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Abstract – Modern computers suffer from a growing disparity 

of speed between processor and memory which significantly limits 

their performance. Additionally, as the number of transistors per 

chip continues to increase, the operating frequency stabilizes due 

to the power considerations. One of the leading solutions to these 

issues is to reduce data transfer by adding processing capabilities 

into the memory itself. For data-intensive applications, this means 

a significant improvement in processing capabilities by saving a 

significant amount of time and energy. Although all the attempts 

to implement this solution so far were unsuccessful, emerging non-

volatile resistive memory technologies (namely, memristors) offer 

an opportunity for developing a Memory Processing Unit (MPU) 

based on a technique called 'stateful logic'. The MPU allows 

adding processing capabilities to the memristive memory cells, 

thus enabling novel non-von Neumann architectures. The 

processing within the MPU relies on a sequence of logical 

operations. This paper presents the design of an MPU controller 

for executing in-memory computation. Different design 

techniques to execute processing and storing data within the MPU 

are described. The MPU controller has been designed and 

implemented in a VHDL environment and used to execute 

different operations within the MPU.  

Keywords – memristor, memristive systems, logic, MAGIC, 

MPU, von Neumann architecture, memory controller. 

I. INTRODUCTION 

Conventional computers are based on von Neumann 

architecture, where processing and storing of the data are 

performed by different units (namely, CPU and memory). Over 

the last few decades, the performance of processors has 

improved in a much higher pace than this of memories, which 

has led to today several orders of magnitude performance gap 

between processor and memory. This gap causes a bottleneck 

for transferring data between memory and processor, which is 

usually called the memory wall. A way to overcome this 

bottleneck is by reducing data transfer necessity. One of the 

ways to achieve this is by performing some of the computations 

within the memory. Such novel non-von Neumann architecture 

shall reduce the energy consumption and improve the 

performance. 

Attempts for reducing the memory wall problem by getting 

the memory closer to the processing unit have been tried before. 

One of the leading trials is processing near memory (PNM) 

architecture. In PNM, processing units, on which part of the 

program is executed, are added to the off-chip DRAM memory 

and a part of the program is executed in the off-chip memory 

by a co-processor. One well-known implementation of PNM is 

Berkeley’s Intelligent RAM (IRAM) project [1]. The IRAM 

project had not become commercially successful, mainly due 

to the bad integration between DRAM and logic technologies. 

To truly overcome this problem, processing within memory 

using the same cells for both memory and logic is desired.  Such 

integration can be performed using novel emerging nonvolatile 

memory technologies. These emerging technologies include 

RRAM, PCM, STT MRAM and others (for simplicity, we refer 

to all of them as memristors). A memristor is a two-port passive 

element with varying resistance, which changes according to 

the voltage applied to the device. Due to their speed, low 

power, scalability, and high endurance [2], memristors that 

store data as resistance values, are considered as attractive 

candidates to replace conventional memory technologies (e.g., 

DRAM and Flash). 

Furthermore, memristive technologies have also been 

explored for additional applications such as logic circuits, 

whereas some of the proposed logic may be computed within a 

memristive memory structure [3-5], allowing both storage and 

processing within the same cells and without changing the 

topology of the memristive memory array. Such a Memory 

Processing Unit (MPU) that can be dynamically changed from 

data processing to storage is proposed in [6].  

In conventional systems, a memory controller which is 

responsible for the interface with the memory resides within the 

processor. Inside the standard memory, located a controller 

which receives the read and write requests from the memory 

controller and executes them. The structure of such systems is 

described in Figure 1a. In our proposed non-von Neumann 

architecture, an MPU uses as memory. A memory controller is 

still located within the processor, however, instead of the 

simple controller within the memory, a more intricate MPU 

controller is located within the MPU, as described in Figure 1b. 

In this paper, a description of the MPU controller and its 

complexity are presented. 

II. LOGIC WITHIN MEMRISTIVE MEMORIES 

A. Memristive Memories 

Memristive devices are made of a dielectric material which 

is fabricated between two metal electrodes. The logical state of 

the memristor is represented as a resistance, where high 

resistance is considered as logical zero and low resistances is 

considered as logical one. 

Memristive memories enable an extremely dense memory of 

4F2 (where F is the feature size). The memristive memory 

structure can either be a crossbar array [7] or include selectors 

in each memory cell [8]. Thus, undesired current sneak paths in 

crossbar arrays, where unselected cells interfere with the 
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selected cells, are neglected in this paper. 

Figure 2 shows the schematic of a memristive crossbar. 

Writing logical ‘0’ and ‘1’ to a memristor is performed by 

applying VRESET and VSET, respectively, across it. Read 

operation is achieved by applying a voltage below threshold 

VREAD across the selected memristor and measuring the current 

which flows through it using a sense amplifier.  

The crossbar structure is symmetrical, thus the operations 

which are performed in the memory may be executed by 

applying voltages from both horizontal and vertical directions, 

using a transpose memory [9]. Such memory can be used to 

access the array from different directions, thus operations on 

both row and column vectors can be performed. 

B. Stateful Logic 

In addition to conventional storage capabilities of 

memristive memories, several logical families which are 

performed within the memory array have been proposed [10-

11]. One of the techniques for such in-memory logic is called 

stateful logic, where the logical state of the memristor is 

represented solely by the resistance. The inputs and outputs of 

the logic gates are, respectively, the states of the memristors 

before and at the end of the computation. The applied voltages 

across the memristors write the result to the output memristor 

based on the initially stored values in the input memristor. A 

few stateful logic families are proposed in [12-15], based on 

different voltages which are applied across the bitlines and 

wordlines of the memory array. 

C. MAGIC – A Stateful Logic Family  

An improved stateful logic family is Memristor-Aided 

Logic (MAGIC) [5], where only a single voltage VG is used to 

perform a NOR logic operation. Since NOR is a complete logic 

function, MAGIC NOR operation is sufficient to execute any 

Boolean operation. This NOR gate is the basis for performing 

all processing within memory, thus each processing task is 

divided into a sequence of MAGIC NOR operations, which will 

be executed one after the other using the memory cells as 

computation elements. The schematic of a MAGIC gate 

operation, performed over row vectors within a memristive 

memory is shown in Figure 2. 

III. MEMORY PROCESSING UNIT (MPU) 

Combining storage with processing capabilities within 

memories enables the development of novel non-von Neumann 

architectures. Although conventional memory technologies 

(e.g., DRAM and Flash) cannot be used for such a purpose, 

most memristive memories cells can also act as processing 

elements. Such a unit which combines memory and 

computations is a recently proposed Memory Processing Unit 

(MPU) [6], which consists of a memristive memory and CMOS 

control, as illustrated in Figure 3. The MPU can either act as an 

integrated unit, where the memory has independent processing 

capabilities, or as conventional memory in a von Neumann 

machine. Therefore, the MPU is compatible with standard 

computing systems. 

To complete the compatibility with conventional von 

Neumann architecture, standard instruction set architectures 

(ISA), such as ARM and X86, have to be extended with 

dedicated in-memory logic and arithmetic instructions. These 

instructions will be used to perform computation tasks on 

known locations in the memory (i.e., addresses). This 

adaptation must also include the development of a compiler 

which will be able to compile high-level code (e.g., C code) 

into the extended ISA. Such a compiler should divide the 

execution of the program between the processor and the MPU. 

The parts of the program that benefit from execution within the 

memory shall be written in the extended ISA, while other 

portions will be executed in conventional von Neumann style. 
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Figure 2. MAGIC NOR operation between two row vectors performed 

within the memristive memory by applying VG to the input memristors, 

ground to the output memristors, and VISO to unselected bitlines and 

wordlines. The operation takes one clock cycle for any number of pairs 

of Ai and Bi [9]. 
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Figure 1. (a) General structure of (a) von-Neumann architectures, and (b) the proposed architecture with an MPU as the memory. 



  

 

  

Since vector operations benefit most from stateful logic, most 

of the extended ISA are actually vector instructions. 

To execute an instruction within the MPU, the memory 

controller sends the MPU commands along with conventional 

read and write commands to the MPU, using an extended 

conventional processor-memory interface protocol (e.g., DDR4 

protocol). The command is received by the MPU controller, 

which interprets it, convert the command into a sequence of 

MAGIC operations, and then sends the corresponding control 

signals in order to execute the operations within the memristive 

memory. These control signals are converted into applied 

voltages across all wordlines and bitlines of the memristive 

memory by using single analog multiplexers with digital select 

inputs for all wordlines and bitlines, as shown in Figure 3. 

Based on the applied voltages, the resistance of the output 

memristors may change, thus the logical state of the memory 

cells is updated, according to the result of the computation. As 

described in Section 2, the data within the memory acts as the 

input of the logical operations and the result is immediately 

stored within the memory cells, without the need to transfer 

data out of the memory array. As a result, the use of MPU 

allows alleviating the memory wall, and reducing the system 

energy. 

IV. MPU CONTROLLER 

A. General Description and Work Principle 

MPU controller is responsible for performing the required 

operations within the memory. The processor sends to the MPU 

controller standard read and write instructions as well as 

processing commands. Based on the message from the 

processor, the controller dynamically decides whether an 

element is a data storage element or a processing element. To 

execute a conventional read or write operation, the controller 

sends the suitable control signals to all bitlines and wordlines 

of the addressed memristors (depending on the addresses 

received from the processor). Using analog multiplexers, the 

control signals determine which voltage(s) to apply (e.g., VSET, 

VRESET, VREAD, as described in Section II-A) to each bitline and 

wordline. 

Performing processing tasks is more complicated since it 

requires a sequence of logical steps. The MPU controller 

receives macro-instructions from the processor, and breaks 

them into numerous micro-instructions. These micro-

instructions are built on several levels of abstraction, where the 

lowest level is the basic logical operation (i.e., MAGIC NOR 

operation). The MPU controller pipelines the control signals to 

the memory, changing the applied voltages on each memory 

clock cycle. Pipelining the micro-instructions maximizes the 

processing efficiency in terms of speed and energy. 

We have designed such an MPU controller in VHDL 

environment. The general structure of the MPU controller is 

illustrated in Figure 4. An instruction which is sent to the MPU 

controller enters the 'Processor In' block which interprets it, and 

sends it for further interpretation to the suitable block, 

depending on the command type. The available block types are: 

read, write, SET/RESET and arithmetic. Read and write 

commands are similar to conventional memory commands. 

SET and RESET commands writes, respectively, ones or 

zeroes to areas with dynamic sizes. The MPU controller uses 

these commands to clear areas of the memory during different 

stages of the computation processes, or while initializing the 

memory. While these three block types perform the operation 

by applying voltages during a single clock cycle, the arithmetic 

block requires multiple clock cycles to execute different logic 

and arithmetic operations. The exact number of steps depends 

on the operation type and vector size. In each step (clock cycle) 

of the computation, different voltages are applied to the bitlines 

and wordlines, executing NOR operations in different 

locations. The arithmetic block is discussed in details in the 
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Figure 3. (a) General structure of an MPU. Voltages which are applied to each bitline and wordline are determined using analog multiplexers with a 

digital select input, which is received from the MPU controller. (b) Description of the wordline and bitline analog muxes. 
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Figure 4. MPU controller block diagram. 



  

 

  

next sub-section. Finally, after interpretation in the suitable 

block, control signals are sent to the memory array through the 

analog multiplexers and the 'Memory Out Mux' block. In read 

operations, the read data is sent to the processor by the 

'Processor Out' block. 

In our design, the latency of all instructions except arithmetic 

instructions is five clock cycles (according to the stages of the 

pipeline). Pipelining maintains the maximal throughput of one 

instruction per cycle. In arithmetic operations, the latency and 

throughput depends on the number of steps require to execute 

the logic or arithmetic operation, as described in the next 

subsection. 

B. Arithmetic Block  

The arithmetic block is a sophisticated finite state machine, 

which is responsible for executing the logic and arithmetic 

commands within the memory. The arithmetic block splits the 

macro-instructions of arithmetic and logic commands into 

micro-instructions, which are a set of MAGIC NOR operations. 

The arithmetic block consists of a sub-block for each logic 

or arithmetic command. Each sub-block has NOR and SET 

blocks. These inner blocks are asynchronous to minimize the 

stages of the pipeline. 

While executing logic and arithmetic operations, the control 

signals are changed every clock cycle. The throughput, 

however, is not a single operation per cycle, but determined 

according to the size of the vectors and the type of logic or 

arithmetic operation and can be therefore much higher. 

C. In-Memory Processing Considerations 

To optimize the throughput of the arithmetic execution, 

different considerations should be taken into account:  

1) Algorithms for In-Memory Processing 

Different algorithms for executing logic operations which 

are compatible for in-memory execution (e.g., algorithms based 

solely on MAGIC NOR operations) needs to be developed. 

These algorithms maximize the efficiency of the MPU [16]. 

Exploiting the parallelism offered by the memristive memory 

is essential to optimize these algorithms in terms of energy, 

performance, and area. For example, multiplying 

simultaneously K binary matrices, each of which of size MxN, 

requires 5NK-5K+2M+1 steps when optimizing an algorithm 

based on MAGIC NOR. This algorithm has a quadratic time 

complexity of O(NK), while in standard von-Neumann 

architecture a cubic time complexity of O(NKM) is required. 

This instance exemplifies the potential performance benefits 

offered by processing data within the memory. Choosing the 

right algorithms to process large amount of data can even reach 

several orders of magnitude improvement. 

In the future, automatic design tools, similar to logic 

synthesis tools, should be evolved to develop new algorithms, 

while considering the tradeoff between the competency of the 

algorithm and the complexity of the controller. 

2) Processing Area 

Executing these algorithms within the MPU requires 

allocation of dedicated memory cells for computation. The 

allocation procedure must consider data that is stored within the 

memory and needs to be retain. Processing therefore may be 

performed anywhere, as long as the memory cells are not used 

for storage at the time. In order to keep track of available cells, 

a dedicated hardware for allocation memory is required. To 

simplify the allocation mechanism, we allocate memory cells 

that are dedicated only for processing, as illustrated in Figure 

5. Thus before performing a computation, resetting the 

allocated cells is performed without destructing stored data. 

The allocated area for processing and its exact size can be 

dynamically chosen. Choosing specific locations may reduce 

energy consumption. For example, by performing the 

processing using memory cells which are close to the stored 

data (e.g. in matrices among the rows of the matrix). 

Additionally, changing the location of the processing area can 

be used as a wear leveling technique [17] to increase the 

memory lifespan.  

3) Vector Operations 

Since MAGIC NOR can be executed simultaneously on 

multiple rows or columns, the MPU can be used to perform 

vector operations. To effectively perform vector operations, the 

data needs to be aligned. i.e., when all vector elements laid in 

the same row (row vector), each element in the input vectors 

needs to be on the same column to its corresponding element in 

the other input vector. This alignment enables performing of 

simultaneous MAGIC NOR operations on all elements in the 

vector and the performance of the execution of vector 

operations can be therefore independent on the vector size. If 

two row vectors rely on the same row, only bit-wise operations 

can be performed and the performance depends on the vector 

size. This concept is demonstrated in Figure 5, where NOT(A) 

is performed in a single parallel operation, while NOT(NOT(A) 

is performed sequentially in a bit-wise manner. Figure 6 shows 

simulation results of performing OR logic operation between 

two row vectors within memory, including the need to move 

data to the dedicated processing area. Although in some cases 

bit-wise operations are inevitable, the benefits from vector 

operations can be significant. 

Figure 5. Memory divided into storage and processing areas. Row vector 

A is copied from locations (2,1:3) into the processing area (6,6:8). Since the 

source address of vector A does not share columns with the destination 

address, then both vector-wise operations as well as bit-wise operations are 

required. Copying of A is performed by NOT(NOT(A)), whereas NOT 

operation is a NOR operation with a single input. The latency of the copy 

operation is N+1 for N-bit A.  
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V. CONCLUSIONS 

This paper discusses the different issues of designing an 

MPU controller, which is a crucial element for in-memory 

processing. Processing data in an MPU has a great potential for 

orders of magnitude improvement in both performance and 

energy as compared to conventional von Neumann machines.  

We have designed an MPU controller in VHDL 

environment, including developing different algorithms which 

exploit the parallelism capabilities of the memristive memories 

and improve the MPU efficiency. In the development of these 

algorithms, different issues have been considered such as area 

allocation, and the complexities of the algorithms and the 

controller. 

ACKNOWLEDGMENT  

This research was partially supported by Intel Collaborative 

Research Institute for Computational Intelligence (ICRI-CI) 

and by the Viterbi Fellowship in the Technion Computer 

Engineering Center. 

REFERENCES 

[1] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. 
Kozyrakis, R. Thomas, and K. Yelick, "A Case for Intelligent DRAM: 
IRAM," IEEE Micro, Vol. 17, No. 2, pp. 34-44, March/April 1997. 

[2] S. Kvatinsky E. G. Friedman, A. Kolodny, and U. C. Weiser, "The 
Desired Memristor for Circuit Designers," IEEE Circuits and Systems 
Magazine, Vol. 13, No. 2, pp. 17-22, Second Quarter 2013. 

[3] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, 
"Memristor-based IMPLY Logic Design Flow," Proceedings of the IEEE 
International Conference on Computer Design, pp.142-147, October 
2011. 

[4] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C. 
Weiser, "Memristor-Based Material Implication (IMPLY) Logic: Design 
Principles and Methodologies," IEEE Transactions on Very Large Scale 
Integration (VLSI), Vol. 22, No. 10, pp. 2054-2066, October 2014. 

[5] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, 
A. Kolodny, and U. C. Weiser, "MAGIC – Memristor Aided LoGIC," 

IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 61, 
No. 11, pp. 895-899, November 2014. 

[6] R. Ben Hur and S. Kvatinsky, "Memory Processing Unit for In-Memory 
Processing," Proceedings of the IEEE International Symposium on 
Nanoscale Architectures, July 2016. 

[7] Z. Jiang, P. Huang, L. Zhao, S. Kvatinsky, S. Yu, X. Liu, J. Kang, Y. 
Nishi, and H.-S. P. Wong, “Analysis and Predication on Resistive 
Random Access Memory (RRAM) 1S1R Array,” Proceedings of the 
2015 International Memory Workshop, pp. 1-4, May 2015. 

[8] S. Sheu, P. Chiang, W. Lin, H. Lee, P. Chen, Y. Chen, T. Wu, F. T. Chen, 
K. Su, M. Kao, K. Cheng, and M. Tsai, "A 5ns Fast Write Multi-Level 
Non-Volatile 1 K Bits RRAM Memory with Advance Write Scheme," 
Proceedings of the Symposium on VLSI Circuits, pp.82-83, June 2009. 

[9] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic Design within 
Memristive Memories Using Memristor-Aided loGIC (MAGIC),” IEEE 
Transactions on Nanotechnology, Vol. 15, No. 6, pp. 1-16, July 2016.  

[10] E. Linn, R. Rosezin, S. Tappertzhofen, U. Bttger, and R. Waser, “Beyond 
von Neumann Logic Operations in Passive Crossbar Arrays Alongside 
Memory Operations,” Nanotechnology, Vol. 23, pp. 305205:1–6, July 
2012. 

[11] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaacobi, 
and S. Kvatinsky, "Logic Operation in Memory Using a Memristive 
Akers Array," Microelectronics Journal, Vol. 45, No. 11, pp. 1429-1437, 
November 2014. 

[12] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. 
S. Williams, "Memristive Switches Enable 'Stateful' Logic Operations via 
Material Implication," Nature, Vol. 464, pp. 873-876, April 2010. 

[13] E. Lehtonen, J. H. Poikonen, and M. Laiho, "Two Memristors Suffice to 
Compute All Boolean Functions," Electronics Letters, Vol. 46, No. 3, pp. 
239-240, February 2010. 

[14] S. Shin, K. Kim, and S.-M. Kang, "Reconfigurable Stateful NOR Gate 
for Large-Scale Logic-Array Integrations," IEEE Transactions 
on Circuits and Systems II: Express Briefs, Vol. 58, No. 7, pp. 442-446, 
July 2011. 

[15] E. Lehtonen, J. H. Poikonen, J. Tissari, M. Laiho, and L. Koskinen, 
"Recursive Algorithms in Memristive Logic Arrays," IEEE Journal on 
Emerging and Selected Topics in Circuits and Systems, Vol. 5, No. 2, pp. 
279-292, June 2015. 

[16] R. Ben Hur, N. Talati, and S. Kvatinsky "Algorithmic Considerations in 
Memristive Memory Processing Units (MPU)," Proceedings of the 
International Workshop on Cellular Nanoscale Networks and their 
Applications, August 2016. 

[17] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and 
B. Abali, "Enhancing Lifetime and Security of PCM-Based Main 
Memory with Start-Gap Wear Leveling," Proceedings of IEEE/ACM 
International Symposium on Microarchitecture, pp. 14–23, December 
2009. 
 

 

 

Figure 6. Simulation results of OR operation between two 8-bit vectors A 

and B within the processing area. The result is copied to the desired 

address. The operation is performed by the following sequence of NOR 

operations: 

Copying B to align it with A: 

(1) NOT(B) - vector operation (one clock cycle). 

(2) NOT(NOT(B)) = B - bit-wise operations (N=8 clock cycles). 

Performing the computation between A and B: 

(3) NOR(A, B) - vector operation (one clock cycle). 

(4) NOT(NOR(A, B)) = OR(A, B) - vector operation (one clock cycle). 

Copying the result to the desired address: 

(5) NOT(OR(A,B))=NOR(A,B) - bit-wise operation (N=8 clock 

cycles). 

(6) NOT(NOR(A,B)=OR(A,B) - vector operation (one clock cycle). 

Total latency of 2N+4=20 clock cycles. 
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