
1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. XXX, NO. XXX, XXX 1

Logic Design within Memristive Memories Using
Memristor Aided loGIC (MAGIC)

Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky, Member, IEEE

Copyright c© 2016 IEEE. Personal use of this material is permitted. However, permission to use this material for any other other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Abstract—Realizing logic operations within passive crossbar
memory arrays is a promising approach to enable novel com-
puter architectures, different from conventional von Neumann
architecture. Attractive candidates to enable such architectures
are memristors, nonvolatile memory elements commonly used
within a crossbar, that can also perform logic operations. In
such novel architectures, data is stored and processed within the
same entity, which we term as memristive Memory Processing
Unit (MPU). In this paper, Memristor Aided loGIC (MAGIC)
family is discussed with various design considerations and novel
techniques to execute logic within an MPU. We present a novel
resistive memory- the transpose memory, which adds additional
functionality to the memristive memory, and compare it with a
conventional memristive memory. A case study of an adder is pre-
sented to demonstrate the design issues discussed in the paper. We
compare the proposed design techniques with memristive IMPLY
logic in terms of speed, area, and energy. Our evaluation shows
that the proposed MAGIC design is 2.4X faster and consumes
66.3% less energy as compared to IMPLY-based computing for
N-bit addition within memristive crossbar memory. Additionally,
we compare the proposed design with IMPLY logic family on
ISCAS-85 benchmarks, which shows significant improvements
in speed (2X) and energy (10X), with similar area.

Index Terms—IMPLY, MAGIC, Memristor, memristive Mem-
ory Processing Unit (MPU), transpose memory, von Neumann
architecture.

I. INTRODUCTION

RELENTLESS technology migration to the nanometer
regime over the past few decades has led to high capacity

memory and storage systems. This aggressive scaling, how-
ever, negatively affects the cost, performance, and reliability
of flash and DRAM technologies, resulting in an increased
interest in alternative memory technologies and architectures.
Recently memristors, originally proposed by Chua in 1971,
have shown promising solutions to these design challenges,
and thus, have emerged as a prime interest among researchers.
In [1], Chua proposed a fourth fundamental passive circuit
element, apart from resistor, inductor, and capacitor. Chua

Nishil Talati* and Shahar Kvatinsky** are with the Andrew and Erna
Viterbi Faculty of Electrical Engineering at the Technion - Israel Institute
of Technology, Haifa, Israel, e-mails: (nishil.talatiwok@gmail.com*, sha-
har@ee.technion.ac.il**).

Saransh Gupta* and Pravin Mane** are with the Department of Electri-
cal, Electronics, & Instrumentation Engineering, Birla Institute of Technol-
ogy & Science (BITS), Pilani, K.K. Birla Goa Campus, INDIA, e-mails:
(*saransh.203@gmail.com, **pravinmane@goa.bits-pilani.ac.in).

This research is partially supported by the DST-FIST grant (FIST SI no.
133) to the Department of Electrical, Electronics & Instrumentation; BITS
Pilani, K.K. Birla Goa Campus, by Intel Collaborative Research Institute for
Computational Intelligence (ICRI-CI), and by the Viterbi Fellowship in the
Technion Computer Engineering Center.

and Kang extended the theory of memristors to memristive
systems in 1976 [2]. Memristors and memristive devices are
two-terminal electronic devices with variable resistance (also
called memristance). This resistance depends on the amount
and direction of the charge passed though the device and is
bounded by minimum and maximum limits (RON and ROFF ,
respectively). In this paper, we use the terms memristor and
memristive device interchangeably, for simplicity.

Several possible applications involving memristors have
evolved, such as nonvolatile memories [3], where resistance
serves to store digital data, and the use of memristors as logic
elements [4]–[8]. Additionally, memristors with high adaptive
thresholds can be used to mimic the higher order behavior of
synapses and thus can be utilized efficiently in neuromorphic
systems [9]–[11].

The versatile nature of a memristor exploits the possibility
of moving beyond conventional von Neumann architecture,
as it can be used as both memory and logic element. In
von Neumann architecture for massive parallel applications,
data transfer requires a wide data bus, long latency, and con-
sumes relatively high power [8], [12]. In novel architectures
using memristors, memory and logic operations are performed
within the same crossbar structure, resulting in almost no
data transfer and significant reduction in latency and power.
Thus, these architectures are potentially suitable for massive
parallel applications, where a vast amount of data needs to be
processed.

Three basic concepts to allow logic operations inside passive
crossbar arrays are discussed in [13]. One of the concepts re-
lies on programmable interconnects. Several such approaches
expand this idea to realize Programmable Logic Arrays (PLAs)
[14] and Field Programmable Logic Arrays (FPGAs) [15], for
an example a CMOL FPGA [16], [17]. The second concept
is about using the passive crossbar memories as Look Up
Tables (LUTs) [18]. The third approach introduces realization
of Boolean functions using stateful logic, such as IMPLY [5],
[19].

An improved memristive stateful logic is MAGIC [20]. The
quantifiable advantages of this logic over IMPLY are that, it
requires a lower number of supply voltages, supports more
basic Boolean functions, and it does not require additional
hardware to the crossbar (such as resistors in the case of
IMPLY). In MAGIC, a separate memristor is dedicated to
output, whereas in the case of IMPLY, one of the input
memristors acts as an output memristor. Thus, one of the inputs
is always destroyed in IMPLY execution, but all the inputs are
preserved in MAGIC.

This paper investigates the use of MAGIC for logic within

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

a memristive Memory Processing Unit (MPU) and makes the
following contributions:
• We present a novel memristive memory crossbar called

transpose memory, which adds functionality to the mem-
ristive crossbar. We also propose novel techniques to
execute MAGIC operations within it.

• We propose techniques to parallelize the MAGIC ex-
ecution over multiple rows and columns; and present
a solution to isolate unselected rows and columns to
avoid the possibility of distortion of data by applying
isolation voltages, which is different than half-select in
write disturb operation [21].

• We show how the non-idealities, in terms of parasitic
resistances of nanowires, change the logic execution by
re-evaluating all the constraints to execute logic and
isolate unselected rows and columns within memristive
MPUs.

• We demonstrate algorithms for complete logic execution
within memristive MPUs with an example of one-bit full
adder.

• We extend our approaches to N -bit addition, compare
them with previously proposed pure-logic implementation
within memristive MPUs, and show advantages of pro-
posed approaches in terms of speed and energy with no
significant area overhead. We also present a comparison
of these designs on ISCAS-85 benchmark circuits to show
the advantages of the proposed techniques.

The rest of the paper is organized as follows. Section II
describes memristor modeling and resistive memory crossbars,
including the introduction of transpose memory. Section III
discusses methods to design two basic memory-compatible
MAGIC operations (i.e., NOR and NOT) with their design
constraints. This section also talks about the effect of para-
sitic resistance of non-ideal wires and presents techniques to
overcome it. Section IV proposes algorithms for logic within
memristive MPUs of conventional and transpose memories
with a case study of an adder. In Section V, latency, area, and
energy of MAGIC are evaluated and compared to previously
proposed pure memristive logic techniques for N -bit addition
operation and for ISCAS-85 benchmark circuits. The paper is
concluded in Section VI.

II. MEMRISTIVE MEMORY

Major limitations of commercially available non-volatile
memory- flash memory include low endurance [22] and a de-
crease in yield and reliability as device geometries get smaller
[23]. These limitations motivate the development of emerg-
ing non-volatile memory technologies, such as Conductive
Bridging RAM (CBRAM), Resistive Random Access Memory
(ReRAM or RRAM), Phase Change Memory (PCM), and
Spin-Transfer Torque Magnetoresistive RAM (STT-RAM),
which can be considered as memristors [24].

Memristive technologies are non-volatile and compatible
with CMOS fabrication process [25]. Memristive devices are
expected to have low switching energies and fast switching
speeds. The read and write times can be as fast as 120 ps [26],
[27]. The switching energy is assumed as low as 1 pJ [27].

The endurance limit of memristors is measured approximately
as 1010 allowed write operations per cell [28] (except STT-
RAM, where 1015 is achieved). This limit is likely to increase
to 1015 [29]. Memristive devices are fabricated between two
metals, which act as the top and bottom electrodes of a
dielectric material [30]. Hence, memristors can be fabricated
in the metal layers as part of a standard CMOS Back End of
Line (BEOL) process. Memristive memories generally utilize a
crossbar structure, which enables an extremely dense memory
of 4F 2, where F is the feature size. Digital data is represented
in terms of its resistance, where LRS (low resistance state,
RON) is logical ‘1’ and HRS (high resistance state, ROFF)
is logical ‘0.’ This section talks about the memristor model
used in this paper and introduces conventional and transpose
memristive memories.

A. Memristor Modeling

There are several memristor models proposed in the lit-
erature [31]–[37]. Recently, ThrEshold Adaptive Memristor
(TEAM) model [37], which relies on the current as a threshold
parameter, has gained attention due to its simplicity, generality,
and flexibility. However, some memristive technologies exhibit
threshold voltage rather than threshold current. Furthermore,
certain memory and logic operations, including MAGIC, de-
mand voltage as the threshold parameter [38]. In this paper,
we use the Voltage ThrEshold Adaptive Memristor (VTEAM)
model [38], which has similar advantages as TEAM model
and fulfills the requirements for proper operation of MAGIC
gates. Additionally, VTEAM model is sufficiently accurate and
exhibits less than 1.5% relative root mean square error when
compared with the experimental results of resistance switching
of memristive materials such as Pt-Hf-Ti based memristor [39],
Ferroelectric memristor [40], and metallic nanowire memristor
[41].

In VTEAM model, the derivative of the state variable (x)
is

dx

dt
=


koff

(
v(t)

voff
− 1

)αoff

foff (x), 0 < voff < v,

0, von < v < voff ,

kon

(
v(t)

von
− 1

)αon

fon(x), v < von < 0.

(1)

Here, koff , kon, αoff , and αon are the model fitting parame-
ters, voff and von are the threshold voltages, and foff (x) and
fon(x) are the window functions, which constrain the state
variable to x ∈ [xon, xoff]. The current-voltage relationship
is

i(t) =
[
RON +

ROFF −RON
xoff − xon

(x− xon)
]−1

v(t). (2)

B. Conventional Memristive Memory Crossbar

Fig. 1 shows the schematic of a k×m memristive crossbar.
To write logical ‘1’ and ‘0’ to a memristor, VSET and
VRESET are applied, respectively, across it. These program-
ming voltages should be above the threshold voltages of the
memristor. Half-select voltages (i.e., |VSET /2| < |von| and
|VRESET /2| < |voff |) are applied to isolate memristors of

2

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

M1,1 M1,2 M1,m-1 M1,m

SA

Column Decoder and Voltage Controllers
R

o
w

 D
e
c
o

d
e
r

a
n

d
 V

o
lt

a
g

e
 C

o
n

tr
o

ll
e
rs

M2,1 M2,2 M2,m-1 M2,m

Mk,1 Mk,2 Mk,m-1 Mk,m

SA

SA

Fig. 1. Schematic of a k × m conventional memristive memory crossbar.
Column (row) decoder is used to select a column (row) and voltage controllers
assert various voltage levels on the selected column (row). SA represents the
sense amplifier to sense the current in the orthogonal direction of applied
voltage(s).

Fully-selected

Cell

Half-selected

Cell

Unselected

Cell

VSET

GND

VISO

VISO

VISO VISO

Fig. 2. Write disturb in memristive memory crossbar. Application of half the
write voltage- VSET /2 to unselected bit-lines and word-lines results in no
applied voltage across unselected cells (marked in blue), while also preserving
the resistance of the half-selected memristors (marked in red).

different row/column from which the data is being written due
to the possibility of undesired write operations (which is also
known as ‘write disturb’ [21]). Half-selected cells in a 3 × 3
memristive array are illustrated in Fig. 2. In the figure, a SET
operation is being performed on the memristor located on the
second row and the second column, marked in green. All the
memristors in the second column are under the influence of
VSET (at one terminal) and all the memristors in the second
row are under the influence of the ground voltage (at one
terminal), and thus are half-selected. It is essential to bias the
other terminals of the half-selected memristors at VSET /2 to
preserve the data (this is also known as V/2 biasing scheme
[42]).

Read operation is achieved by applying VREAD, a volt-
age below the threshold level, across the selected memristor
and measuring the current through the device using a sense
amplifier (SA). One of the primary concerns associated with
this operation is the sneak path phenomenon [43]–[46], which
is an undesirable path for the current flow. This problem
occurs because of the fact that read voltage produces additional
current flow through paths, different than the desired one.
This extra current flow adds resistance in parallel to the

selected memristor, which depends upon the stored data in
the unselected memristors. Several approaches are proposed
to overcome this problem [43], [44], [47]. In this paper, we
assume that these approaches are used to remove the sneak
path problem. Note that the sneak path phenomenon restricts
the array size. This bound depends on the non-linearity of
the memristor model [48]. In this paper, we assume that the
maximum size of the array is 512× 512.

C. Transpose Memristor Memory Crossbar

Although the memristive memory crossbar structure is sym-
metrical, accessing memory cells in a conventional memory
array is achieved only from one direction. The access from
the other direction is blocked since only specific voltages
can be applied in each row/column and the decoding and
sensing circuits are connected to a single edge of the array.
Additional peripheral circuitry would provide more flexibility
to the memory array and would add capabilities to the memory
system. We call this memory structure transpose memory. For
example, transpose memory can be used to connect multiple
processing units that access the array from different directions
simultaneously [49]. In this paper, transpose memory is used
to improve the logic functionality of memristive crossbars by
enabling logical operations over columns as well, rather than
solely over rows.

All operations (read, write, and half-selecting cells) are
performed in transpose memory by application of similar
voltages as in the conventional memory with the freedom
of applying these voltages from both horizontal and vertical
directions. During the read operation, only a single set of
orthogonal directions (one for voltage application and the other
for current sensing) is utilized at a time. Thus, the transpose
memory architecture has the same number of sneak paths as
conventional memory. However, only the direction of the sneak
paths would be perpendicular if the other orthogonal set is
used. Hence, similar techniques can be used to alleviate the
sneak paths as conventional memory. In the transpose memory,
each cell can therefore be sensed from both directions using
two sets of peripheral circuitry to select and sense cells, as
shown in Fig. 3. This memory is more suitable for large
arrays, where most of the area is occupied by memory cells
and the additional periphery circuitry can be located (at least
partially) below the crossbar to save area [50]. The allowed set
of voltages applied by the voltage controllers on each memory
are listed in Table I. The last few rows in the table show the
allowed voltages to perform MAGIC operation, as explained
in Section III.

D. Overhead Associated with Transpose Memory

Additional functionality in the transpose memory comes at
the cost of extra CMOS area. Fig. 4 illustrates the difference in
peripheral circuitry between k×m conventional and transpose
memory crossbars. The area remains same at the nanocrossbar
layer(s), but it differs at the bottom CMOS layer(s). In this
paper, a cross-coupled inverter latch-sense amplifier is used for
current sensing, which requires seven CMOS transistors per
nanowire; and voltage buffer is used for voltage application,

3

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

M1,1 M1,2 M1,m-1 M1,m

SA

Column Decoder and Voltage Controllers

S
A

S
A

S
A

S
A

R
o

w
 D

ec
o

d
er

 a
n

d
 V

o
lt

ag
e

C
o

n
tr

o
ll

er
s

M2,1 M2,2 M2,m-1 M2,m

Mk,1 Mk,2 Mk,m-1 Mk,m

SA

SA

Fig. 3. Schematic of a k×m transpose memristive memory crossbar. Column
(row) decoder is used to select a column (row) and voltage controller applies
various allowed voltages on the selected column (row). Unlike conventional
memory, in transpose memory the same voltages can be applied to both rows
and columns. SA represents the sense amplifier to sense the current.

TABLE I
ALLOWED MEMORY OPERATIONS AND THE ASSOCIATED APPLIED

VOLTAGES

Type Operation Applied Voltages
Write VSET , VRESET

Read VREAD

Ground GND
Memory

Half-Select VSET /2, VRESET /2

Execute V0
Row Isolate VHSMAGIC

Column Isolate VV S (only for transpose memory)

which costs four CMOS transistors per nanowire. Note that
this comparison includes only the overhead due to voltage
controllers and sense amplifiers, assuming that additional
circuitry has a similar trend.

The number of transistors utilized in the CMOS peripheral
circuit in k×m conventional memory is 4k+7m, where as in
the case of transpose memory, it is 11(k + m). Furthermore,
the number of memristors utilized in an array in both cases
is k · m. Hence, the CMOS overhead is strongly dependent
on the array size (i.e., k and m). For simplicity, we assume
that k = m; thus the CMOS area occupied underneath the
transpose memory crossbar would be twice the area as in the
case of conventional memory crossbar (i.e., 22k versus 11k).
Even with the double area overhead, it becomes insignificant
as compared to memristive area for large array sizes (i.e.,
22k versus k2). Fig. 5 shows the comparison of the ratio of
total area utilized at CMOS and memristive layer for different
values of array sizes (i.e., k× k). The comparison shows that
the ratio is almost equal (which implies the area utilization)
for large array sizes (i.e., k ≥ 100). Note that this is a general
comparison irrespective of the memristor technology used, i.e.,
without considering the maximum allowed array size (which
is 512× 512 in this paper).

While executing logic functions in transpose memory for

k x m
conventional

memory

m

k

transpose
memory

m

k

k x m

Voltage Buffer

Sense Amplifier
Hardware Overhead
In Transpose Memory

Fig. 4. Comparison of additional supporting CMOS circuitry to facilitate logic
implementation at nanocrossbar layer for k ×m conventional and transpose
memories.

Conventional Memory
Transpose Memory

0

0.05

0.1

0.15

0.2

0.25

200 400 600 800 1000

A
C

M
O

S
/A

M
E

M

k

Fig. 5. Ratio between CMOS area (ACMOS) and memristor area (AMEM)
for different array sizes (i..e., different k for k × k arrays) for conventional
and transpose memory crossbars. The area utilization at nanocrossbar layer
increases for larger arrays.

a given clock cycle, one set of orthogonal sides is used, out
of two, which is the same as in conventional memory. Thus,
additional CMOS drivers and sense amplifiers do not add any
overhead in terms of latency in transpose memory.

III. MAGIC WITHIN MEMRISTIVE MPU

MAGIC is a stateful logic family, compatible for compu-
tation within memory [20]. In this logic family, to realize
n-input Boolean functions (i.e. NOR, NAND, OR, AND,
NOT), n input memristors and one output memristor are
required. Among the MAGIC gates, NOR and NOT can be
performed within a memristive memory crossbar due to the
connection pattern among input and output memristors. In
MAGIC NOR and NOT designs, the input(s) is (are) the data
within the memristor memory and the output is the stored
data after the computation. A regular read operation from
the output memristor is carried out to sense the result of
computation. Note that current memristive technologies suffer
from a limited endurance of approximately 1012 writes per
cell [28]. Executing logical functions within memory would
increase the number of effective write operations to further
stress memory cells, and thus, would decrease the lifetime of
this memory. The limited endurance needs to be considered
while executing logic operations within the memory. There
are, however, projections that the endurance will be improved
to higher values that would allow unlimited logical operations
within memory [29].

4

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

in1
in2 inn out

V0 GND

V0

in1 in2 inn

out

(a) (b)

Fig. 6. (a) n-input NOR within a single crossbar row and (b) its circuit
equivalent. Input memristors are in1, in2, ... inn and an output memristor is
out. MAGIC execution and ground voltages are represented as V0 and GND
respectively.

TABLE II
STEPS TO EXECUTE MAGIC NOR IN A ROW

Step # Operation Application of Voltages
1 Write RON at out out←− VSET

2 Execute NOR operation
in1, in2, ... inn ←− V0

out←− GND

As listed in Table I, three operations need to be added
to support MAGIC execution within a memristive memory:
MAGIC execute, row isolate, and column isolate (only for
transpose memory). Incorporating them would increase the
complexity of the CMOS peripheral circuit. The number of
voltage levels increases from six to eight in the case of
conventional memory; and to nine in the case of the transpose
memory to support logic execution in addition to data storage.
Thus, the design of analog multiplexers used to assert voltage
remains the same in the case of conventional memory and
expands by one additional selection bit in the case of transpose
memory. Since the execution is carried out within the memory,
we assume that the data would be present at appropriate
memory locations before the execution, which removes the
requirement of prior programming of inputs for all the versions
of MAGIC as explained in this section.

This section describes the design and its corresponding con-
straints for MAGIC execution within a row and a column (for
transpose memory) for the correct operation that preserves the
input(s). Additionally, this section discusses the undesirable
effect of MAGIC NOR on unselected cells and proposes a
solution to eliminate this phenomenon. The effect of non-ideal
wires is also incorporated into the discussion to examine the
deviation of various circuit parameters from their ideal values.

A. MAGIC NOR within a row and a column

The schematic of an n-input NOR logic gate within a
memristive MPU and its circuit equivalent are shown in Fig.
6. In this figure, in1, in2, ... inn are the input memristors and
out is the output memristor. There are two steps involved in
the execution, as listed in Table II. Since the inputs are the
stored data within the memory, they are not required to be
written prior to the execution as a separate step.

Transpose memory opens up an opportunity to execute
MAGIC NOR over both rows and columns. The execution
over a column is slightly different than the row execution,
as the input memristor(s) is (are) connected to ground and

in1

in2

inn

out

(a) (b)

GND

in1 in2 inn

V0

out

V0

Fig. 7. (a) n-input NOR within a single transpose crossbar column and (b)
its circuit equivalent. Input memristors are in1, in2, ... inn and an output
memristor is out. MAGIC execution and ground voltages are represented as
V0 and GND respectively.

TABLE III
STEPS TO EXECUTE MAGIC NOR WITHIN A COLUMN

Step # Operation Application of Voltages
1 Write RON at out out←− VSET

2 Execute NOR operation
in1, in2, ... inn ←− GND

out←− V0

the execution voltage V0 is applied to the output memristor,
as shown in Fig. 7. The steps involved in the execution of
this logic are listed in Table III. Unfortunately, executing
multiple NOR operations within the same row (or column)
simultaneously is impossible, as illustrated in Fig. 8. Due to
the connection pattern, two different NOR operations are not
distinguishable and the output memristors of both operations
are actually connected in parallel, leaving the equivalent
resistance at the output RON/2, rather than RON , resulting
in the wrong operation. However, to improve performance,
it is possible to parallelize the operation over multiple rows
(columns) as further explained in Section III-C.

B. Analysis and Evaluation of MAGIC NOR

The choice of execution voltage, V0, is an important deci-
sion for correct and non-destructive MAGIC NOR operation.
For correct circuit operation, the voltage across the output
memristor, Vout, should be lower than voff , when all inputs
are logical zero, and greater than voff for all other input
combinations. The minimum value of Vout is determined by
the case where one input is logical one and the rest of the
inputs are logical zero. Additionally, when one of the inputs
is logical zero, it is possible that the input would switch
unintentionally to logical one if V0 is above a certain value.
To eliminate this undesired effect and have a non-destructive
operation, the voltage across the input memristors is required
to be lower than von. Thus, the allowed range of V0 for proper
execution of an n-input NOR is

voff

RON
·
{
RON +

(
ROFF

n−1

)
||RON

}
< V0, (3a)

V0 < min
[
voff ·

(
1 + ROFF

nRON

)
, |von| ·

(
1 + nRON

ROFF

)]
. (3b)

5

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

(in1) (in2) (out1)

V0 GND

V0

in1 in2 in2'

out1

(a)

(b)

(in1') (in2') (out2')

V0 GND

Mi Mi+1 Mi+2 Mj Mj+1 Mj+2

in1'

out1'

Fig. 8. Execution of multiple (two in this case) NOR operations in a single
row: (a) at crossbar level, (b) equivalent circuit level schematic. It is impossible
to distinguish between two MAGIC NOR gates within a single row and as a
result, an inappropriate execution may occur.

TABLE IV
MEMRISTOR PARAMETERS (FOR VTEAM MODEL [38])

Parameter Value Parameter Value
RON 1 kΩ xoff 3 nm
ROFF 300 kΩ kon -216.2 m/sec
von -1.5 V koff 0.091 m/sec
voff 0.3 V αon 4
xon 0 αoff 4

Since MAGIC NOT is a special case of MAGIC NOR with
n = 1, the constraint on V0 for a NOT logic gate can be
derived by substituting n = 1 in (3).

MAGIC NOR operations for multiple inputs are evaluated
using the VTEAM model [38] for a 65nm CMOS process in
Cadence Virtuoso. The model parameters of the memristor, as
explained in Section II-A, are chosen to produce switching
delay of 1ns for a voltage pulse of 1V of RESET and 2V of
SET, and also to fit practical devices, as reported in [27]. The
switching behavior of the memristor is shown in Fig. 9a. The
memristor parameters are listed in Table IV.

The proposed architectures described in the following sec-
tion (Sec. IV) incorporate MAGIC NOR with one to three
inputs. Thus, the delay is evaluated for all cases and the worst
case delay is considered as the deciding factor for the clock
period of a memory cycle. From (3), the allowed values of
V0 are in the interval [0.6V, 1.5V]. The worst case delay is
produced with three input MAGIC NOR having the logical
values of inputs as {0,1,1}, {1,0,1}, and {1,1,0}, as shown in
Fig. 9b. This delay is 1.3ns for V0 = 1V , which is 30% more
than the switching time of a single memristor. It is observed
that increasing the value of V0 decreases the delay of MAGIC
NOR gate [20].

To determine the influence of memristor and CMOS process
variations, we evaluate the alteration in the delay of three-input
MAGIC NOR gates for various model parameters: αoff , koff ,
Ron, and voff and MAGIC execution voltage V0. Our sim-
ulations show that αon and kon do not influence the delay.
Furthermore, the delay remains unchanged if both RON and

�S������S	�
���
��

���S
�SS��
��S
�S���

�
�
�

S
�e

S�
�S
�

�
�
�
�

u

%u

]u

2u

6u

[uu

��
�S����
u uN%0 uN0 uN40 [[N%0

(a)

-----F0�����
	
���-
��

[[[
[[%
[%%
%%%

�
�
�
�-
�t

-�
�-
�

�
�
�
�

[

f[

][

4[

8[

%[[

����-�� �
[[1f2 [12 [162 % %1f2 %12

(b)

Fig. 9. SPICE simulations for (a) memristor switching time (1ns) for
VSET = 2V and VRESET = 1V , and (b) three-input MAGIC NOR delay
for V0 = 1V . The worst case delay is produced when one of the inputs is
logical zero, which is 1.3ns.

ROFF are changed simultaneously keeping the RON/ROFF
ratio constant. Fig. 10 shows the variation of three-input NOR
gate delay with respect to αoff , koff , V0, voff , and RON .
The simulations show that the delay decreases with an increase
in αoff , koff , and V0, whereas the delay increases with an
increase in RON and voff .

C. Isolation of Unselected Cells During Parallel MAGIC
Execution

When a two-input MAGIC NOR is executed over a row
(Section III-A), V0 is applied at Vi and Vi+1 and GND
is applied at Vi+2 (Fig. 1). For all rows, the memristors
lying on column i and i + 1 produce NOR outputs at the
corresponding memristors on column i + 2. This technique
enables computing multiple logical operations simultaneously
in different rows, increasing parallelism of the execution. This
is especially beneficial for applications with high data-level
parallelism (DLP). The parallel execution becomes, however,
an undesirable operation if it is necessary to preserve the
data stored in unselected row(s), lying on the column Vi+2.
Similarly, when the computation is carried out in a single
column (Sec. III-A), all other columns are also affected.
Thus, it is essential to isolate unselected rows/columns to stop
undesirable NOR operation(s). This phenomenon is similar to
write disturb in regular memristive memory operations [21].

Researchers are investing a wide range of efforts to solve
the problem of isolating the unselected rows/columns while
performing parallel execution. One of the attractive solutions is
to instantiate selectors (for example, CMOS transistors) within
memristive arrays, which completely removes the disturbance
of unselected cells. However, this approach suffers from a
significant decrease in the overall density of the memory struc-
ture. We propose to solve this problem by asserting isolation
voltages on unselected rows/columns, which is similar to a
half-select operation. Since the logic execution is also carried
out by applying voltages, we believe that performing isolation
using the same operation is an attractive solution for this
problem.

6

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

Fig. 10. Delay of a three-input MAGIC NOR gate for different values of (a)
αoff , (b) koff , (c) V0, (d) voff , and (e) RON . This delay is not influenced
by αon and kon. The rest of the model parameters are as given in Table IV.

While in the regular memory write disturb, the applied
voltages are half of the write voltage values (i.e., VSET /2 or
VRESET /2), applying V0/2 in MAGIC NOR would disturb
the input memristors. Thus, as illustrated in Fig. 11, isolation
of the unselected rows is carried out by the application of VHS
over unselected rows, which is

0 < |VHS | < |voff | <
V0
2
. (4)

Similarly, as illustrated in Fig. 12 for MAGIC over columns,
VV S is applied over unselected columns, which is

V0 − |voff | < |VV S | < |von|. (5)

The applied isolation voltage also produces current flow
from the isolation voltage to ground through unselected mem-
ristors, as illustrated in Figs. 11 and 12. This sneak path
current [43]–[46] does not change the state of any memristor
since the isolation voltage is lower than threshold voltage. The
output memristor is part of all sneak paths and therefore sneak
path currents increase the current consumption of the gate. For
current-controlled memristors [2], [37], the cumulative current

in1,2

GND

out1in1,1

V0

Isolation

VHS

Voltage

V0-VHS

+

–

VHS

+

–

d8,2 d8,3
d8,1

d2,1
d2,2 d2,3

Memristor d2,1

Voltage across memristors

(a)

(b)
Memristor d2,3

V0

M1,8

M8.8

M2,8

V0-VHS

+

–

Memristor d2,2

VHS

Sneak
Paths

Fig. 11. An 8 × 8 array to demonstrate the isolation of unselected second
to eighth rows while executing MAGIC NOR in the first row. (a) MAGIC
NOR is the desired operation among the data present in the first row and
the undesired for other rows. Isolation voltage VHS is applied to prevent
execution of MAGIC NOR in unselected rows. Isolation voltages produce
sneak path currents as marked by red lines. (b) Resultant voltages across
each memristor in the second row.

in2,1

out1

in1,1

Isolation
Voltage VVS

V0

d2,8

d3,8

d1,8

M8,1 M8,8M8,2

GND

GND

d1,2

d2,2

d3,2

VVS

+

–

VVS-V0

–

+

Memristor d1,2

Memristor d3,2

Voltage across memristors

(a) (b)

VVS

+

–

Memristor d2,2

VVS

Sneak
Paths

Fig. 12. An 8 × 8 array to demonstrate the isolation of unselected second
to eighth columns while executing MAGIC NOR in the first column. (a)
MAGIC NOR is the desired operation among the data present in the first
column and the undesired for other columns. Isolation voltage VV S is applied
to prevent the execution of MAGIC NOR in unselected columns. Isolation
voltages produce sneak path currents as marked by red lines. (b) Resultant
voltages across each memristor in the second column.

may be higher than the threshold current, resulting in increased
resistance of the output memristor, even when the logical state
of the memristor is unchanged. This phenomenon is called
the state drift [6] and does not exist in the voltage-controlled
memristors considered in this paper.

To verify the isolation of unselected cells, an 8×8 crossbar
structure is designed and evaluated in SPICE simulator with
the circuit parameters listed in Table IV. In this experiment,
execution of MAGIC NOR in a single row and isolation of the
data present in all other rows is performed. In our evaluation,
the logical values of all unselected cells is logical ‘1.’ This
configuration is used to determine the isolation voltage in the
case of the worst potential unintended switching in unselected

7

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

R
d

2
,1
,

R
d

2
,2
,

R
d

2
,3
 [

%
 o

f
R

O
F

F
]

0

20

40

60

80

100

VHS [V]

0 0.2 0.6 0.8 10.32

Rd2,3

Rd2,1, Rd2,2

d2,3 is preserved
d2,3 is destroyed

Fig. 13. SPICE simulation of resistance of d2,1, d2,2, and d2,3 (Fig. 11)
for different values of isolation voltage VHS with d2,1 = d2,2 = d2,3 = 1.
The logical state of d2,3 is preserved for VHS < 0.32V and destroyed (pink
region) for VHS > 0.32V . The logical states of d2,1 and d2,2 are always
preserved for any value of VHS .

rows within column i+2. Additionally, in this configuration,
all sneak paths flow to the output memristor producing the
maximum sneak path current. While from (4), VHS is in the
range of [0V, 0.3V], our results show that proper isolation is
achieved for voltages of up to 0.32V, when allowing the state
of d2,3 to drift by 10%, as illustrated in Fig. 13.

Similarly, the proper isolation voltage for a MAGIC NOR
execution over columns is evaluated with similar conditions.
The primary difference between executions over columns as
compared to rows is that the isolation voltage eliminates the
possible destruction of all memristors (not only in row i+2).
The upper bound of VV S is determined by the state drift of
d2,2, when its value is initialized to logical ‘0’ (all other mem-
ristors are set to logical ‘1’). The lower bound is determined
as in a row operation. While from (5), VV S is in a range
of [0.7V, 1.5V], our experimental results show that proper
isolation is achieved for a wider range of [0.67V, 1.51V], when
allowing a state drift of 10%, as illustrated in Fig. 14.

D. Effect of Non Ideal Wires

In practice, crossbar nanowires possess parasitic resistance,
that influence the required circuit parameters in memristive
crossbar arrays. Fig. 15 shows a k × m transpose memory
crossbar with non-ideal nanowires. The wire resistance de-
pends on the length of the nanowire. Usually, the length
between neighboring cells is identical for both rows and
columns, and therefore, we assume that unit row and column
wire resistances are equal to Rw. Note that the problems
presented and solved in this subsection are similar to the
ones presented in Sections III-B and III-C. While in the
previous sections, the influence of the parasitic resistances
of the nanowires is neglected, in this subsection, to deliver
a realistic solution, we revisit these problems and propose the
revised design considerations.

To determine the effect of wire resistance on V0, assume
all n-input memristors and an output memristor are situated

Rd1,2

Rd2,2

Rd3,2

d3,2 destroyed
d1,2, d2,2, d3,2 preserved
d2,2 destroyed

R
d

1
,2
,

R
d

2
,2
,

R
d

3
,2
 [

%
 o

f
R

O
F

F
]

20

40

60

80

100

VVS [V]

0 0.67 1 1.51 2

Fig. 14. SPICE simulation of resistance of d1,2, d2,2, and d3,2 (Fig. 11)
for different values of isolation voltage VV S with d1,2 = d3,2 = 1 and
d2,2 = 0. The logical state of d3,2 is preserved for VV S > 0.67V and
destroyed (pink shaded region) for VV S < 0.67V . Similarly, the logical
state of d2,2 is saved for VV S < 1.51V and destroyed (cyan shaded region)
for VV S > 1.51V . The operation is always non destructive for d1,2.

M1,1

SA

Column Decoder and Voltage Controllers

Rw Rw Rw Rw

Rw Rw Rw
Rw

Rw Rw Rw Rw

R
o

w
 D

ec
o

d
er

 a
n

d
 V

o
lt

ag
e

C
o

n
tr

o
ll

er
s

SA

SA

S
A

S
A

S
A

S
A

Rw

M1,2 M1,m-1 M1,m

M2,1 M2,2 M2,m-1 M2,m

Mk,1 Mk,2 Mk,m-1 Mk,m

Rw Rw Rw

RwRw Rw Rw

RwRw Rw Rw

Fig. 15. k×m non-ideal transpose resistive memory crossbar. The resistance
between each constitutive nanowires is Rw . Column (row) decoder is used to
select a column (row) and voltage controller applies various allowed voltages
on the selected column (row). SA represents the sense amplifier to sense the
current.

within the same row, one next to the other, spanning the
memory locations (i, j) to (i, j+n). The equivalent circuit is
shown in Fig. 16. We assume that iRw +Rm � Rw (where,
Rm is the resistance of the memristor and can be either RON
or ROFF). Considering the effect of parasitic resistance of
nanowires with the constraints described in Section III-B, the
allowed range of V0 for correct execution of n-input NOR is

voff
RON

·
{
R′ON +

(
R′OFF
n− 1

)
||R′ON

}
< V0, (6a)

V0 < min
[
voff ·

(
R′OFF
n

+R′ON

)
RON

, |von| ·
(R′OFF + nR′ON)

ROFF

]
. (6b)

where R′ON and R′OFF denote the effective resistances and
are equal to (RON + iRw) and (ROFF + iRw) respectively.
Note that these expressions are similar to (3). Fig. 17 shows

8

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

(in1)

iRw

V0

Rw

Mi,j

(in2)

iRw

Mi,j+1

(inn-1)

iRw

Mi,j+n-2

(inn)

iRw

Mi,j+n-1

Rw

iRw

(out)
Mi,j+n

Rw

Fig. 16. Equivalent circuit of n-input MAGIC NOR over the row i of crossbar.
in1, in2, ... inn are input memristors and out is the output memristor.

the range of allowed V0 for different array sizes (k × k) for
wire resistance Rw of 10Ω [51], [52]. The figure reveals that
the allowed range of V0 (shaded region) decreases for larger
arrays, where the maximum array size for the proper operation
of MAGIC NOR is 160× 160.

Non-ideal nanowires also affect the value of the isolation
voltages VHS and VV S , as illustrated in Fig. 18. To isolate the
row i (column j), the allowed range of values of VHS (VV S)
for preserving the logical state of d1, d2 and d3 is

0 < |VHS | < voff ·
{

1 +
(i+ j) ·Rw

RON

}
, (7a)

V0 − voff ·
{

1 +
(i+ j) ·Rw

RON

}
< |VV S | < |von| ·

{
1 +

(i+ j − n) ·Rw
ROFF

}
. (7b)

Here, the output memristors are located in the column (row)
j. Fig. 19 shows the upper bound of VHS and upper and lower
bounds of VV S for different array sizes. Note that the lower
bound of VHS is always zero.

Even though the wire resistance Rw is negligible as com-
pared to the minimum resistance of the memristor (RON =
1kΩ), it plays a crucial role for the memristors, within an
array, which are quite far from the row/column decoders. For
example, within an array of size 200× 200, the memristor at
the middle of the array would experience a parasitic resistance
of 100× 10Ω = 1kΩ, which is equivalent to RON . Thus, it is
essential to consider the role of the resistance of the wires
while executing logic functions within memristive MPUs,
similar to the consideration of the wires in memory arrays
[53].

IV. EXECUTING LOGIC FUNCTIONS - A FULL ADDER
CASE STUDY

In this section, design algorithms for MAGIC within mem-
ristive MPUs are presented using an example of a one-bit full
adder. The full adder consists of MAGIC NOR gates (and
MAGIC NOT, which is a special case of MAGIC NOR) since
NOR suffices as a complete logic structure. Assume the inputs
of the full adder are A, B, and C, which are present inside the
memory prior to computation. The results of the computation
are sum S and carry Cout. The expression of Cout purely in
the form of NOR operation of inputs can be expressed as

Cout = ((A+B)′ + (B + C)′ + (C +A)′)′. (8)

0 50 100 150

A
ll

o
w

e
d

 V
0
 [

V
]

 2

1.8

1.6

1.4

1.2

 1

0.8

Array Size [k]

Fig. 17. Allowed V0 for different array sizes (k × k) with non-ideal wires
(Rw = 10Ω). It can be observed that the range of V0 decreases with an
increase in the array size. The largest array size possible for correct, non-
destructive operation is 160× 160.

Similarly, S in the form of NOR and NOT of inputs and Cout
(which are generated during the execution) can be expressed
as

S = [[(A′ +B′ + C ′)′ + {(A+B + C)′ + Cout}′]′]′. (9)

To execute the one-bit full adder within memristive MPU,
(8) and (9) are employed using MAGIC NOR and NOT
operations. The following subsections talk about optimized
algorithms of an adder design.

A. An Adder Design within a Conventional Memory Crossbar

In conventional memory crossbar, the application of excita-
tion voltages is enabled only from one direction (Sec. II-B).
This limits the operation of MAGIC NOR to a particular
row of the memory, where all inputs and outputs reside in
the same row. Fig. 20 shows a row of conventional memory,
over which, the adder is executed, utilizing nine memristors
including inputs, outputs, and additional memristors to store
intermediate results (functional memristors). For simplicity,
the inputs A, B, C are assumed to be situated adjacent to one
another as shown in Fig. 20.

Selecting the required steps to execute any logical operation
depends on the latency and area constraints of the application.
For example, in an application with latency optimization as the
primary criterion, more memristors can be initialized simulta-
neously during the initial step. This approach eliminates the
need for multiple intermediate initializations and thus lowers
latency, while increasing the utilized area. When area opti-
mization is the primary concern, fewer functional memristors
are used and initialized multiple times during execution. This
approach increases the latency (due to intermediate initial-
izations), while decreasing area. The complete algorithm to
evaluate a MAGIC adder on conventional memory is presented
in the supplementary material (Tables SP1 and SP2). While
optimizing area, the number of functional memristors utilized
is four and the number of execution cycles is 15. For latency
optimization, six additional functional memristors are used to
reduce the execution time to 13 clock cycles.

9

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

Mi-2,j-1 Mi-2,jMi-1,j-2 Mi-1,j-1

Rw

V0 GND

VHS

V0

Mi-1,j

Mi,j-2 Mi,j-1 Mi,j

Mi+1,j-2 Mi+1,j-1 Mi+1,j

(out1)(in1)

(d1) (d2) (d3)

(in2)

(out2)(in3) (in4)

(a)

Rw Rw

Rw
Rw

RwRw
RwRw

Rw Rw
Rw Rw

Rw
Rw

RwRwRw

V0-VHS

(d1)

iRw

Mi,j-2

(j-2)Rw

VVS

Mi-2,j+1

Mi-1,j-1 Mi-1,j Mi-1,j+1

Mi,j-1 Mi,j Mi,j+1
(out1)

(in1) (d1)

(d2)

(d3)

(in2)

(out2)

(in3)

(in4)

GND

GND

V0

(d2)

iRw

Mi,j-1

(d3)

iRw

Mi,j

(j-1)Rw jRw

-VHS

(d1)

(i-2)Rw

Mi-2,j

jRw

(d2)

(i-1)Rw

Mi-1,j

(d3)

iRw

Mi,j

jRw jRw

(b) (c) (d)

V0-VHS

Rw Rw Rw

Rw
Rw

RwRw
RwRw

Rw Rw
Rw Rw

Rw Rw

RwRwRw

VVS VVS-V0VVS

Fig. 18. Isolation of unselected cells with non-ideal wires. (a) row isolation and (b) its equivalent circuit, and (c) column isolation and (d) its equivalent
circuit. The wires have a unit resistance of Rw .

0 10 20 30 40 50 60

0.4

 0.45

0.5

0.6

0.65

 0.7

0.35

Array Size [k]

 0.55

(a)

A
ll

o
w

e
d
 V

V
S
 [

V
]

Array Size [k]

0.75

 1

1.25

1.5

1.75

 2

0.25

0.5

0 10 20 30 40 50 60

(b)

Fig. 19. (a) Upper bound of VHS and (b) upper and lower bounds of VV S

for different values of k×k. Unit resistance of non ideal wires is Rw = 10Ω
and V0 = 1V.

V
1 V

2
V
9V

7

C
outCBA

V
3

M
9

V
6

V
8

M
8

S

Fig. 20. Segment of a row of conventional memory crossbar over which a
MAGIC adder is being implemented. A, B, C are the input memristors and
M4, ...,M8 represent functional memristors (excluding M7). The outputs
Cout and S are generated, respectively, at M7 and M9.

B. An Adder Design within a Transpose Memory Crossbar

Executing logic within memristive MPUs of transpose mem-
ory gives more flexibility for the computation as operations
are executed in both rows and columns. The added flexibility
is more attractive for the computation of complex functions.
In this simple case study of a full adder, we propose two
algorithms to benefit from the capabilities of a transpose
memory crossbar. These approaches distribute the intermediate
data in an efficient manner such that the execution can be
done over multiple rows/columns simultaneously, exploiting
parallelism within the transpose memory. These approaches
also ensure minimal overhead and reduce the amount of

duplication of data.
1) Scheme-1 of MAGIC Adder Implementation: The first

approach relies on organizing the data in an efficient way
prior to computation and then executing multiple operations
simultaneously. This can be achieved in two ways: a) by
duplicating the data during initial write cycles or b) by copying
and arranging the data during execution cycles. We prefer the
latter approach as the former requires modification in data
write pattern. Fig. 21 shows a 4×7 transpose memory crossbar
utilized for the addition operation using this scheme. Assume
that the inputs are stored within the same column: A at M1,1,
B at M2,1, and C at M3,1. The first step to compute an
addition is to initialize (i.e., write RON) at all functional and
output memristors. Initialization is performed simultaneously
for multiple memristors whenever it is possible. To enhance
the computation, the inputs are duplicated to the next column
such that B̃ is stored next to A, C̃ next to B, and Ã next to C,
where Ã, B̃, C̃ represent the copied data and A, B, C represent
the original data. After the copy operations, MAGIC voltages
are applied as listed in the supplementary material (Table
SP3). The table also reveals the equivalent logic operations
performed in each cycle.

This approach utilizes 19 functional memristors and 16
computational steps (cycles) for execution. Nine cycles (cycles
3 to 11 in Table SP3) are required to copy data to the appro-
priate location and can be eliminated if data is duplicated in
the appropriate locations when being stored. While duplicating
data reduces the capacity of the memory, it requires only
seven computational steps, making this approach faster than
any other approach. The speed benefits from this approach are
due to the execution of three NOR operations simultaneously
(steps 12 and 13 in SP3).

2) Scheme-2 of MAGIC Adder Implementation: The ne-
cessity to copy data in Scheme-1 reduces the benefits from
transpose memories. To remove the additional copy cycles
from Scheme-1, assume all inputs are located within the same
row: A at M1,1, B at M1,2, and C at M1,3. After initialization
of the functional memristors, (A+B)′, (B+C)′, and (C+A)′

are evaluated sequentially (rather than simultaneously as in
Scheme-1). Fig. 22 shows a 4× 9 transpose memory crossbar

10

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

V1 V2 V3 V4 V5 V6

H1

H2

H3

H4

M4,1

M1,3 M1,4 M1,5 M1,6

M2,3 M2,4 M2,5 M2,6

M3,3 M3,4 M3,5 M3,6

M4,2 M4,4 M4,5 M4,6

V7

M1,7

M2,7

M3,7

Fig. 21. Transpose memory crossbar utilized for executing an adder for
Scheme-1. A, B and C are the inputs, Ã, B̃ and C̃ are the copied data
and Cout and S are, respectively, carry and sum outputs. Other memristors
are functional memristors.

V9

M1,9

M2,9

M3,9

V1 V2 V3 V4 V5 V6

H1

H2

H3

H4

M4,1

M2,1

M1,4 M1,5 M1,6

M2,3 M2,4 M2,5 M2,6

M3,3 M3,4 M3,5 M3,6

M4,2 M4,3 M4,4 M4,5 M4,6

V7

M2,7

M3,7

V8

M1,8

M2,8

M3,8
M3,1

M2,2

M3,2

M4,7
M4,8

Fig. 22. Transpose memory crossbar utilized for executing an adder for
Scheme-2. A, B and C are the inputs and Cout and S are, respectively,
carry and sum outputs. Other memristors are functional memristors.

utilized for an addition operation and the sequence of opera-
tions is listed in the supplementary material (Table SP4). This
approach requires 13 computational steps and ten functional
memristors. Even though Scheme-2 reduces the number of
parallel computations as compared to Scheme-1, it proves to
be faster. Although for the case of an adder, Scheme-2 seems
to be better than Scheme-1, Scheme-1 depicts how a transpose
memory crossbar can be utilized for parallel operations over
rows and columns and can be used for more complicated
functions to add flexibility.

V. EVALUATION AND COMPARISON OF DIFFERENT
MEMRISTIVE LOGIC FAMILIES

In this section, we compare the proposed design techniques
with previously proposed memristive stateful logic families
(i.e., IMPLY). Note that the comparison presented here is only
among the pure logic families within memristive MPUs. We
do not compare designs with conventional load-store based
CMOS implementations since comparing von Neumann with
non-von Neumann architecture is beyond the scope of this pa-
per. Specifically, memristive logic families, such as Memristive
Threshold Logic [54], CRS-based logic [55], [52], MRL [7],
and stateful-NOR based reconfigurable architecture [56] are
not considered since they are not pure logic within memristive
MPUs, as not all of the logical states are represented as
resistance. Additionally, CRS-based logic involves reading and
sensing the intermediate data during execution. As a case

P Q Mk-1 Mk

VCOND
VSET

RG

P Q P IMP Q

0 0

0 1

01

1 1

0

1

1

1

IMPLY LOGIC TRUTH TABLE

(a) (b)

Fig. 23. IMPLY logic gate (a) within a memristive crossbar memory. The
initial states of memristors P and Q are the inputs of the logic gate and
output is the final state of memristor Q after applying voltages VCOND and
VSET . The load resistor RG is connected at the common point of both the
resistors. (b) IMPLY truth table.

study, an N-bit full adders are designed and evaluated for
MAGIC and IMPLY logic families. Seven different designs
are considered: a general IMPLY algorithm [19], serial and
parallel IMPLY approaches [8], and the four proposed MAGIC
NOR schemes. Area, speed, and energy of all six designs
are evaluated and compared. To show the advantage of our
approach, we also compare MAGIC and IMPLY-based logic
execution on ISCAS-85 benchmark combinational circuits
[57].

A. IMPLY-Based General Algorithm

IMPLY, also known as material implication, is a stateful
logic family with two input memristors, P and Q, where
one of the input memristors (Q) is also an output memristor.
Fig. 23 shows the schematic and truth table of IMPLY within
memristive MPU. To execute IMPLY, two voltages VCOND
and VSET (VCOND < VSET) are applied. A resistor RG
is added to each row of the crossbar array and the logical
IMPLY operation is achieved based on the ratio between P ,
Q, and RG. Lehtonen et al. [19] have showed that any general
Boolean function f : Bn −→ B can be executed purely in
terms of IMPLY and FALSE (a logic function that always
yields logical zero as an output), using n + 3 memristors.
While the algorithm is efficient in terms of area, it is not
attractive in terms of latency as it requires O(2kn) steps (where
n is the number of inputs and k is the number of functional
memristors).

B. IMPLY-Based Serial and Parallel Approaches

To improve the speed of IMPLY-based logic, Kvatinsky
et al. proposed two techniques [8] - serial and parallel ap-
proaches. The serial approach relies on executing a single
operation per clock cycle (i.e., either IMPLY or FALSE), in
which, all the memristors are located in a single row. In the
parallel approach, multiple operations are executed per clock
cycle, further reducing the overall latency of logical functions.
A parallel approach requires connecting multiple rows of the
memory crossbar, thus the crossbar structure is modified by
adding switches to short different rows.

11

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

TABLE V
ENERGIES FOR IMPLY AND MAGIC NOR GATES FOR DIFFERENT INPUT

COMBINATIONS

Input IMPLY [fJ] MAGIC NOR [fJ]
00 102.2 7.73

01 866.8 81.6

10 489.9 81.6

11 886.4 35.73

To execute a full adder with these approaches, sum and
carry are computed as

Sk = (Ak ⊕Bk)⊕ Ck, (10)

Cout,k = (Ak → (Bk → 0)→ ((Ck → ((Ak ⊕Bk)→ 0))→ 0). (11)

where Sk and Cout,k represent, respectively, the sum and carry
out at the mth stage of addition. To realize an XOR, two
functional memristors are required. Complete Sk computation
requires 26 computation steps. Carry computation requires
three functional memristors.

C. Comparing Combinational Logic Designs within Memris-
tive MPUs

To compare different memristive stateful logic families
within memory, an N -bit addition is used as a case study.
The execution of a full adder using MAGIC is carried out
using the algorithms described in Section IV for each single
bit addition and is extended for an N -bit ripple carry addition.
In this subsection, the different approaches are compared in
terms of latency, area, and energy. Latency is determined as
the required number of clock cycles for an N -bit addition.
Area is measured as the total number of utilized memristors
(including inputs, outputs, and functional memristors) within
the crossbar.

To evaluate the energy of addition, the energies of individual
gates, IMPLY and MAGIC NOR, are evaluated using SPICE
simulation for all input combinations. Then, the energy is
averaged over all the input combinations using the measured
gate energies to compute the energy for N -bit addition. The
energies for IMPLY and MAGIC logic gates are listed in Table
V. The evaluation is carried out to have an identical gate delay
(1.3ns) for both the logic families. The circuit parameters
chosen are VSET = 2V, VCOND = 1.5V , and RG = 5kΩ for
IMPLY (Fig. 23) and V0 = 1V for MAGIC NOR (Fig. 6). Note
that these energies do not incorporate initialization and FALSE
operations, which are SET and RESET operations. The energy
for SET and RESET operations is, respectively, 219.7 fJ
(VSET = 2V) and 34.26 fJ (VRESET = 1V). IMPLY energy
is higher than MAGIC energy for all approaches. IMPLY
requires higher voltage levels to achieve the same delay time,
which results in more current flowing through a relatively low
resistance (i.e., RG).

The comparison between latency and area is listed in Table
VI. The clock frequency of execution, fCLK , is 0.77GHz
(Section III-B), and area listed in the table incorporates only
the functional memristors, since the number of input (2N+1)

TABLE VI
COMPARISON OF MEMRISTIVE STATEFUL LOGIC FAMILIES FOR N-BIT

ADDITION IN TERMS OF LATENCY AND AREA (fCLK = 0.77 GHZ)

Method of Latency Area
Execution (Cycles) (# Memristors)

IMPLY base [19] 89N 4

IMPLY
29N 2

Serial [8]
IMPLY

5N + 18 6N − 1
Parallel [8]

MAGIC Conv.
15N 5Area Optimized

(this work)
MAGIC Conv.

12N + 1 11N − 1Latency Optimized
(this work)

MAGIC Trans. I
15N + 1 22N − 3

(this work)
MAGIC Trans. II

10N + 3 13N − 3
(this work)

and output (N + 1) memristors are identical for all of the
different approaches. For an eight bit adder, the general algo-
rithm requires 712 computational steps, the serial approach
takes 232 steps, whereas the parallel approach utilizes 58
steps. The proposed MAGIC approaches in conventional and
transpose memories with Scheme-1 and Scheme-2 utilize,
respectively, 113, 121, and 83 execution steps to compute the
result. Hence, MAGIC adder within memory is faster than
IMPLY, unless the structure of the crossbar array is breached.
Thus, the proposed MAGIC designs show improvement in
the computational time and area as compared to IMPLY for
conventional memristive crossbar memory. MAGIC within
conventional memory crossbar is 2.05X faster (for N = 8)
and 2.4X faster (on average for N = 1 to 1000) as compared
to IMPLY (serial approach).

Fig. 24 shows the latency for various lengths of addition.
All of the proposed approaches are faster than IMPLY base
(general algorithm) and serial approaches, while they are
slower as compared to IMPLY parallel approach. The best
among the proposed MAGIC approaches is Scheme-2 of
transpose memory, which shows an average of 88% and 65%
improvement for N = 1 to 1000 as compared to, respectively,
IMPLY base and serial approaches. Fig. 25 shows the area
(number of utilized memristors) for various lengths of addi-
tion. Out of the proposed MAGIC approaches, area optimized
MAGIC adder within conventional memory has the best area
efficiency. The additional functional memristors (five versus
two in IMPLY serial approach) consume merely 0.62% more
area on average for N = 1 to 1000 as compared to IMPLY
serial approach. Furthermore, when the periphery area is
considered, the proposed MAGIC within conventional memory
becomes more attractive than the IMPLY serial approach since
it does not use additional resistors and switches.

Fig. 26 shows the energy for various lengths of addition.
Due to the lower energy requirement of MAGIC NOR gate,
MAGIC-based approaches dominate this comparison. The
energies for both MAGIC-based area and latency optimized

12

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

8����P��	
��
8����P��	�����
�#N80P0������
����
a#	��P���
�
���l
�#N80P0������
����
a�������P���
�
���l
������o(P�#N80P 	��!��!�
������oOP�#N80P 	��!��!�

�
��
��
��
P#

P�
��
��
!%

(t

(tt

(ttt

(tm

���(��P�)P���
�
��P#*%

t Ott mtt dtt ctt (ttt

Fig. 24. Execution time vs. length of addition for different memristive stateful
logic approaches.

8����P��	
��
8����P��	�����
�#N80P0������
����
a#	��P���
�
���l
�#N80P0������
����
a�������P���
�
���l
������o(P�#N80P 	��!��!�
������oOP�#N80P 	��!��!�

#
	�
�P

P�
��

	

!�
�
	!
%

(t

(tt

(ttt

(tm

���(��P�)P���
�
��P#*%

t Ott mtt dtt ctt (ttt

Fig. 25. Area vs. length of addition for different memristive stateful logic
approaches. Area is measured by the number of memristors participating in
the computation, peripheral circuitry are not included in the evaluation.

approaches on a conventional memory crossbar have the same
energy consumption, since the same sequence of operation is
being executed in both techniques, with a small change in the
order of operation. MAGIC adder within conventional memory
crossbar consumes 33.7% of total energy consumed in IMPLY
(serial) approach.

Note that the half-select and isolation energies are not in-
corporated in these graphs. To make a generalized comparison
of techniques, the energy consumption, including half-select
and isolation energies, is shown in Fig. 27 for different values
of length of addition (N) and array size. As the array size
increases, there are more unselected and isolated cells, thus
the energy consumption increases. Only in the case of the
IMPLY parallel approach, due to the parallelism of FALSE

�����P4�	

�����P�
�
��
�����P������
�
�08�fPf���
��
����
���
�
GvP�08�fP����	��	

���
�
GtP�08�fP����	��	

N
�

�
�
P!
�
"#

v

vn

vnn

vnnn

vnh

�
����P�&P�''
�
��P!(#

n tnn hnn -nn Tnn vnnn

Fig. 26. Energy vs. length of addition for different memristive stateful logic
approaches. Note that the energy consumption for both MAGIC optimizations
within conventional memory are identical and denoted as ‘MAGIC conven-
tional.’

Array Size

Length of Addition [N]

E
n

e
r
g
y
 [

u
J
]

(a)

Array Size

Length of Addition [N]

E
n

e
r
g

y
 [

n
J

]

(b)

Array Size

Length of Addition [N]

E
n

e
r
g
y
 [

u
J
]

(c)

Array Size

Length of Addition [N]

E
n

e
r
g
y
 [

u
J
]

(d)

Array Size

Length of Addition [N]

E
n

e
r
g
y
 [

u
J
]

(e)

Array Size

Length of Addition [N]

E
n

e
r
g
y
 [

u
J
]

(f)

Fig. 27. Energy consumption including half-select energies for different
values of length of addition (N) and array sizes for (a) IMPLY series,
(b) IMPLY parallel, (c) MAGIC conventional (area optimized), (d) MAGIC
conventional (latency optimized), (e) Scheme-1 of MAGIC transpose, and (f)
Scheme-2 of MAGIC transpose approach.

and IMPLY operations, lower energy is consumed (in nJ) as
compared to other approaches.

While the comparison in Table VI shows that the IMPLY-
based parallel approach is advantageous over MAGIC in terms
of latency and area, the MAGIC-based execution is generally
more attractive than IMPLY for the following reasons:
• Conventional IMPLY (either base or series) [8], [19]

13

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

TABLE VII
COMPARISON OF MAGIC AND IMPLY-BASED COMPUTING ON ISCAS-85 BENCHMARKS (fCLK = 0.77GHz) [57]

Benchmark MAGIC-based implementation IMPLY-based implementation
Cycles (WC) # Memristors Energy (pJ) #Cycles (WC) # Memristors Energy (pJ)

c432 102 757 24.6 221 657 291.4

c499 66 1096 37.8 143 830 368.1

c880 144 1610 48.2 312 1438 603.3

c1355 144 2960 100.2 312 2486 1118.7

c1908 240 3620 118.8 520 3181 1254.1

c2670 192 4763 149.5 416 4111 1596

c3450 282 6499 200.2 611 5679 2220.4

c5315 294 9352 291 637 7993 3150.3

c6288 744 7728 151.3 1612 9600 4212.2

c7552 258 14540 461.2 559 12546 4983.8

requires modification in memory array structure due to
the necessity to add a resistor and two different execution
voltages (VCOND and VSET) for execution. MAGIC-
based execution does not require any additional devices
to the memory structure and is supported by only a single
execution voltage (V0) [20].

• IMPLY parallel approach [8] requires significant mod-
ifications in the memory structure including additional
switches and connections among different rows of the
memory, which is not required for MAGIC execution.

• When comparing standard memory arrays (with the
required additional resistors for IMPLY serial/base),
MAGIC is 2.4X faster than IMPLY serial for the adder
case study. IMPLY outperforms MAGIC only when they
are evaluated in the modified arrays (parallel IMPLY
versus transpose memory).

• MAGIC execution dedicates a separate memristor for
storing output, thus, all the inputs are preserved, as
opposed to IMPLY, where one of the input memristors
acts as an output memristor. Hence, MAGIC execution
allows non-destructive operation and is therefore more
appropriate for logic execution within MPU.

• Complex functions are implemented using NOR in the
case of MAGIC execution and IMPLY and FALSE in
the case of an IMPLY approach. NOR operation is
more intuitive as compared to IMPLY and FALSE, and
thus, design automation can be supported using standard
automation tools.

The proposed MAGIC design is also compared with IM-
PLY on ISCAS-85 benchmark circuits [57], in terms of
worst case (WC) number of execution cycles (for frequency
fCLK = 0.77GHz), number of utilized memristors, and
energy. For each benchmark, all the basic gates are designed
using the basis functions in respective approaches (MAGIC
and IMPLY). To compute overall latency of a circuit, the
worst path delays of all the levels are added. Area and energy
calculation is carried out by finding the area and energy of
basis functions in each approach, extending them to basic gates
from the benchmark, and calculating them for all the required
gates in the circuit. The comparison shows that MAGIC-based
computing is the clear conqueror against IMPLY in speed (at
least 2X faster) and energy (at least 10X improvement), with

little overhead in terms of area for all tested benchmarks.

VI. CONCLUSIONS

Logic within memristive MPUs is an attractive approach
to enable novel non-von Neumann architectures, where pure
computation is performed within the memory. These architec-
tures significantly reduce data transfer and therefore can lead
to extremely energy efficient computers in the future.

We demonstrate the use of MAGIC gates within memristive
MPUs. Different design issues, such as determining circuit
parameters and the isolation of unselected cells are considered
to allow proper operation and efficient designs. The proposed
techniques are evaluated and compared with previously pro-
posed approaches that are based on an IMPLY logic gate.

While comparing MAGIC and IMPLY within a standard
memory crossbar structure, MAGIC outperforms IMPLY both
in speed and energy. The proposed transpose memory, that
gives additional functionality to the memristive crossbar, has
similar performance as well as energy as compared to MAGIC
within conventional memory for the case study of a full adder.
While it seems that the benefits from a transpose memory are
limited, the flexibility gained by this memory structure can be
exploited for more complex functions that can benefit from
more parallelism, resulting in better speed and energy.

ACKNOWLEDGMENT

The authors would like to thank Mr. Pushparaj Paradkar
(Microelectronics Lab, BITS Pilani, K.K. Birla Goa Cam-
pus) for offering his excellent technical support and Prof.
Mark Horowitz (Stanford University) for his support and
useful remarks. Furthermore, the authors would also like to
thank anonymous reviewers for improving the quality of this
manuscript by their useful comments.

REFERENCES

[1] L. Chua, “Memristor-The missing circuit element,” IEEE Trans. Circuit
Theory, vol. 18, pp. 507–519, Sep 1971.

[2] L. Chua and S. M. Kang, “Memristive devices and systems,” Proc. IEEE,
vol. 64, pp. 209–223, Feb 1976.

[3] Y. Ho, G. Huang, and P. Li, “Nonvolatile memristor memory: De-
vice characteristics and design implications,” in Proc. IEEE Int. Conf.
Comput.-Aided Design - Dig. Tech. Papers, pp. 485–490, Nov 2009.

14

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

[4] Q. Xia et al., “Memristor-CMOS Hybrid Integrated Circuits for Recon-
figurable Logic,” Nano Lett., vol. 9, no. 10, pp. 3640–3645, 2009.

[5] J. Borghetti et al., “Memristive Switches Enable Stateful Logic Oper-
ations via Material Implication,” Nature, vol. 464, pp. 873–876, Apr.
2010.

[6] S. Kvatinsky, A. Kolodny, U. Weiser, and E. Friedman, “Memristor-
based IMPLY logic design procedure,” in Proc. IEEE Int. Conf. Comput.
Design, pp. 142–147, Oct 2011.

[7] S. Kvatinsky et al., “MRL - Memristor Ratioed Logic,” in Int. Workshop
Cellular Nanoscale Networks Applicat., pp. 29–31, Aug. 2012.

[8] S. Kvatinsky et al., “Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 22, pp. 2054–2066, Oct 2014.

[9] S. H. Jo et al., “Nanoscale Memristor Device as Synapse in Neuromor-
phic Systems,” Nano Lett., vol. 10, no. 4, pp. 1297–1301, 2010.

[10] B. Linares-Barranco et al., “On Spike-Timing-Dependent-Plasticity,
Memristive Devices, and building a Self-Learning Visual Cortex,” Fron-
tiers Neuroscience, vol. 5, no. 26, 2011.

[11] D. Soudry et al., “Memristor-Based Multilayer Neural Networks with
Online Gradient Descent Training,” IEEE Trans. Neural Netw. Learning
Syst., vol. 26, no. 10, pp. 2408–2421, 2015.

[12] M. Horowitz, “1.1 Computing’s Energy Problem (and what we can
do about it),” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, pp. 10–14, Feb 2014.

[13] E. Linn et al., “Beyond von Neumann–logic operations in passive
crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
pp. 305205:1–6, July 2012.

[14] M. Ziegler and M. Stan, “CMOS/nano co-design for crossbar-based
molecular electronic systems,” IEEE Trans. Nanotechnol., vol. 2,
pp. 217–230, Dec 2003.

[15] A. Dehon, “Nanowire-based Programmable Architectures,” J. Emerging
Technol. Comput. Syst., vol. 1, pp. 109–162, July 2005.

[16] K. Likharev and D. Strukov, “CMOL: Devices, Circuits, and Archi-
tectures,” in Introducing Molecular Electron. (G. Cuniberti, K. Richter,
and G. Fagas, eds.), vol. 680 of Lecture Notes Physics, pp. 447–477,
Springer Berlin Heidelberg, 2005.

[17] P. Mane et al., “Implementation of NOR logic based on material
implication on CMOL FPGA architecture,” in Proc. IEEE Conf. VLSI
Design, pp. 523–528, Jan 2015.

[18] S. Paul and S. Bhunia, “A scalable memory-based reconfigurable com-
puting framework for nanoscale crossbar,” IEEE Trans. Nanotechnol.,
vol. 11, pp. 451–462, May 2012.

[19] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in Proc. IEEE/ACM Int. Symp. Nanoscale Architectures NANOARCH
’09, pp. 33–36, July 2009.

[20] S. Kvatinsky et al., “MAGIC- Memristor - Aided loGIC,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, pp. 895–899, Nov 2014.

[21] H. Li et al., “Write disturb analyses on half-selected cells of cross-point
rram arrays,” in Proc. IEEE Int. Rel. Physics Symp., pp. MY.3.1–MY.3.4,
June 2014.

[22] J. Thatcher et al., “NAND flash solid state storage for the enterprise,
an in-depth look at reliability,” in Proc. Solid State Storage Initiative
(SSSI), 2009 c© Storage Network Ind. Assoc.

[23] E. Ou and S. Wong, “Array architecture for a nonvolatile 3-dimensional
cross-point resistance-change memory,” IEEE J. Solid-State Circuits,
vol. 46, pp. 2158–2170, Sept 2011.

[24] L. Chua, “Resistance switching memories are memristors,” Appl. Physics
A, vol. 102, pp. 765–783, Jan. 2011.

[25] J. Borghetti et al., “A hybrid nanomemristor/transistor logic circuit
capable of self-programming,” Proc. Nat. Academy Sci., vol. 106, no. 6,
pp. 1699–1703, 2009.

[26] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,
“Sub-nanosecond switching of a tantalum oxide memristor,” Nanotech-
nology, vol. 22, pp. 485203:1–7, Nov. 2011.

[27] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnology, vol. 8, pp. 13–24, Jan. 2013.

[28] J. J. Yang et al., “High switching endurance in TaOx memristive
devices,” Appl. Physics Lett., vol. 97, no. 23, pp. 232102:1–3, 2010.

[29] J. Nickel, “Memristor material engineering: From flash memory re-
placement towards a universal memory,” in IEEE IEDM Adv. Memory
Technol. Workshop, pp. 142–147, Oct. 2011.

[30] A. Flocke and T. Noll, “Fundamental analysis of resistive nano-crossbars
for the use in hybrid Nano/CMOS-memory,” in Proc. European Solid
State Circuits Conf. ESSCIRC, pp. 328–331, Sept. 2007.

[31] Z. Biolek, D. Biolek, and V. Biolkova, “SPICE Model of Memristor
with Nonlinear Dopant Drift,” Radioengineering, vol. 18, pp. 210–214,
June 2009.

[32] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A
Versatile Memristor Model With Nonlinear Dopant Kinetics,” IEEE
Trans. Electron Devices, vol. 58, pp. 3099–3105, Sept 2011.

[33] J. J. Yang et al., “Memristive Switching Mechanism for
Metal/Oxide/Metal Nanodevices,” Nature Nanotechnology, vol. 3,
pp. 429–433, July 2008.

[34] E. Lehtonen and M. Laiho, “CNN using memristors for neighborhood
connections,” in Int. Workshop Cellular Nanoscale Networks Applicat.,
pp. 1–4, Feb 2010.

[35] M. D. Pickett et al., “Switching dynamics in titanium dioxide memristive
devices,” J. Appl. Physics, vol. 106, pp. 074508:1–6, Oct. 2009.

[36] H. Abdalla and M. Pickett, “SPICE modeling of memristors,” in Proc.
IEEE Int. Symp. Circuits Syst., pp. 1832–1835, May 2011.

[37] S. Kvatinsky, E. Friedman, A. Kolodny, and U. Weiser, “TEAM:
ThrEshold Adaptive Memristor Model,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 60, pp. 211–221, Jan 2013.

[38] S. Kvatinsky, M. Ramadan, E. Friedman, and A. Kolodny, “VTEAM: A
general model for voltage-controlled memristors,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 62, pp. 786–790, Aug. 2015.

[39] E. Yalon et al., “Resistive switching in HfO2 probed by a metal-
insulator-semiconductor bipolar transistor,” IEEE Electron Device Lett.,
vol. 33, pp. 11–13, Jan 2012.

[40] A. Chanthbouala et al., “A ferroelectric memristor,” Nature Materials,
vol. 11, pp. 860–864, Oct 2012.

[41] C. Yakopcic et al., “A memristor device model,” IEEE Electron Device
Lett., vol. 32, pp. 1436–1438, Oct 2011.

[42] Y.-C. Chen et al., “An access-transistor-free (0T/1R) non-volatile re-
sistance random access memory (RRAM) using a novel threshold
switching, self-rectifying chalcogenide device,” in IEEE Int. IEDM ’03
Tech. Dig. Electron Devices Meeting, pp. 37.4.1–37.4.4, Dec 2003.

[43] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and solutions,”
Microelectronics Journal, vol. 44, pp. 176 – 183, Feb. 2013.

[44] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints in
memristor crossbar arrays,” in Proc. IEEE Int. Symp. Inform. Theory
(ISIT), pp. 156–160, July 2013.

[45] W. Lynch, “Worst-case analysis of a resistor memory matrix,” IEEE
Trans. Comput., vol. C-18, pp. 940–942, Oct. 1969.

[46] S. Shin, K. Kim, and S.-M. Kang, “Analysis of passive memristive
devices array: Data-dependent statistical model and self-adaptable sense
resistance for RRAMs,” Proc. IEEE, vol. 100, pp. 2021–2032, June
2012.

[47] C.-M. Jung, J.-M. Choi, and K.-S. Min, “Two-Step Write Scheme for
Reducing Sneak-Path Leakage in Complementary Memristor Array,”
IEEE Trans. Nanotechnol., vol. 11, pp. 611–618, May 2012.

[48] C. Xu, X. Dong, N. Jouppi, and Y. Xie, “Design implications of
memristor-based rram cross-point structures,” in Design, Automation
Test in Europe Conf. Exhibition (DATE), 2011, pp. 1–6, March 2011.

[49] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar, “Resistive GP-SIMD
processing-in-memory,” ACM Trans. Architecture Code Optimization.,
vol. 12, no. 4, p. 57, 2016.

[50] T.-y. Liu et al., “A 130.7mm2 2-layer 32Gb ReRAM memory device
in 24nm technology,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers (ISSCC), pp. 210–211, Feb 2013.

[51] M. A. Zidan et al., “Memristor multiport readout: A closed-form solution
for sneak paths,” IEEE Trans. Nanotechnol., vol. 13, pp. 274–282, Mar.
2014.

[52] E. Linn, R. Rosezin, C. Kgeler, and R. Waser, “Complementary resistive
switches for passive nanocrossbar memories,” Nature Materials, vol. 9,
pp. 403–406, May 2010.

[53] J. Liang, S. Yeh, S. S. Wong, and H.-S. P. Wong, “Effect of word-
line/bitline scaling on the performance, energy consumption, and relia-
bility of cross-point memory array,” J. Emerg. Technol. Comput. Syst.,
vol. 9, pp. 9:1–9:14, Feb. 2013.

[54] J. Rajendran, H. Manem, R. Karri, and G. S. Rose, “An energy-efficient
memristive threshold logic circuit,” IEEE Trans. Comput., vol. 61,
pp. 474–487, Apr. 2012.

[55] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary
resistive switch-based crossbar array adder,” IEEE J. Emerging Sel.
Topics Circuits Syst., vol. 5, pp. 64–74, Mar. 2015.

[56] P. Mane et al., “Stateful-NOR based reconfigurable architecture for logic
implementation,” Microelectronics Journal, vol. 46, pp. 551 – 562, June
2015.

[57] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the ISCAS-85 bench-
marks: a case study in reverse engineering,” Design Test of Comput.,
IEEE, vol. 16, no. 3, pp. 72–80, 1999.

15

1536-125X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNANO.2016.2570248, IEEE
Transactions on Nanotechnology

Nishil Talati is a graduate student at the Andrew
and Erna Viterbi Faculty of Electrical Engineering
at the Technion Israel Institute of Technology, Haifa,
Israel. He received the B.Sc. degree in Electrical
Engineering from Birla Institute of Technology &
Science (BITS) Pilani, K.K. Birla Goa Campus, Goa,
India in 2016. He worked as a research scholar at the
department of Computer Science and Engineering
at the University of Michigan, Ann Arbor, USA
during Fall, 2015. His research interests include
novel computer architecture and circuit design using

emerging memory technologies, specifically, Resistive RAM (RRAM).

Saransh Gupta is an undergraduate student at the
department of Electrical, Electronics, & Instrumen-
tation Engineering at Birla Institute of Technology &
Science (BITS) Pilani, K.K. Birla Goa Campus, Goa,
India. His research interests include novel VLSI
architectures and circuit design.

Pravin Mane is pursuing his Ph.D. at the depart-
ment of Electrical, Electronics, & Instrumentation,
at Birla Institute of Technology & Science (BITS)
Pilani, K.K. Birla Goa Campus, Goa, India. He
received B.Sc. and M.Sc. in Electronics Engineering
from Shivaji University Kolhapur, Maharashtra, In-
dia in 1998 and from Indian Institute of Technology
(IIT), Roorkee, Uttarakhand, India in 2006, respec-
tively. He has worked as faculty in Mody Institute
of Technology & Science, Lakshmangarh, Rajsthan
and Vidyalankar Institute of Technology, Mumbai,

India. He has been working as a lecturer at BITS Pilani at Goa, India since
2009. His research interests include reconfigurable architectures and FPGA
based designs.

Shahar Kvatinsky is an assistant professor at the
Andrew and Erna Viterbi Faculty of Electrical Engi-
neering, Technion Israel Institute of Technology. He
received the B.Sc. degree in computer engineering
and applied physics and an MBA degree in 2009 and
2010, respectively, both from the Hebrew University
of Jerusalem, and the Ph.D. degree in electrical
engineering from the Technion Israel Institute of
Technology in 2014. From 2006 to 2009 he was
with Intel as a circuit designer and was a post-
doctoral research fellow at Stanford University from

2014 to 2015. Kvatinsky is an editor in Microelectronics Journal and has
been the recipient of the 2015 IEEE Guillemin-Cauer Best Paper Award,
2015 Best Paper of Computer Architecture Letters, Viterbi Fellowship, Jacobs
Fellowship, the 2014 Hershel Rich Technion Innovation Award, 2013 Sanford
Kaplan Prize for Creative Management in High Tech, 2010 Benin prize, and
six Technion excellence teaching awards. His current research is focused on
circuits and architectures with emerging memory technologies and design of
energy efficient architectures.

16

