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A Generalization from memristors to memristive devices

In this paper, the memristor device is assumed to behave according to its classical model [1]. Though
the �rst fabricated memristor device [2] has been modeled according to the classical model, this model
is inaccurate and real devices can be modeled by the more general �memristive device� model. Fur-
thermore, emerging memory technologies, e.g., Resistive RAM and Spin-Torque Transfer MRAM, can
be represented as memristive systems [3, 4]. A Memristive device [5] is a generalization of the original
memristor [1]. For such devices the state variable can be a vector s ∈ RD, and (assuming stationary
dynamics)

ṡ = f (s, u) (1)

y = ψ (s, u)u , (2)

where u is the input (voltage/current) and y is the output (current/voltage). In [3], for example, s
is a scalar as in the original memristor, but its dynamics is a�ected by some non-negative �window�
function Θ (s)

ṡ = f (u) ·Θ (s) . (3)

Usually Θ (s) is positive in some range and zero outside of that range (e.g., [3], Figs. 3-5). If s is in the
range where Θ (s) = 0, then ṡ = 0 for all times, and in this special case the memristive system is just
a non-linear resistor. Therefore, one can safely assume that we start from a point s (t = 0) in which
Θ (s (t = 0)) > 0. In that case, note that ṡ → 0 near the edges of that range (where Θ (s (t)) → 0).
Therefore, for all �nite t, s (t) cannot leave the range in which Θ (s (t)) > 0. Thus one can (safely)

de�ne z (s (t)) =
´ s(t)
s(0)

(1/Θ (x)) dx. By Leibniz rule, observe that

ż = (1/Θ (s)) ṡ = f (u) . (4)

Additionally, since z (s) is de�ned by an integral over a positive function, it is strictly monotone and
therefore reversible to s = h (z). Hence, the system can be represented as

ż = f (u) (5)

y = ψ (h (z) , u)u (6)

Next, we consider the special case when y = i (current), and u = v (voltage). In this case we denote
ψ (h (z) , v) = g (h (z) , v) so it would be clear it represents conductance.

For a su�ciently small range of state space and inputs, g (h (z) , v) can be linearized around a �xed
point (z∗, v∗), so (similarly to (3) in the paper)

g (h (z) , v) = ḡ + ĝz + γv , (7)
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where

ĝ , [∂g (h (z) , v∗) /∂z]z=z∗

ḡ , g (h (z∗) , v∗)− ĝz∗ − γv∗

γ , [∂g (h (z∗) , v) /∂v]v=v∗ .

Hence, a memristive system with a window function can be represented as

ż = f (v) (8)

i = (ḡ + ĝz + γv) v . (9)

Now this system is mathematically similar to the original system (1-3, in the paper).

Therefore, the only changes are the non-linearity in (8) and the γu correction in (9). In that case
a similar method as in the original memristor case is used. Next, the required modi�cation of the
proposed design is described. Using the modi�ed design, we again implement a synaptic grid circuit
in a similar method as for memristors, with z replacing s as the synaptic weight.

Assume a su�ciently small input range in which f is reversible.

During the read cycle keep u (t) = ax and replace the signal ū (t) = −ax with ū (t) = f−1 (−f (ax)).
This modi�cation is made so that the total change in the internal state variable is zero ∀n,m, since

∆znm =

ˆ 0.5Trd

0

f (axm) dt+

ˆ Trd

0.5Trd

(−f (axm)) dt = 0 , (10)

The output current of the synapse to the on line shortly after time zero is

Inm = a(ḡ + ĝznm + γaxm)xm. (11)

Therefore, the total current in each output line on equals to the sum of the individual currents produced
by the synapses driving that line, i.e.,

on =
∑
m

Inm = a
∑
m

(ḡ + ĝznm + γaxm)xm . (12)

The row output interface measures the output current on, and outputs

rn = c (on − oref) (13)

where c is a constant converting the current units of on to a unit-less number rn, and

oref = ḡa
∑
m

xm + γa2
∑
m

x2m . (14)

Note the a term γa2
∑

m x2m was added to the reference signal oref to adjust for the extra γu term in
(9). De�ning

Wnm = acĝznm , (15)

we again obtain
r = Wx , (16)

as desired.

During the write cycle replace the signals u (t) = ax and ū (t) = −ax, respectively, with u (t) = f−1 (ax)
and ū (t) = f−1 (−ax). This way the function f (·) in (8) is e�ectively `canceled out'. As a result, we
have

żnm = f
(
f−1 (asign (yn)xm)

)
= asign (yn)xm

so the total change in the internal state variable is exactly as we had in the original derivation (24, in
the paper), ∀n,m :

∆znm =

ˆ Trd+b|yn|

Trd

(asign (yn)xm) dt = abxmyn .

If u is current and y is voltage in (5-6), a di�erent design for the synapse should be used, as explained
in the section A.1.
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A.1 Current dependent memristive devices

As explained in section II.A in the paper, for a classical memristor the kinetics of the state variable
can be treated either as voltage dependent or as current dependent. For a general memristive system
(appendix A), however, this symmetry does not necessarily hold. It is possible that a memristor is only
current dependent and not voltage dependent. In that case, changing the synaptic design is required
as seen in Fig. 1a. In this case, (5-7) with y = v, and u = i, and ψ (h (z) , i) = 1/g (h (z) , i) can be
written as

ż = f (i)

i = g (h (z) , i) v .

Linearization with ĝ = [∂g (h (z) , i∗) /∂z]z=z∗ and ḡ = g (h (z∗) , i∗)−ĝz∗−γi∗, γ = [∂g (h (z∗) , i) /∂i]v=v∗

yields

ż = f (i) . (17)

i = (ḡ + ĝz + γi) v .

Next, the operation of the system in Fig. 1 is described. The circuit contains four transistors, in
addition to the memristor. During the operation of the circuit the M1 NMOS and the M2 PMOS
function as a voltage controlled current sources. They both have low device parameter K (so they
have a relatively low conductivity in comparison with the memristor) and therefore are always either
in cuto� or in saturation. Also, both the M3 and M4 NMOS devices function as a transmission gate.
They both have high device parameter K (so they have a relatively high conductivity in comparison
with the memristor) and therefore are always either in cuto� or in the linear regime.

During the Trd-long read cycle, we have as depicted in Fig. 1b, erd (t) = VDD, eout (t) = VDD,
u (t) = −ū (t) = −VDD and

vrd (t) =

{
ax , if 0 ≤ t < 0.5Trd

−ax , if 0.5Trd ≤ t ≤ Trd
. (18)

In this case both M1 and M2 are at cut o�, M3 and M4 are on (in the linear region), and with very
high conductivity. Therefore, the voltage on the memristor is also vrd (t). The current during the
begining of the read procedure (at time 0+) in each synapse is

Inm ≈ a(ḡ + ĝznm + γaḡxm)xm , (19)

where we assumed that ḡ � ĝznm + γaḡxm (a small signal assumption). Additionally assuming f (·)
is an odd function, using (17) and integrating over the read cycle we obtain

∆znm =

ˆ Trd

0

f (Inm (t)) dt

≈
ˆ 0.5Trd

0

f (aḡxm) dt−
ˆ 0.5Trd

0

f (aḡxm) dt

= 0.

Therefore, the read operation is approximately nondestructive (to zeroth order).

Therefore, the total current in each output line on equals to the sum of the individual currents produced
by the synapses driving that line, i.e.,

on =
∑
m

Inm = a
∑
m

(ḡ + ĝznm + γaḡxm)xm . (20)

The row output interface measures the output current on, and outputs

rn = c (on − oref) (21)
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Figure 1: Current-based synapse design. (a) Schematic of the arti�cial synapse with input voltages
vrd, u and ū, control signals eout and eread and output current I. (b) Writing and reading protocol -
incoming signals in a single synapse and the increments in the synaptic weight z.
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where c is a constant converting the current units of on to a unit-less number rn, and

oref = ḡa
∑
m

xm + γa2ḡ
∑
m

x2m . (22)

Note the a term γa2
∑

m x2m was added to the reference signal oref to adjust for the extra γu term in
(9). De�ning

Wnm = acĝznm , (23)

we again obtain
r = Wx , (24)

as desired.

During the write cycle erd (t) = 0 and

u (t) =

{
U (−ax) , if 0 ≤ t− Trd ≤ 0.5Twr

U (ax) , if 0.5Twr < t− Trd < Twr

, (25)

ū (t) =

{
Ū (−ax) , if 0 ≤ t− Trd ≤ 0.5Twr

Ū (ax) , if 0.5Twr < t− Trd < Twr ,
(26)

where

U (α) ,

{√
f−1 (α) /K + VT − VDD , if f−1 (α) < 0

−VDD , if f−1 (α) ≥ 0
(27)

Ū (α) ,

{
−
√
f−1 (α) /K − VT + VDD , if f−1 (α) ≥ 0

VDD , if f−1 (α) < 0
(28)

where K is the device parameter of transistors M1 and M2. Additionally, eout (t) = VDD if

min (by, 0) ≤ t− Trd − 0.5Twr ≤ max (by, 0) (29)

and zero otherwise. When eout (t) = VDD, it enables current �ow through the memristor. In that time
either M1 is saturated and M2 is cuto�, or M1 is cuto� and M2 is saturated.

For example, during 0.5Twr < t − Trd < Twr, if f
−1 (ax) < 0, M2 is cuto� and M1 is saturated. The

current on the memristor, arriving from M1, is

I = −K (VGS − VT )
2

= −K
(√

f−1 (ax) /K + VT − VDD + VDD − VT
)2

= −
∣∣f−1 (ax)

∣∣ .
Also, during the same time, if f−1 (ax) ≥ 0, M1 is cuto� and M2 is saturated. The current on the
memristor, arriving from M1, is

I = −K (VGS − VT )
2

= K
(
−
√
f−1 (α) /K − VT + VDD − VDD + VT

)2
=

∣∣f−1 (ax)
∣∣ .

When 0 ≤ t− Trd ≤ 0.5Twr we just need to �ip the sign of the ax argument. Taking into account all
these cases, the current on the memristor is during the write cycle

I =

{
f−1 (−ax) . , if 0 ≤ t− Trd ≤ 0.5Twr

f−1 (ax) , if 0.5Twr < t− Trd < Twr .
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Therefore, when eout (t) = VDD , combining this with (17) yields

ż (t) = f (I) =

{
−ax . , if 0 ≤ t− Trd ≤ 0.5Twr

ax , if 0.5Twr < t− Trd < Twr .

and zero otherwise. Integrating ż over both the write cycle (note the current can only �ow at times
given in (29))

∆z =

{´ Trd+by

Trd
axdt , if y ≥ 0

−
´ Trd

Trd−by axdt , if y < 0

= sign (y)

ˆ Trd+b|y|

Trd

axdt

= abxy

as desired.

B Direct voltage multiplication

The circuit proposed in this paper, implements a multiplication using (pulse duration)×(signal strength).
This novel method is used since direct multiplication of voltage/current signals is di�cult to accurately
execute with a small number of simple components [6]. Such an approximate method for a direct mul-
tiplication of voltage signals is shown in Fig. 2. This alternative design should be used if the memristor
conductance is much higher then the transistor conductance, in contrast to our assumption (13, in the
paper).

Consider a classical current-dependent memristor with dynamics as in Eq. 17, where for simplicity
we assume that f (i) = i and γ = 0. We denote by R (z) = r̄ + r̂z the state-dependent resistance of
the memristor. Assume that for transistors M1 and M2 the threshold voltage is zero1 VT = 0, that
by � ax and that the transistors gain K is set su�ciently low, so that ax� R (z) I. Note that since
the threshold voltage is zero, this means that both transistors are either in the linear region or in
cut-o�. Applying the voltages as shown in Fig. 2 (for y, x > 0), the current that �ows through the
memristor during the write cycle is

I = K (VGS − VT )VDS − 0.5V 2
DS

= K (by −R (z) I − VT ) (ax−R (z) I)

− 0.5 ((ax−R (z) I))
2

≈ Kabxy , (30)

and similarly for all the other x, y quadrants, I ≈ Kabxy. Denoting η = KabTwr, and integrating over
the write cycle yields

∆z = ηxy , (31)

as desired. Note that in this design K is low, while the conductivity of the memristor is high, which
is the opposite case to the assumption in (13, in the paper). Additionally, this direct voltage multi-
plication method has similarity with the multiplication method suggested in [7] for Hebbian learning
in CMOS synapses. In contrast to the method suggested here, the result of the multiplication in [7]
must be positive, which makes it unusable for practical algorithms.

1Note there are CMOS transistors with zero threshold voltage (and even negative voltage for NMOS). For example
in depletion-mode MOSFET a channel exists even with zero voltage.
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Figure 2: Direct voltage multiplication synapse (a) Schematic of the arti�cial synapse with
input voltages v, uy, ux and ūx = −ux, control signal e, and output current I. (b) Writing and
reading protocol - incoming signals in a single synapse and the increments in the synaptic weight s.

C Compact synapses

It is possible to reduce the number of transistors in each synapse from two to one, if one is willing to
double the write time in the original device (thus slowing the operation of the circuit). The schematic
of such a synapse is shown in Fig. 3a.

For simplicity, assume a classical memristor as in (1-2, in the paper).

As depicted in Fig. 3b, the read cycle is performed by applying, for a Trd duration,

u (t) =

{
ax , if 0 ≤ t < 0.5Trd

−ax , if 0.5Trd ≤ t ≤ Trd
, (32)
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Figure 3: Compact synapse design. (a) Schematic of the arti�cial synapse with input voltages u
control signal e and output current I. (b) Writing and reading protocol - incoming signals in a single
synapse and the increments in the synaptic weight s
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and e (t) = VDD, so ṡ (t) = u (t) and ∆s = 0 over the read cycle. Sampling the current at the beginning
of the read cycle gives

I = a(ḡ + ĝs)x, (33)

as required.

In the write cycle

u (t) =

{
−ax , if Trd ≤ t ≤ Trd + 0.5Twr

ax , if Trd + 0.5Twr < t < T
, (34)

and e (t) = VDD if
min (by, 0) ≤ t− Trd − 0.5Twr ≤ max (by, 0) (35)

and zero otherwise. Therefore, ṡ (t) = ax if e (t) = VDD , and zero otherwise.

Integrating over both the write half cycles, we obtain again

∆s = abxy . (36)

as required.

D Spice simulation of circuit

D.1 Linear ion drift model

The proposed synapse array was tested using CMOS 0.18 µm process and linear ion drift memristor
model [2, 3]. The test was set similarly to Fig. 6 in the paper, on a small 2 × 2 synaptic grid circuit
(without the second read cycle), simulated for time 10T with simple inputs

(x1, x2) = (1,−2) · 10sign (t− 5T) (37)

(y1, y2) = (0.5,−0.25) . (38)

and parameters as follows

• Memristors: RON = 100 Ω, ROFF = 100kΩ, D = 10nm and µv = 10−14m2/ (s · V ).

• Timing: T = 0.1sec, Twr = 0.6T .

• Scaling: a = 1mV, b = 0.6T, c−1 = 0.01A.

• Power supply: VDD = 1.8V .

As can be seen in Fig. 4 the circuit exhibited similar results as in Fig. 6 in the paper.
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Figure 4: SPICE simulation of the proposed synapse for 0.18 µm CMOS process with linear ion drift
memristors [2, 3]. (a) u1 and u2 wave forms. The voltage V upon the memristor and the conductance
g of the memristor are shown, respectively, by the blue solid and red dashed lines in: (b) V11 and ĝs11,
(c) V12 and ĝs12, (d) V21 and ĝs21, and (e) V22 and ĝs22. The input of the circuit and the parameters
are explained in the text (appendix D.1).

10



D.2 Threshold adaptive memristor (TEAM) model

The proposed synapse design was tested using the TEAM memristor model [3], which �ts well to
practical memristive devices. The following parameters were used: RON = 100 Ω, ROFF = 200kΩ,
Biolek window (p = 2), kOFF = −kON = 10, αON = αOFF = 54, D = 3 nm and the transistor was
again modeled using CMOS 0.18 µm process.

The test was set again on a small 2× 2 synaptic grid circuit, simulated for time 10T with (T = 60µs)
with simple inputs and an analog control circuit. As before, the conductance can be adjusted (Fig. 5)
using the read and write scheme described in the paper.
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Figure 5: SPICE simulation of the proposed synapse for 0.18 µm CMOS process with TEAM model
memristors [3]. The voltage V upon the memristor and the conductance change in the memristor are
shown, respectively, by the blue solid and red lines in: (a) V11 and ∆g11, (c) V12 and ∆g12, (d) V21
and ∆g21, and (e) V22 and ∆g22. More details appear in the text (appendix D.2).
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