
2016 ISCEE International Conference on the Science of Electrical Engineering

978-1-5090-2152-9/16/$31.00 ©2016 IEEE

Rotem Ben Hur
Andrew & Erna Viterbi Faculty of Electrical Engineering

Technion – Israel Institute of Technology

Haifa, Israel 3200003

Shahar Kvatinsky
Andrew & Erna Viterbi Faculty of Electrical Engineering

Technion – Israel Institute of Technology

Haifa, Israel 3200003

Abstract – Modern computers suffer from a growing disparity

of speed between processor and memory which significantly limits

their performance. Additionally, as the number of transistors per

chip continues to increase, the operating frequency stabilizes due

to the power considerations. One of the leading solutions to these

issues is to reduce data transfer by adding processing capabilities

into the memory itself. For data-intensive applications, this means

a significant improvement in processing capabilities by saving a

significant amount of time and energy. Although all the attempts

to implement this solution so far were unsuccessful, emerging non-

volatile resistive memory technologies (namely, memristors) offer

an opportunity for developing a Memory Processing Unit (MPU)

based on a technique called 'stateful logic'. The MPU allows

adding processing capabilities to the memristive memory cells,

thus enabling novel non-von Neumann architectures. The

processing within the MPU relies on a sequence of logical

operations. This paper presents the design of an MPU controller

for executing in-memory computation. Different design

techniques to execute processing and storing data within the MPU

are described. The MPU controller has been designed and

implemented in a VHDL environment and used to execute

different operations within the MPU.

Keywords – memristor, memristive systems, logic, MAGIC,

MPU, von Neumann architecture, memory controller.

I. INTRODUCTION

Conventional computers are based on von Neumann

architecture, where processing and storing of the data are

performed by different units (namely, CPU and memory). Over

the last few decades, the performance of processors has

improved in a much higher pace than this of memories, which

has led to today several orders of magnitude performance gap

between processor and memory. This gap causes a bottleneck

for transferring data between memory and processor, which is

usually called the memory wall. A way to overcome this

bottleneck is by reducing data transfer necessity. One of the

ways to achieve this is by performing some of the computations

within the memory. Such novel non-von Neumann architecture

shall reduce the energy consumption and improve the

performance.

Attempts for reducing the memory wall problem by getting

the memory closer to the processing unit have been tried before.

One of the leading trials is processing near memory (PNM)

architecture. In PNM, processing units, on which part of the

program is executed, are added to the off-chip DRAM memory

and a part of the program is executed in the off-chip memory

by a co-processor. One well-known implementation of PNM is

Berkeley’s Intelligent RAM (IRAM) project [1]. The IRAM

project had not become commercially successful, mainly due

to the bad integration between DRAM and logic technologies.

To truly overcome this problem, processing within memory

using the same cells for both memory and logic is desired. Such

integration can be performed using novel emerging nonvolatile

memory technologies. These emerging technologies include

RRAM, PCM, STT MRAM and others (for simplicity, we refer

to all of them as memristors). A memristor is a two-port passive

element with varying resistance, which changes according to

the voltage applied to the device. Due to their speed, low

power, scalability, and high endurance [2], memristors that

store data as resistance values, are considered as attractive

candidates to replace conventional memory technologies (e.g.,

DRAM and Flash).

Furthermore, memristive technologies have also been

explored for additional applications such as logic circuits,

whereas some of the proposed logic may be computed within a

memristive memory structure [3-5], allowing both storage and

processing within the same cells and without changing the

topology of the memristive memory array. Such a Memory

Processing Unit (MPU) that can be dynamically changed from

data processing to storage is proposed in [6].

In conventional systems, a memory controller which is

responsible for the interface with the memory resides within the

processor. Inside the standard memory, located a controller

which receives the read and write requests from the memory

controller and executes them. The structure of such systems is

described in Figure 1a. In our proposed non-von Neumann

architecture, an MPU uses as memory. A memory controller is

still located within the processor, however, instead of the

simple controller within the memory, a more intricate MPU

controller is located within the MPU, as described in Figure 1b.

In this paper, a description of the MPU controller and its

complexity are presented.

II. LOGIC WITHIN MEMRISTIVE MEMORIES

A. Memristive Memories

Memristive devices are made of a dielectric material which

is fabricated between two metal electrodes. The logical state of

the memristor is represented as a resistance, where high

resistance is considered as logical zero and low resistances is

considered as logical one.

Memristive memories enable an extremely dense memory of

4F2 (where F is the feature size). The memristive memory

structure can either be a crossbar array [7] or include selectors

in each memory cell [8]. Thus, undesired current sneak paths in

crossbar arrays, where unselected cells interfere with the

Memristive Memory Processing Unit (MPU) Controller

for In-Memory Processing

selected cells, are neglected in this paper.

Figure 2 shows the schematic of a memristive crossbar.

Writing logical ‘0’ and ‘1’ to a memristor is performed by

applying VRESET and VSET, respectively, across it. Read

operation is achieved by applying a voltage below threshold

VREAD across the selected memristor and measuring the current

which flows through it using a sense amplifier.

The crossbar structure is symmetrical, thus the operations

which are performed in the memory may be executed by

applying voltages from both horizontal and vertical directions,

using a transpose memory [9]. Such memory can be used to

access the array from different directions, thus operations on

both row and column vectors can be performed.

B. Stateful Logic

In addition to conventional storage capabilities of

memristive memories, several logical families which are

performed within the memory array have been proposed [10-

11]. One of the techniques for such in-memory logic is called

stateful logic, where the logical state of the memristor is

represented solely by the resistance. The inputs and outputs of

the logic gates are, respectively, the states of the memristors

before and at the end of the computation. The applied voltages

across the memristors write the result to the output memristor

based on the initially stored values in the input memristor. A

few stateful logic families are proposed in [12-15], based on

different voltages which are applied across the bitlines and

wordlines of the memory array.

C. MAGIC – A Stateful Logic Family

An improved stateful logic family is Memristor-Aided

Logic (MAGIC) [5], where only a single voltage VG is used to

perform a NOR logic operation. Since NOR is a complete logic

function, MAGIC NOR operation is sufficient to execute any

Boolean operation. This NOR gate is the basis for performing

all processing within memory, thus each processing task is

divided into a sequence of MAGIC NOR operations, which will

be executed one after the other using the memory cells as

computation elements. The schematic of a MAGIC gate

operation, performed over row vectors within a memristive

memory is shown in Figure 2.

III. MEMORY PROCESSING UNIT (MPU)

Combining storage with processing capabilities within

memories enables the development of novel non-von Neumann

architectures. Although conventional memory technologies

(e.g., DRAM and Flash) cannot be used for such a purpose,

most memristive memories cells can also act as processing

elements. Such a unit which combines memory and

computations is a recently proposed Memory Processing Unit

(MPU) [6], which consists of a memristive memory and CMOS

control, as illustrated in Figure 3. The MPU can either act as an

integrated unit, where the memory has independent processing

capabilities, or as conventional memory in a von Neumann

machine. Therefore, the MPU is compatible with standard

computing systems.

To complete the compatibility with conventional von

Neumann architecture, standard instruction set architectures

(ISA), such as ARM and X86, have to be extended with

dedicated in-memory logic and arithmetic instructions. These

instructions will be used to perform computation tasks on

known locations in the memory (i.e., addresses). This

adaptation must also include the development of a compiler

which will be able to compile high-level code (e.g., C code)

into the extended ISA. Such a compiler should divide the

execution of the program between the processor and the MPU.

The parts of the program that benefit from execution within the

memory shall be written in the extended ISA, while other

portions will be executed in conventional von Neumann style.

VISO

VG

VG

A NOR B

A

B

VISO

VISO

Figure 2. MAGIC NOR operation between two row vectors performed

within the memristive memory by applying VG to the input memristors,

ground to the output memristors, and VISO to unselected bitlines and

wordlines. The operation takes one clock cycle for any number of pairs

of Ai and Bi [9].

(a) (b)

Figure 1. (a) General structure of (a) von-Neumann architectures, and (b) the proposed architecture with an MPU as the memory.

Since vector operations benefit most from stateful logic, most

of the extended ISA are actually vector instructions.

To execute an instruction within the MPU, the memory

controller sends the MPU commands along with conventional

read and write commands to the MPU, using an extended

conventional processor-memory interface protocol (e.g., DDR4

protocol). The command is received by the MPU controller,

which interprets it, convert the command into a sequence of

MAGIC operations, and then sends the corresponding control

signals in order to execute the operations within the memristive

memory. These control signals are converted into applied

voltages across all wordlines and bitlines of the memristive

memory by using single analog multiplexers with digital select

inputs for all wordlines and bitlines, as shown in Figure 3.

Based on the applied voltages, the resistance of the output

memristors may change, thus the logical state of the memory

cells is updated, according to the result of the computation. As

described in Section 2, the data within the memory acts as the

input of the logical operations and the result is immediately

stored within the memory cells, without the need to transfer

data out of the memory array. As a result, the use of MPU

allows alleviating the memory wall, and reducing the system

energy.

IV. MPU CONTROLLER

A. General Description and Work Principle

MPU controller is responsible for performing the required

operations within the memory. The processor sends to the MPU

controller standard read and write instructions as well as

processing commands. Based on the message from the

processor, the controller dynamically decides whether an

element is a data storage element or a processing element. To

execute a conventional read or write operation, the controller

sends the suitable control signals to all bitlines and wordlines

of the addressed memristors (depending on the addresses

received from the processor). Using analog multiplexers, the

control signals determine which voltage(s) to apply (e.g., VSET,

VRESET, VREAD, as described in Section II-A) to each bitline and

wordline.

Performing processing tasks is more complicated since it

requires a sequence of logical steps. The MPU controller

receives macro-instructions from the processor, and breaks

them into numerous micro-instructions. These micro-

instructions are built on several levels of abstraction, where the

lowest level is the basic logical operation (i.e., MAGIC NOR

operation). The MPU controller pipelines the control signals to

the memory, changing the applied voltages on each memory

clock cycle. Pipelining the micro-instructions maximizes the

processing efficiency in terms of speed and energy.

We have designed such an MPU controller in VHDL

environment. The general structure of the MPU controller is

illustrated in Figure 4. An instruction which is sent to the MPU

controller enters the 'Processor In' block which interprets it, and

sends it for further interpretation to the suitable block,

depending on the command type. The available block types are:

read, write, SET/RESET and arithmetic. Read and write

commands are similar to conventional memory commands.

SET and RESET commands writes, respectively, ones or

zeroes to areas with dynamic sizes. The MPU controller uses

these commands to clear areas of the memory during different

stages of the computation processes, or while initializing the

memory. While these three block types perform the operation

by applying voltages during a single clock cycle, the arithmetic

block requires multiple clock cycles to execute different logic

and arithmetic operations. The exact number of steps depends

on the operation type and vector size. In each step (clock cycle)

of the computation, different voltages are applied to the bitlines

and wordlines, executing NOR operations in different

locations. The arithmetic block is discussed in details in the

Bitlines

Valid

Read Data

B
it

li
n

e
 M

u
x

W
o

rd
li

n
e

 M
u

x

VSET

VRESET

VREAD

VG

float

VG

float

gnd
RRef

Voltage SelectVoltage Select

(b)(a)

Wordlines
MPU

CONTROLLER
Memristive

Memory

Figure 3. (a) General structure of an MPU. Voltages which are applied to each bitline and wordline are determined using analog multiplexers with a

digital select input, which is received from the MPU controller. (b) Description of the wordline and bitline analog muxes.

Processor
Out

SET/RESET
Block

Read
Block

Write
Block

M
e

m
ri

st
iv

e

M
e

m
o

ry

Data Out P
ro

ce
ss

o
r

MPU CONTROLLER

Instruction

Arithmetic
Block

Opcode

M
e

m
o

ry
 O

u
t

M
u

xBitlines

Wordlines

Data from Memory

Processor
In

Figure 4. MPU controller block diagram.

next sub-section. Finally, after interpretation in the suitable

block, control signals are sent to the memory array through the

analog multiplexers and the 'Memory Out Mux' block. In read

operations, the read data is sent to the processor by the

'Processor Out' block.

In our design, the latency of all instructions except arithmetic

instructions is five clock cycles (according to the stages of the

pipeline). Pipelining maintains the maximal throughput of one

instruction per cycle. In arithmetic operations, the latency and

throughput depends on the number of steps require to execute

the logic or arithmetic operation, as described in the next

subsection.

B. Arithmetic Block

The arithmetic block is a sophisticated finite state machine,

which is responsible for executing the logic and arithmetic

commands within the memory. The arithmetic block splits the

macro-instructions of arithmetic and logic commands into

micro-instructions, which are a set of MAGIC NOR operations.

The arithmetic block consists of a sub-block for each logic

or arithmetic command. Each sub-block has NOR and SET

blocks. These inner blocks are asynchronous to minimize the

stages of the pipeline.

While executing logic and arithmetic operations, the control

signals are changed every clock cycle. The throughput,

however, is not a single operation per cycle, but determined

according to the size of the vectors and the type of logic or

arithmetic operation and can be therefore much higher.

C. In-Memory Processing Considerations

To optimize the throughput of the arithmetic execution,

different considerations should be taken into account:

1) Algorithms for In-Memory Processing

Different algorithms for executing logic operations which

are compatible for in-memory execution (e.g., algorithms based

solely on MAGIC NOR operations) needs to be developed.

These algorithms maximize the efficiency of the MPU [16].

Exploiting the parallelism offered by the memristive memory

is essential to optimize these algorithms in terms of energy,

performance, and area. For example, multiplying

simultaneously K binary matrices, each of which of size MxN,

requires 5NK-5K+2M+1 steps when optimizing an algorithm

based on MAGIC NOR. This algorithm has a quadratic time

complexity of O(NK), while in standard von-Neumann

architecture a cubic time complexity of O(NKM) is required.

This instance exemplifies the potential performance benefits

offered by processing data within the memory. Choosing the

right algorithms to process large amount of data can even reach

several orders of magnitude improvement.

In the future, automatic design tools, similar to logic

synthesis tools, should be evolved to develop new algorithms,

while considering the tradeoff between the competency of the

algorithm and the complexity of the controller.

2) Processing Area

Executing these algorithms within the MPU requires

allocation of dedicated memory cells for computation. The

allocation procedure must consider data that is stored within the

memory and needs to be retain. Processing therefore may be

performed anywhere, as long as the memory cells are not used

for storage at the time. In order to keep track of available cells,

a dedicated hardware for allocation memory is required. To

simplify the allocation mechanism, we allocate memory cells

that are dedicated only for processing, as illustrated in Figure

5. Thus before performing a computation, resetting the

allocated cells is performed without destructing stored data.

The allocated area for processing and its exact size can be

dynamically chosen. Choosing specific locations may reduce

energy consumption. For example, by performing the

processing using memory cells which are close to the stored

data (e.g. in matrices among the rows of the matrix).

Additionally, changing the location of the processing area can

be used as a wear leveling technique [17] to increase the

memory lifespan.

3) Vector Operations

Since MAGIC NOR can be executed simultaneously on

multiple rows or columns, the MPU can be used to perform

vector operations. To effectively perform vector operations, the

data needs to be aligned. i.e., when all vector elements laid in

the same row (row vector), each element in the input vectors

needs to be on the same column to its corresponding element in

the other input vector. This alignment enables performing of

simultaneous MAGIC NOR operations on all elements in the

vector and the performance of the execution of vector

operations can be therefore independent on the vector size. If

two row vectors rely on the same row, only bit-wise operations

can be performed and the performance depends on the vector

size. This concept is demonstrated in Figure 5, where NOT(A)

is performed in a single parallel operation, while NOT(NOT(A)

is performed sequentially in a bit-wise manner. Figure 6 shows

simulation results of performing OR logic operation between

two row vectors within memory, including the need to move

data to the dedicated processing area. Although in some cases

bit-wise operations are inevitable, the benefits from vector

operations can be significant.

Figure 5. Memory divided into storage and processing areas. Row vector

A is copied from locations (2,1:3) into the processing area (6,6:8). Since the

source address of vector A does not share columns with the destination

address, then both vector-wise operations as well as bit-wise operations are

required. Copying of A is performed by NOT(NOT(A)), whereas NOT

operation is a NOR operation with a single input. The latency of the copy

operation is N+1 for N-bit A.

Processing Area

A

AA

NOT(A)

NOT(NOT(A0))

NOT(NOT(A1))

NOT(NOT(A2))

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

V. CONCLUSIONS

This paper discusses the different issues of designing an

MPU controller, which is a crucial element for in-memory

processing. Processing data in an MPU has a great potential for

orders of magnitude improvement in both performance and

energy as compared to conventional von Neumann machines.

We have designed an MPU controller in VHDL

environment, including developing different algorithms which

exploit the parallelism capabilities of the memristive memories

and improve the MPU efficiency. In the development of these

algorithms, different issues have been considered such as area

allocation, and the complexities of the algorithms and the

controller.

ACKNOWLEDGMENT

This research was partially supported by Intel Collaborative

Research Institute for Computational Intelligence (ICRI-CI)

and by the Viterbi Fellowship in the Technion Computer

Engineering Center.

REFERENCES

[1] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C.
Kozyrakis, R. Thomas, and K. Yelick, "A Case for Intelligent DRAM:
IRAM," IEEE Micro, Vol. 17, No. 2, pp. 34-44, March/April 1997.

[2] S. Kvatinsky E. G. Friedman, A. Kolodny, and U. C. Weiser, "The
Desired Memristor for Circuit Designers," IEEE Circuits and Systems
Magazine, Vol. 13, No. 2, pp. 17-22, Second Quarter 2013.

[3] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
"Memristor-based IMPLY Logic Design Flow," Proceedings of the IEEE
International Conference on Computer Design, pp.142-147, October
2011.

[4] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.
Weiser, "Memristor-Based Material Implication (IMPLY) Logic: Design
Principles and Methodologies," IEEE Transactions on Very Large Scale
Integration (VLSI), Vol. 22, No. 10, pp. 2054-2066, October 2014.

[5] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, "MAGIC – Memristor Aided LoGIC,"

IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 61,
No. 11, pp. 895-899, November 2014.

[6] R. Ben Hur and S. Kvatinsky, "Memory Processing Unit for In-Memory
Processing," Proceedings of the IEEE International Symposium on
Nanoscale Architectures, July 2016.

[7] Z. Jiang, P. Huang, L. Zhao, S. Kvatinsky, S. Yu, X. Liu, J. Kang, Y.
Nishi, and H.-S. P. Wong, “Analysis and Predication on Resistive
Random Access Memory (RRAM) 1S1R Array,” Proceedings of the
2015 International Memory Workshop, pp. 1-4, May 2015.

[8] S. Sheu, P. Chiang, W. Lin, H. Lee, P. Chen, Y. Chen, T. Wu, F. T. Chen,
K. Su, M. Kao, K. Cheng, and M. Tsai, "A 5ns Fast Write Multi-Level
Non-Volatile 1 K Bits RRAM Memory with Advance Write Scheme,"
Proceedings of the Symposium on VLSI Circuits, pp.82-83, June 2009.

[9] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic Design within
Memristive Memories Using Memristor-Aided loGIC (MAGIC),” IEEE
Transactions on Nanotechnology, Vol. 15, No. 6, pp. 1-16, July 2016.

[10] E. Linn, R. Rosezin, S. Tappertzhofen, U. Bttger, and R. Waser, “Beyond
von Neumann Logic Operations in Passive Crossbar Arrays Alongside
Memory Operations,” Nanotechnology, Vol. 23, pp. 305205:1–6, July
2012.

[11] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaacobi,
and S. Kvatinsky, "Logic Operation in Memory Using a Memristive
Akers Array," Microelectronics Journal, Vol. 45, No. 11, pp. 1429-1437,
November 2014.

[12] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R.
S. Williams, "Memristive Switches Enable 'Stateful' Logic Operations via
Material Implication," Nature, Vol. 464, pp. 873-876, April 2010.

[13] E. Lehtonen, J. H. Poikonen, and M. Laiho, "Two Memristors Suffice to
Compute All Boolean Functions," Electronics Letters, Vol. 46, No. 3, pp.
239-240, February 2010.

[14] S. Shin, K. Kim, and S.-M. Kang, "Reconfigurable Stateful NOR Gate
for Large-Scale Logic-Array Integrations," IEEE Transactions
on Circuits and Systems II: Express Briefs, Vol. 58, No. 7, pp. 442-446,
July 2011.

[15] E. Lehtonen, J. H. Poikonen, J. Tissari, M. Laiho, and L. Koskinen,
"Recursive Algorithms in Memristive Logic Arrays," IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, Vol. 5, No. 2, pp.
279-292, June 2015.

[16] R. Ben Hur, N. Talati, and S. Kvatinsky "Algorithmic Considerations in
Memristive Memory Processing Units (MPU)," Proceedings of the
International Workshop on Cellular Nanoscale Networks and their
Applications, August 2016.

[17] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, "Enhancing Lifetime and Security of PCM-Based Main
Memory with Start-Gap Wear Leveling," Proceedings of IEEE/ACM
International Symposium on Microarchitecture, pp. 14–23, December
2009.

Figure 6. Simulation results of OR operation between two 8-bit vectors A

and B within the processing area. The result is copied to the desired

address. The operation is performed by the following sequence of NOR

operations:

Copying B to align it with A:

(1) NOT(B) - vector operation (one clock cycle).

(2) NOT(NOT(B)) = B - bit-wise operations (N=8 clock cycles).

Performing the computation between A and B:

(3) NOR(A, B) - vector operation (one clock cycle).

(4) NOT(NOR(A, B)) = OR(A, B) - vector operation (one clock cycle).

Copying the result to the desired address:

(5) NOT(OR(A,B))=NOR(A,B) - bit-wise operation (N=8 clock

cycles).

(6) NOT(NOR(A,B)=OR(A,B) - vector operation (one clock cycle).

Total latency of 2N+4=20 clock cycles.

Processing Area

A

B

(3) NOR(A,B)

(4) OR(A,B)

(2) B(1) NOT(B)

(6) OR(A,B)

(5) NOR(A,B)

