
Rate-Compatible and High-Throughput Architecture
Designs for Encoding LDPC Codes

Nishil Talati
Andrew & Erna Viterbi Faculty of

Electrical Engineering
Technion - Israel Institute of Technology

Email: nishil.t@campus.technion.ac.il

Zhiying Wang
Center for

Pervasive Communications and Computing
University of California, Irvine

Email: zhiying@uci.edu

Shahar Kvatinsky
Andrew & Erna Viterbi Faculty of

Electrical Engineering
Technion - Israel Institute of Technology

Email: shahar@ee.technion.ac.il

Abstract—Low-density parity-check (LDPC) codes are known
for superior performance over a wide range of codes for com-
munication and memory systems. In many practical scenarios,
adaptive ECC system is preferred that can adapt to various
codes with varying channel conditions since the behavior of
errors changes with time and space. This paper presents two
architectural designs for efficient encoding of LDPC codes to
support different code rates and lengths, which can be used for
several applications. The proposed designs allow switching among
different codes without any hardware modification. The first
proposed design achieves extremely high throughput by removing
the memory from the encoder, while still being able to adapt to
a few predefined codes. The other architecture can adapt to any
arbitrary code by using the memory for configuration, and yet, it
achieves up to 12.9× throughput and 17.5× area improvement as
compared to fully-reconfigurable encoders proposed in literature.

Keywords—ECC, LDPC, NAND flash, encoder, IRA-LDPC, QC-
LDPC.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] are a class
of linear block codes that provide near-capacity performance
on a large set of data-transmission and data-storage channels.
Having been ignored for more than three decades due to
their high complexity of encoding and decoding, these codes
were resurrected in the mid-90s [2], [3], and some of the
LDPC codes were shown to approach the capacity of Binary
Memoryless Symmetric (BMS) channels [4]. With successful
attempts to design reduced complexity decoding LDPC algo-
rithms and their efficient circuit implementations, LDPC codes
have already found their place in many commercial standards
for communication systems (IEEE 802.16e, CDMA, DVB-S2),
and in memory systems (flash memory).

In these standards, several codes are defined with different
code rates and block lengths. An ideal LDPC system (both
encoder and decoder) should be adaptive, to various code
lengths and rates, according to the channel conditions. Dif-
ferent architectures have been proposed for variable rate, high
speed LDPC decoder designs [5], [6]. However, there is still a
room for improvement in performance and area efficiency in
these designs.

In this paper, we propose two variable-rate encoder archi-
tecture designs, targeted to specific applications and offering
unique advantages. First, a partially-reconfigurable encoder
architecture is presented, suitable for ECC in multi-level cell
(MLC) NAND flash memory. This architecture offers high
throughput due to the absence of a memory for reconfiguring
the parity-check matrix (PCM). It is, however, limited to a few

predefined codes. The second proposed architecture is fully-
reconfigurable and provides lower throughput than the former
design, with the advantage of adapting to any code within the
predefined maximum code size. Both designs are targeted to
perform over binary-communication channels.

The rest of the paper is organized as follows. In Section
II, we present the motivation for variable-rate LDPC system
design for ECC in memory and communication systems. In
Section III, we describe the concept and the proposed architec-
tures of encoding of a special type of LDPC code. Comparison
with previously proposed encoder designs is presented in
Section IV, and Section V concludes this paper.

II. MOTIVATION

A wireless communication system, where it is possible to
decide the code rate before transmission according to the SNR
of the channel, and a memory system, where the bit-error-rate
increases with lifetime of the memory, are the two targeted
applications of the proposed designs. A system with ability to
adapt different codes gains higher error correcting performance
in order to support different sensitivities of communication
channels and to enhance the lifetime of memory systems.
In this section, we discuss detailed motivation to consider
reconfigurable ECC designs with case studies of MLC NAND
flash memory and wireless communication channels.

A. Memory Systems
In a typical memory system, the rate of error depends on

several factors, and varies with respect to time and space.
For example, for NAND flash memory, as the memory usage
increases, the memory cells start wearing out, and, the number
of errors increases. Therefore, the necessity for stronger ECC
increases in the latter life of the memory. Furthermore, in MLC
NAND flash memory, different bits within each memory cell
belong to different pages. As observed in [7], the upper pages
are subject to higher bit error rates than the lower pages, due to
the nature of intercell bit mapping. Hence, employing an equal
code redundancy might result in either degradation in the error
correction performance in the upper page or unnecessary read
latency in the lower page.

B. Time-Varying Wireless Communication Channels
A wireless communication signal traveling in an environ-

ment full of scattered objects is reflected and deflected, which
results in multipath transmission. This multi-path transmission
adds unnecessary delay and phase to the signal. Furthermore,
the changes in the environment due to movement of the

objects introduce time-varying fading on the communication
channel. The rates of change of amplitude and phase of the
transmitted signal deviate from the original signal depending
on the velocity of objects, transmitter, and receiver. Hence,
rate compatibility is an important design challenge in a system
operating over time-varying channels [8], [9].

III. PROPOSED RECONFIGURABLE ENCODERS

Motivated by examples shown in the previous section, we
propose two different low-complexity reconfigurable encoder
architectures. First, we explain the concept of encoding of a
special type of LDPC code called Irregular Repeat Accumulate
(IRA). Then, an encoder architecture that supports a few pre-
defined Parity-Check Matrices (PCMs) is presented, followed
by a fully-programmable encoder architecture that supports
any PCM within a particular maximum code-word size. Note
that discarding some of the parity bits while transmission,
a method known as puncturing [10], can be used to obtain
rate-compatible systems. However, a puncture-based system
requires a depuncturing mechanism, and transmission at a
higher rate suffers from performance degradation [9]. Hence, in
this paper, we invest efforts in designing a variable-rate system
without puncturing, which does not require any additional
hardware for depuncturing and maintains the performance even
at higher rates. Furthermore, we choose IRA-LDPC codes
due to the regular structure of its PCM and the simpliciy of
encoding, other types of LDPC codes such as Quasi-Cyclic
(QC)-LDPC codes which have circulant form of PCM are left
for future work.

A. Encoding of IRA-LDPC Codes
Irregular Repeat Accumulate (IRA) LDPC codes [11] are

of interest because of their simple encoder structure and
close-to-capacity performance. In this paper, we consider
systematic IRA codes, where the codeword is of the type
(u1, u2, ..., uk; p1, p2, ..., pn−k). Here, u’s represent k infor-
mation bits, and p’s represent (n − k) parity bits. The PCM
of IRA codes has the form of

H = [Hu Hp], (1)

where Hp is an (n − k) × (n − k) bi-diagonal/dual-diagonal
matrix, which means that hi,j = 1, ∀i = j, j+1. Furthermore,
Hu is an (n − k) × k matrix with column and row weights
(wc, wr), which do not grow with the size of PCM.

Most of the well-known LDPC encoder architectures [12]–
[14] compute the parity bits by using the generator matrix G,
where the complexity of encoding is up to O(n2) for the whole
parity?. We solve the encoding problem using PCM, where the
time complexity of encoders for the proposed architectures
is as low as O(1) for the whole parity. In our architectures,
the values of parity bits are determined by the constraint
equations from the PCM. For example, the value of jth parity
is determined by

pj = pj−1 ⊕
k∑

i=1

hi,j · ui, (2)

where hi,j is the (i, j)th entry in H , and p0 = 0. In order to en-
code the information bits with a fixed H , a non-reconfigurable
architecture similar to [15] could be used, which only contains
a series of XOR gates, and the connections from the stream

Fig. 1. Architecture of the generic partially-reconfigurable encoder, which
can support q predefined PCMs {H1, H2, ..., Hq}. Each color corresponds
to a distinct connection pattern pertaining to a particular PCM, when a single
pattern is selected by the multiplexer.

of information bits to the XOR gates is hard-wired. The time
complexity of this architecture is O(1). However, it is not
suitable for communication channels where rate-compatibility
of ECC is required. Design of low-complexity, yet reconfig-
urable ECC systems is a non-trivial problem, and in further
subsections, we propose the LDPC encoder architectures for
such systems to execute (1) and (2).

B. Partially-Reconfigurable Encoder Architecture
To attack the rate-compatibility problem while maintaining

performance equivalent to that of non-reconfigurable architec-
tures, we propose to integrate q-hard-wired encoders for the
set of q PCMs {H1, H2, ..., Hq}, and select the output of one
of them using a multiplexer, as shown in Fig. 1. The feedback
from the decoder regarding error rates is used to encode the
select lines of the MUX, using a logical block (for example,
analog-to-digital converter), and thus, the appropriate code is
selected according to the channel conditions among q distinct
possibilities.

While this architecture seems relatively simple, it is well-
suited for the MLC NAND flash and similar systems. Because
the PCM is stored in an SRAM, the necessity to configure
and access it during runtime is the major bottleneck in terms
of performance and area efficiency in reconfigurable architec-
tures. This architecture achieves extremely high performance
by removing SRAM from the architecture (as opposed to [12],
[14]). For example, while encoding data-stream in different
pages for MLC NAND flash memory in continuum, encoding
a portion of the stream using a matrix stored in SRAM within
the encoder for the one page, and then, configuring the matrix
and encoding the other portion of the stream for the other
page is not an efficient solution. In such cases, the proposed
architecture can be employed to encode different portions of
the data-stream with different rates. Doing so yields significant
performance improvement as compared to fully-reconfigurable
encoders [12]–[14]. Furthermore, for memory systems where
the number of errors increases with the age of the memory
(for example with retention and endurance failure of cells),
this design with q > 2 can be used to dedicate different
Hi’s for different ages of memory. The only limitation of this

Fig. 2. Architecture of the fully-reconfigurable encoder with (n− k) parity
bits. The PCM is stored by sparse encoding, i.e., by storing the locations of
1’s from each row of H in the SRAM.

architecture is its inability to adapt to any arbitrary code, which
can be mitigated to a large extent by using a large enough value
of q.

C. Fully-Reconfigurable Encoder Architecture
To remove the limitation of the partially-reconfigurable

architecture, we propose a fully-reconfigurable architecture to
adapt to any arbitrary code rate by configuring the matrix
stored in SRAM. We design the architecture to minimize the
size of the SRAM required to store the PCM and use it to
encode the incoming data-stream, as shown in Fig. 2.

In this architecture, the sparse property of the PCM is
exploited, and before storing H in SRAM, the sparse encoding
is carried out. Thus, the SRAM only contains the matrix Hu

in sparse form, i.e., the location of 1’s in each row is stored
instead of the full matrix. We do not store the rest of the matrix,
i.e., Hp, since it always follows a regular form. This design
reduces the memory requirement of the encoder tremendously,
and is especially beneficial for very lengthy LDPC codes of
large code length (for example, DVB-S2).

It can be concluded from (2) that the XOR operations
for any pi are performed only among bits of the set S1 =
{ui| hi,j = 1} and pi−1, and the rest of the bits from the set
S2 = {ui′ | hi′,j′ = 0} can be ignored since hi′,j′ · ui′ = 0.
This fact can be exploited to further simplify the hardware
of the encoder. A series of multiplexers is used to select the
bits from the information vector that belong to S1, and the
rest of the bits are ignored. For Hu with row weight wr, the
number of multiplexers required is wr. Finally, to find the
parity bits, these wr outputs of the multiplexers are inputted
into a series of XOR gates, along with the previously generated
parity bit (assuming each XOR gate is 2-input, the total number
of XOR gates required is wr). In this architecture, each parity
bit is generated in one clock cycle, and the clock period is
determined by the delays in SRAM access, by the multiplexer,
and by a series of XOR gates. The complexity of encoding is
O(n− k).

The reconfiguration of the ECC code in this architecture
can be carried out either by keeping k constant or by keeping
(n− k) constant. In the former case, the number of encoding
cycles would vary, depending on the code rate, and in the latter
case, the number of encoding cycles would be constant. The
initial size of the SRAM is set according to the maximum
possible size of Hu in the sparse form. Furthermore, the
number of multiplexers and XOR gates are determined by
the maximum row weight of the prospective Hu. Thus, any
matrix having fewer hardware requirements than the designed
hardware can be used for encoding the information stream.
This architecture is appropriate for applications where the
PCM is not changed frequently (since it incurs the sparse
encoding complexity), and the rates are required to be set
arbitrarily.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We compare the two proposed architectures with previously
proposed LDPC encoder architectures [12]–[15]. We compare
the degree of reconfiguration, the SRAM size required to store
PCM, the number of encoding cycles, the total area (in terms
of two-input NAND gates), and the throughput of the encoders.
In order to calculate performance and area, all the circuit
components in the proposed architecture, including SRAM
and 512-to-1 MUX, have been synthesized. All the mentioned
architectures are designed in Verilog HDL and synthesized at
28nm using Synopsys.

The size of the information vector is fixed at k = 512,
and the code rate is varied in the interval [0.5, 0.99] in fully-
reconfigurable architectures. For quasi-cyclic (QC)-LDPC en-
coders [12], [13], the parameters (M,N, b)max are set to
(4, 8, 128), where b represents the order of the circulant permu-
tation matrices in the generator matrix. In this comparison, for
all the fully-reconfigurable architectures, the configuration of
ECC code is carried out by keeping the value of k constant, and
(n−k) is varied with code rate r. Furthermore, for IRA-LDPC
codes, we choose (5, wr)-code; in other words, PCMs are
generated using wc = 5, since the error-correction performance
at this wc is extremely high with significantly low error floor
[16]. For the proposed partially-reconfigurable architecture,
q = 4 and the rates are set to {0.88, 0.92, 0.96, 0.98}, which
is appropriate for a memory application. Table I shows a
comparison of different encoders at r = 0.9.

As expected, the non-reconfigurable architecture [15]
achieves the highest throughput due to hard-wired connections
and lack of memory access. However, this architecture cannot
support systems that require variable code rate. Among recon-
figurable architectures, the partially-reconfigurable architecture
achieves the highest throughput since the encoding path does
not include any memory access.

Among the fully-reconfigurable architectures, i.e., [12],
[14], and this work, it can be concluded that QC-LDPC codes
achieve better area efficiency in terms of matrix storage be-
cause of their regular structure. However, these codes increase
the number of encoding cycles since they shift, in every cycle,
the contents of first rows in the circulant permutation matrices
[12]. The proposed fully-reconfigurable encoder is 17.5× more
area-efficient than [14] in terms of matrix storage efficiency.
Furthermore, the proposed architecture achieves the highest
throughput, with a 22.6% increase in area as compared to [12],
mainly because of the SRAM area.

TABLE I. COMPARISON OF DIFFERENT ARCHITECTURES FOR MAXIMUM PCM SIZE 512× 1024, k = 512, AND r = 0.9

[13] [15] Proposed Part.-Recon. [12] [14] Proposed Fully-Recon.
Architecture (q = 4)** Architecture

Type of Code QC-LDPC EG-LDPC IRA-LDPC QC-LDPC IRA-LDPC IRA-LDPC
Reconfiguration Not Possible Not Possible Partially Fully Fully Fully

SRAM Size 4 × (8 × 128)+* − − 16 × 128+ 512 × 1024 512 × 64

#Encoding Cycles 512 1 1 64 57 57

Area (per NAND2) 75.6k 0.09k 2.5k 45.3k 1030.9k 58.5k

Throughput (Gbps) 0.487 836.8 606.25 2.78 0.277 3.57
+The selected parameters of QC-LDPC code are: (M,N, b)max = (4, 8, 128).
*This architecture requires four private ROMs of size 8× 128.
**Four different rates chosen are: r = {0.88, 0.92, 0.96, 0.98}.

Fig. 3. Throughput of different fully-reconfigurable encoder architectures
for any arbitrary code rates from 0.5 to 0.99. The comparison shows that the
proposed encoder achieves the highest throughput for r > 0.875.

For performance, we compare the throughput of the fully-
reconfigurable architectures for different code rates in Fig. 3.
The proposed architecture achieves on average 12.9× higher
throughput than [14]. The throughput of the proposed encoder
is the highest among all architectures for r > 0.875, and for
r < 0.875, it is inferior to [12] because of the fixed number
of encoding cycles that is equal to the number parity bits.

V. CONCLUSION
Some memory and communication systems require sup-

porting multiple codes with different code rates and code
lengths. In this paper, we propose two efficient encoding
hardware designs for reconfigurable IRA-LDPC codes that
can be used for such systems. One of the proposed ar-
chitectures is suitable for applications where the transition
among different codes is required quite frequently, and the
number of possible codes is finite. This partially-reconfigurable
architecture achieves significantly higher throughput than the
fully reconfigurable encoder designs. The second proposed
architecture exploits the sparse property of the PCM, and
reduces the hardware requirement by storing the matrix in
SRAM in its sparse form. This sparse form is then used
to encode the input data stream, and it performs faster than
previously proposed encoder architectures. This architecture is
appropriate for applications where the code is changed less
frequently, and adaptation to any arbitrary code is required.

ACKNOWLEDGMENT
This research is partially funded by the Intel Collaborative

Research Institute for Computational Intelligence (ICRI-CI),
and by the Viterbi Fellowship in the Technion Computer

Engineering Center, and partially by NSF grant CCF-1566587.
The authors would like to thank Eric Herbelin and Goel
Samuel from the Technion for their excellent technical support.

REFERENCES

[1] R. G. Gallager, “Low-density Parity-Check Codes,” 1963.
[2] D. A. Spielman, “Linear-time encodable and decodable error-correcting

codes,” in IEEE Trans. on Information Theory, 1996, pp. 1723–1731.
[3] D. J. MacKay and R. M. Neal, “Near Shannon limit performance of

low density parity check codes,” Electronics Letters, vol. 32, no. 18,
pp. 1645–1646, 1996.

[4] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE
Trans. on Information Theory, vol. 59, no. 12, pp. 7761–7813, 2013.

[5] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible
LDPC decoder,” IEEE Trans. on Circuits and Systems II: Express Briefs,
vol. 54, no. 6, pp. 542–546, June 2007.

[6] J. Y. Lee and H. J. Ryu, “A 1-Gb/s flexible LDPC decoder supporting
multiple code rates and block lengths,” IEEE Trans. on Consumer
Electronics, vol. 54, no. 2, pp. 417–424, May 2008.

[7] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. R. Nevill, “Bit error rate in NAND flash
memories,” in 2008 IEEE International Reliability Physics Symposium,
April 2008, pp. 9–19.

[8] O. Jetlund, G. Oien, K. Hole, V. Markhus, and B. Myhre, “Rate-adaptive
coding and modulation with LDPC component codes,” European Co-
operation in the Field of Scientific and Technical Research, Sept. 2002.

[9] C. P. Fewer, M. F. Flanagan, and A. D. Fagan, “A versatile variable
rate LDPC codec architecture,” IEEE Trans. on Circuits and Systems I:
Regular Papers, vol. 54, no. 10, pp. 2240–2251, Oct 2007.

[10] D. G. M. Mitchell, M. Lentmaier, A. E. Pusane, and D. J. Costello,
“Randomly punctured LDPC codes,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 2, pp. 408–421, Feb 2016.

[11] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate
codes,” in Proc. 2nd Int. Symp. Turbo Codes and Related Topics, 2000,
pp. 1–8.

[12] Y. M. Lin, H. T. Li, M. H. Chung, and A. Y. Wu, “Byte-reconfigurable
LDPC codec design with application to high-performance ECC of
NAND flash memory systems,” IEEE Trans. on Circuits and Systems
I: Regular Papers, vol. 62, no. 7, pp. 1794–1804, July 2015.

[13] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encod-
ing of quasi-cyclic low-density parity-check codes,” IEEE Trans. on
Communications, vol. 54, no. 1, pp. 71–81, Jan 2006.

[14] H. Yasotharan and A. C. Carusone, “A flexible hardware encoder
for systematic low-density parity-check codes,” in 2009 52nd IEEE
International Midwest Symposium on Circuits and Systems, Aug 2009,
pp. 54–57.

[15] H. Naeimi and A. DeHon, “Fault secure encoder and decoder for
NanoMemory applications,” IEEE Trans. on Very Large Scale Integra-
tion (VLSI) Systems, vol. 17, no. 4, pp. 473–486, April 2009.

[16] Y. Zhang and W. E. Ryan, “Structured IRA codes: Performance analysis
and construction,” IEEE Trans. on Communications, vol. 55, no. 5, pp.
837–844, May 2007.

