor is Esw, and the collective array capacitor
charging/discharging energy is Ecap, then the dynamic energy

would be Edynamic = Ecap+n ·Esw, where n is the number
of memristors that switch during the operation.

Currents flow through memristors that do not switch during
the operation add static energy to the operation. We divide
these memristors into memristors that are part of the compu-
tation but do not switch, and memristors which are not part
of the computation. In memristors not involved in the com-
putation, there are sneak path currents which exist in passive
(selectorless) arrays and leakage current in arrays with selec-
tors (e.g., transistor leakage current in 1T1R). We collectively
call the energy dissipation in all the memristors that do not
switch as Eleakage. Apart from this, there is a residual static
energy Eresidue, which dissipates in the switching memristors
after they switch. For example, since Tlogic accommodates
the worst case switching time (Section IV), after an output
memristor switches, it can still consume energy since the
control voltage is applied for a longer period to accommodate
the worst case switching scenario. The total static energy in
the array is therefore Estatic = Eleakage + Eresidue.

2) Energy consumed in the peripheral circuit: As discussed
in Section III-A2, the peripheral circuit is responsible for
applying the control voltages during the computation. Energy
is consumed in the wordline/bitline multiplexers (which often
consist of decoders and pass-transistors), voltage regulators,
etc. Sense amplifiers do not participate in the computation and
therefore can be power gated and consume no energy during
computation in an in-memory logic family.

3) Energy consumed in the controller circuit: A good
estimate of the energy consumed in the controller circuit
can be the number of states in its FSM, which depends
on the number of computational steps NCS, and therefore
Econtroller ∝ NCS. Additionally, the energy to fetch the
control/program must be included in the energy consumed in
the controller. In summary, the energy per operation of an in-
memory logic family is

EIM
op = Earray + Eperipheral + Econtroller. (5)

B. Energy of Near-Memory Logic Families

1) Energy consumed in the memory array: Since in-
memory and near-memory logic families have the same array
structure, the energy consumed in the memory array can be
estimated in a similar manner as in Section V-A1. If the
memory array has a different regular structure (for example,
as in Akers [17]), the analysis should be done accordingly.

2) Energy consumed in the peripheral circuit: The energy
consumed in the peripheral circuit must include, in addition
to the energy discussed in section V-A2, the energy consumed
due to data movement in the peripheral circuit of the memory
array, and the energy to compute in the periphery. Due to
the diverse working principles exploited by near-memory logic
families, the energy consumed in the periphery is different
for each. The most common way to convert the data in the
memory array into voltage is by memory read operation using
sense amplifiers (SA). The energy consumed while reading



and writing is

Eread = ESA ·
Nread∑
i=1

Nb(i); Ewrite = Ew ·
Nwrite∑
i=1

Nb(i), (6)

where ESA is the energy consumed for reading a single bit of
data using SA, Ew is the energy for writing a single bit of data
into the memory and Nb(i) is the number of bits read/written
during a particular read/write operation.

The total energy dissipated in the peripheral circuit of a
near-memory logic family is
ENM

peripheral = Eperipheral + Eread +NP · EP + Ewrite, (7)
where Eperipheral is the energy dissipated only due to ap-
plication of control voltages in the peripheral circuit (as in
in-memory logic families), EP is the energy of processing
within the periphery (if needed), and NP is the number of such
processing steps required during the course of computation.

3) Energy consumed in the controller circuit: The en-
ergy consumed in the controller circuit is be proportional to
(NCS +Nread +Nwrite), since reading and writing data are
also steps in the computation, i.e.

ENM
controller ∝ (NCS +Nread +Nwrite). (8)

In summary, the energy per operation of near-memory logic
family is

ENM
op = Earray + ENM

peripheral + ENM
controller. (9)

C. Energy of Out-of-Memory Logic Families

Generally, the energy for out-of-memory computation is
EoMem = Eread + Ecompute + Ewriteback, (10)

where Eread is the energy to read from memory, Ecompute

is the actual execution energy in the processing unit, and
Ewriteback is the energy for writing the result back to memory.

For FBLC logic family, Eread is the energy to read data
from the memory, in which data is stored, to the computing
array (special arrays with disabled memristors), wheraeas
Ecompute is the energy to compute in the FBLC structure. The
extreme end of the spectrum for out-of-memory computing is
conventional von Neumann computing, where data is read out
of memory and delivered to the processor for computing.

VI. AREA EVALUATION OF MEMRISTIVE LOGIC FAMILIES

When evaluating the area of a memristive logic family,
one has to consider the area of all circuits participated in
the logic functionality. For in-memory logic families, where
computation is done by the memory cells, the area must
include the memory cells participating in the computation, and
of the changes made in the controller and peripheral circuitry
in order to add computing ability to the memory cells. Changes
to the periphery may be the addition of voltages to the analog
multiplexers (and the addition of voltage drivers), as shown in
Fig. 3 or any other augmentation of the circuits. Logic families
that use a modified cell array to facilitate logic (e.g., Akers)
should include the area overhead of the modification as well
when comparing to standard memory arrays.

In near-memory logic families, the computation is confined
to the memory array and periphery. Any changes made to the

controller and peripheral circuitry to accommodate computa-
tion (e.g., summing amplifiers in PIPM or connection nodes
in IMEC) need to be considered in the area evaluation as
well. For out-of-memory logic families, data is read from the
memory in the conventional way and processed in dedicated
circuits. Thus, the area of the memory array and periphery
does not contribute to the area of the computation. The only
area that is counted for out-of-memory logic families is that
of the dedicated circuits which perform the data processing.
Examples of such dedicated circuits include arrays containing
disabled memristors in FBLC, and hybrid memristor-CMOS
AND/OR/NOT paths in MRL. The area to store the code of
the computation task (program) must also be considered for
all proximity classifications. Since the basic logic function
is different among logic families, the memory area for code
storage can vary substantially.
The area is therefore

A = ACells +A∆P&C +APE +ACode. (11)

ACells denotes the area of participating memory cells, and is
non-zero only for in-memory and near-memory logic. Note
that the inputs and outputs of the logic operation are ex-
cluded from this area since they are required in any type of
computation. A∆P&C describes the area added by changes to
periphery and controller, and is relevant to in-memory, and
to a greater extent, near-memory logic families. The area of
dedicated processing circuits is APE , and is relevant only for
out-of-memory logic families. ACode is the area needed to
store code for execution, and is required in all classes, but
depends on the efficiency of the programming models and
tools supporting the different logic families.

Another interesting metric, which applies only to in-memory
and near-memory logic families, is the area utilized in the
memory array for computation. As stated, complex logic
functions are executed as a series of basic operations of a
logic family. The intermediate results of the logical sequence
are also stored as resistances of additional memristors, which
cost additional area for the computation in the memory array.
The memristors, where the intermediate results are stored,
are called functional memristors [4],[6]. We define a new
metric for comparison of different logic families, which we
call computing area utilization to measure the overhead of the
functional memristors involved in a certain operation. This
metric not only depends on the logic family, but also on the
algorithm used to execute various operations. Computing area
utilization, ηarea, for an operation is defined as

ηarea = 1− #FM

#TM
, (12)

where #FM is the number of functional memristors, and
#TM is the number of memristors used in the computation.
Since the number of input and output memristors is a property
of the executed function, independent of the logic family,
this metric gives a normalized comparison of the amount of
functional memristors between families.



TABLE II
COMPARISON OF LOGIC FAMILIES OF DIFFERENT PROXIMITY TO MEMORY

In-Memory Near-Memory Out-of memory∗

Energy EA + EP + EC EA + ENM
peripheral + ENM

controller Eread + Ecompute + Ewriteback

Latency NCS · Tlogic NCS · Tlogic +Nread(NCS) · Tread +NP (NCS) · TP +Nwrite(NCS) · Twrite Tread + Tcompute + Twriteback

Area AIM
Cells +AIM

∆P&C +ACode ANM
Cells +ANM

∆P&C +ACode APE +ACode

EA, EP , EC are respectively the energy dissipated per operation in the memory array, peripheral circuit, and controller of an in-memory logic family while
ENM

P and ENM
C are the energy dissipated per operation in the peripheral circuit and controller of a near-memory logic family.

∗ per application for out-of memory logic families

VII. CONCLUSIONS

Memristive logic can integrate processing and storage, a
property which has reignited interest in the decades old
concept of processing-in-memory. However, the conventional
definitions of processing-in-memory and near-memory com-
puting should be reevaluated in light of emerging memory
technologies. We classified logic families based on their funda-
mental attributes and proposed metrics for the evaluation and
characterization of memristive logic, which are summarized in
Table II. While families classified to have the same ‘proximity
of computation’ can be compared based on relatively small op-
erations, the comparison of families with different ‘proximity’
has to take into account the full system scope. The comparison
between in/near memory and out-of-memory computing can
be done only at the application level, and not at the basic
logic operation level. Memristive logic will herald a new era
in computing, and if rightly exploited, has the potential to
solve the von Neumann bottleneck.
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