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Abstract—Hardware based hash functions might provide a low
cost and low power alternative to the classic solutions, which are
based on implementations of mathematical cryptographic algo-
rithms. In this paper, we propose MemHash, a hardware secure
hash function built using memristive technology that exploits
the unique properties of memristors. The MemHash operation is
based on intrinsic device characteristics. Furthermore, it exploits
process variations for implicit key embedding, thus creating
a keyed-hash message authentication code (HMAC) that does
not involve a separate key generation and management process.
MemHash comprises a memristive crossbar with a differential
read mechanism and a scrambler unit. The scrambler unit
receives the input message as a bit stream and digitally mixes it
with data read from the array. For every bit of the message, the
scrambler generates a write address and a value to perform a
single-cell write cycle to the crossbar. Because the crossbar is de-
signed to be extremely sensitive to the write disturb phenomenon,
every single-cell write alters additional cells in the design, thus
increasing the entropy. The differential read mechanism provides
sensitivity to process variations and robustness in operating
conditions, yielding a PUF-like effect. MemHash is evaluated
with a 16× 16 memristive crossbar structure. Our simulation
results demonstrate the statistical characteristics of the proposed
design, showing close-to-optimal uniqueness and diffuseness.

I. INTRODUCTION

Emerging nanoelectronic memristive technologies, such as
Resistive RAM (ReRAM), Phase Change Memory (PCM), and
Spin-Torque Transfer Magnetoresistive RAM (STT-MRAM),
promise to provide an alternative to the ubiquitous CMOS
technology, aiming to replace the conventional DRAM and
Flash memories. No less important, the unique properties of
memristors and their compatibility with the CMOS process
make it possible to create conceptually new digital and analog
circuits. CMOS compatibility, along with a combination of
properties such as non-linearity, non-volatility and sensitivity
to process variations, make this technology appealing for
embedded security applications.

The memristor is a passive device that changes its resistance
under an applied electrical current. Chua coined the term mem-
ristor in his seminal work [1], where he speculated on the ex-
istence of a fourth passive element. Following the publication
by Strukov et al. in 2008 [2], where Chua’s memristor theory
was linked to the resistive switching phenomenon, the interest
in memristor research, including security with memristors,
has grown significantly. Several research groups reported on
building security primitives with memristor technology. For
example, true random number generators have been proposed,

leveraging the stochastic properties of memristors [3] and
telegraph noise in resistive RAM [4]. Another important
security primitive is the Physical Unclonable Function (PUF),
which utilizes intrinsic process variations to generate a unique
response to a challenge per device instance. Recently, several
researchers suggested exploiting the unique characteristics of
memristive devices to increase the entropy and sensitivity
to process variations in PUFs [5], [6]. Conceptually new
memristive PUF architectures have also been proposed. Chen
et al. [7] presented a fabricated PUF device that comprises
a memristive crossbar memory array, where process-variation
based differences between memristor resistance values serve
as an entropy source. Rose et al. [8] investigated a memristive
crossbar PUF that utilized variations in memristor write time
as well as the parasitic sneak path effect during read.

In the spirit of the PUF concept, we propose MemHash,
a memristive hardware hash function. MemHash employs a
memristive crossbar array that exploits the parasitic write
disturb phenomenon to achieve higher entropy, and it takes
advantage of process variations to create a unique and unclo-
nable key per instance. However, MemHash serves different
purposes than PUF. Unlike PUF, MemHash accepts messages
with arbitrarily long length. Thus, it is essentially a keyed
secure compression function. In MemHash, the key is embed-
ded in the circuit and cannot be exported. Thus, MemHash
suits applications where the generator and the verifier of the
signature are the same entity. For example, it can be used for
integrity check of a local memory.

The secure hash function is a fundamental component of
modern cryptography. It enables important security applicati-
ons such as digital signature and integrity validation. The state-
of-the-art secure hash functions are based on mathematical
algorithms, such as SHA, SHA-2, SHA-3 or MD5. Pure
software implementations of these algorithms often fail to
provide sufficient performance and security. Hence, hardware
accelerators that use digital logic to implement the hash algo-
rithms are commonly used. To construct an HMAC, the key is
managed separately. In contrast to the classic approach, pure
hardware implementations of secure hash functions utilize
intrinsic properties of the hardware to create entropy. Few
pure hardware hash implementations have been proposed, and
those have been mainly based on chaotic systems [9], [10].
Intrinsic implementations of secure hash functions promise
great improvement in power and area efficiency. However,
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Fig. 1. Memristive crossbar memory segment during a write. The target cell
is the cell selected for the write. The cells sharing the same row or column
of the selected cell are the first-level disturb cells. They change to the same
direction as the target cells. The remaining cells are the second-level disturb
cells. Typically, they change to the opposite direction, and they get the least
current.

they fail to provide sufficient robustness. MemHash uses
discrete quasistable states, in which the memristor drift rates
are sufficiently slow, along with differential reads to increase
robustness and accuracy.

II. MEMHASH DESIGN

A. Crossbar Array and Write Disturb

The crossbar is a fundamental structure used for building
memory with resistive cells. It requires no additional elements
other than the memristors, which makes it superior in area
efficiency. However, a significant drawback of the crossbar
is in the sneak paths, parasitic current paths through unse-
lected memory cells, resulting from the absence of switching
elements in the array [11]. The sneak paths distort the read
value during read and modify unselected cells during write
(write disturb). These side effects make it difficult to build
large and robust crossbar memory arrays. However, side effects
that add entropy, if made predictable, can be harnessed for
security applications [12]. One such application is a secure
hash function.

To create a secure hash function, we consider the state of
the entire array as a hash state. Individual cells are selected
for writing based on the input message and the previous state.
No write disturb mitigation is implemented. Hence, during a
write, in addition to the target cell, other cells are modified.
We define two types of cells in this respect (Figure 1). First-
level disturb cells are the cells that share either the row
or the column with the target cell. The resistances of these
cells change to the same direction as the target cell. All the
remaining cells are second-level disturb cells, and, typically,
their resistance changes to the direction opposite to the target
cell. The number of first-level disturb cells in an n-bit array is
O(
√

n), and the number of second-level disturb cells is O(n).
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Fig. 2. Single write operation to a 3× 3 memristive crossbar array. The
vertical axis shows a normalized internal state of the memristors (W ). W = 0
means Low Resistance State, and W = 1 means High Resistance State.

Hence, for current-controlled memristors, the latter get less
current and, as a result, change more slowly.

Every write operation places the array in a new state that
depends on the previous state, the write address and the
write data. The number of states must be sufficiently large
to resist brute-force and modeling attacks. Binary encoding
— i.e., using a high resistance state (HRS) and low resistance
state (LRS) — limits the state space, since, due to the write
disturb phenomenon, all the disturb cells of the same level
move towards the same value. To increase the state space, the
MemHash design allows intermediate resistance states for the
memristor cells, in addition to the full low and high resistance
states. This is achieved by using a voltage level sufficiently
low so that the system will reach equilibrium, where all the
memristor resistances remain at intermediate values as a result
of the current having been reduced below the threshold. We
define this state as stable. However, reaching the stable state
may take an unacceptably long time. Additionally, the number
of possible stable states may be insufficient from a security
perspective, although that is still an open question. We define
as quasistable a state in which the rate of change of all the
cells in the array is lower than a certain threshold, so that the
state may be considered as stable for practical purposes.

To demonstrate a single step, consider a 3× 3 crossbar
array in a similar structure as shown in Figure 1. Cell (i, j)
connects row i with column j. Assume the initial state of the
array is as follows: cells (0,1), (1,0) and (2,0) are in HRS,
and all the remaining cells are in LRS. A negative voltage
is applied between row 0 and column 0. When applied to a
bipolar memristor, the negative voltage changes the state of the
memristor toward LRS. Figure 2 illustrates the response of the
memristors’ internal states to the write pulse. The target cell
(0,0) is already in LRS, hence the cell remains unaltered. Cell
(0,2) is also at low resistance; hence, relatively high positive
current flows through cells (1,2) and (2,2), causing them to
start moving towards HRS. In parallel, column 0’s first-level
disturb cells move towards LRS. Cell (0,1) starts moving in
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Fig. 3. MemHash Architecture. The original message is wrapped with a
constant prefix and a suffix. The resulting message is fed serially to the
scrambler. The scrambler implements a linear function of the input bit, the
cycle count and a value read from the array, from which it generates an address
and a value for writing into the array. The array is connected to a differential
read circuit that produces an input to the scrambler for the next cycle and a
signature read-back.

the same direction, but with a delay. The delay results from
smaller current flowing through this cell, due to the parallel
connection with (0,2). Once the resistance of (0,1) is reduced,
the neighboring second-level disturb cells (1,1) and (2,1) get
sufficient current to change their states. At the end, the system
is stabilized at a new quasistable state. The slight differences
between the change rates of different cells, e.g., cells (1,1)
and (2,1), result from variations in their electrical parameters.
This way, the process variations are simulated.

Memristive devices are generally sensitive to process varia-
tions [13]. PUF designs exploit this sensitivity to create unique
and unclonable instances on each unit. This is also a crucial
component of the MemHash concept. Process variations serve
two goals: (1) They increase entropy and generate a complex
circuit resistant to modeling attacks, and (2) they generate a
keyed hash function with a unique and unclonable key per
instance. While sensitivity to the process is essential for the
MemHash design, the circuit must provide reliable results
under different operating conditions. MemHash addresses this
with a differential read [14]. The columns are divided to
pairs, and each pair is connected to the two inputs of a sense
amplifier. Thus, unlike a conventional single-ended read mode,
differential read essentially compares the resistances of two ad-
jacent cells in the addressed row. Besides providing reliability,
the differential read also obfuscates the array contents from the
user. Rather than reading the memristor values, an attacker
can only see the results of a comparison, which complicates
modeling attacks. In contrast to reads, writes are always single
ended.

The size of the memory array must be sufficiently large to
prevent birthday attacks that find collisions within the time of
O(
√

2k), where k is the number of bits in the hash value. This
means that the hash value must be at least 128 bits. Due to the
differential read, the size of the crossbar array must be twice
as big, that is 256 (16×16) bits.

B. MemHash Architecture

Figure 3 illustrates an 8-bit MemHash architecture. The user
message is first wrapped with an 8-bit constant prefix and

suffix words. MemHash processes the input stream serially,
one bit per cycle. The scrambler maintains an internal wrap-
around counter counting modulo the number of rows. Every
cycle the scrambler reads from the row pointed by the counter.
The value read from the row is mixed with the current bit to
compose the address (row and column) of the target cell. The
value to be written (0 or 1) is determined by performing an
exclusive OR between all the bits of the row and the current
bit of the message.

To guarantee repeatability, the array is initialized to a known
state at the beginning of the hashing process. In the initial
state, each cell is in either the full LRS or the full HRS. The
initialization write must be accurate: namely, write disturb
must be prevented. This can be achieved, for example, by
a slow write with lower voltage. The 8-bit prefix brings
each instance of the array to a different random state, and
the 8-bit suffix prevents attacks that modify the trailing bits
in the message. The detailed algorithm and the scrambling
function of the MemHash Scrambler block is provided below
(Algorithm 1).

Algorithm 1 MemHash Scrambler Algorithm
1: Initialize array to alternating LRS/HRS values
2: pointer = 0
3: pre f ix = 10101010
4: su f f ix = 01010101
5: input = {pre f ix,message,su f f ix}
6: while input not empty do
7: b = pop 1 bit f rom input
8: row = (4 LSBs from Array[pointer]+b) % numrows
9: col = (4 MSBs from Array[pointer]+b) % numcols

10: writevalue = XOR(row%2,col%2,b)
11: Write writevalue to cell address {row,col}
12: pointer = (pointer+1) % numrows
13: end while

C. Memristor Model and Parameters

Memristors can be either voltage or current controlled. The
regular structure of the crossbar makes the voltage controlled
model more predictable; hence we chose the current controlled
model for the hash application. For simulations, we used the
TEAM model [15]. We simulate the process variations by
modifying five parameters of the model. Ron, Ro f f and D
reflect variance in resistance, and ion and io f f reflect variance
in the change rate.

We selected the memristor device parameters to maintain
most of the memory cells at intermediate resistance for any gi-
ven balanced sequence of operations. The scrambling function
guarantees the balance of ’0’ and ’1’ write values.

III. EXPERIMENTAL RESULTS

A. Experimental setup

For performance evaluation of MemHash, we simulated the
write operations in a 16×16 memristive crossbar using SPICE.
The scrambler, the differential read module and the message



scheduler were simulated with the Perl script framework. The
differential read was emulated by comparing the resistances
of the adjacent cells.

TABLE I
MEMRISTOR TEAM MODEL PARAMETERS

Parameter Value Standard deviation
Set Voltage −0.15V 0

Reset Voltage 2.4V 0
Period 60ns 0

D 3 ·10−9m 5%
RON 100Ω 5%
ROFF 20KΩ 5%

ion −1µA 5%
io f f 1µA 5%
αon 3 0
αo f f 3 0

Window function Kvatinsky window N/A

The Perl script prepared a separate SPICE deck for every
message bit, translated to a single cycle in MemHash. At
the end of each simulation step, the memristor state vector
passes to the succeeding step. We used Monte-Carlo to emulate
process variations, using the parameters in Table I. The TEAM
model parameters were tuned to keep the crossbar array in a
balanced state to prevent saturation.

B. Dynamic Behavior

First, we checked the dynamic behavior of the system in a
transient simulation. For this purpose, we simulated the Mem-
Hash system with 10 randomly generated 32-bit message pairs.
In each pair, the two messages differ by a single bit (Hamming
Distance = 1) located in the middle of the message (bit 15).
After each cycle, we measure the Hamming distance between
the MemHash differential states of the two messages. The hash
size is 128; therefore, we expect a Hamming distance of 64
at maximum entropy. Figure 4 shows the Hamming distances
for the message pairs, starting from the differentiating bit. For
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Fig. 4. Dynamic behavior of MemHash. Hamming Distance between hash
values of two messages differing in a single bit located in the middle of the
message. Every line in the chart represents one such pair. The dotted line is
the target distance of 50% of the bits in the hash value.

nine of them, the Hamming distance grows to around 40%
within eight cycles after the appearance of the differentiating
bit. An additional observation is that once the hash values for
the messages are separated, the Hamming distance stays in
the same zone; namely, no reconvergence is observed. These
results indicate that the 8-bit suffix is in most cases sufficient to
achieve the avalanche effect. However, for one message pair,
the distance grows only after 16 cycles. Note that although
the distance between the messages for this pair reaches 0 at
cycle 27, the messages end up separated since every next step
depends not only on a representation of the array state as a
differential binary vector, but also on the analog state of the
array.

C. Statistical Properties

Statistical performance of cryptographic hash functions can
be evaluated using the confusion and diffusion criteria intro-
duced by Shannon in 1945. Confusion reflects the sensitivity
of the hash value to different parts of the key, and diffusion
reflects the sensitivity to changes in the input data. Generally,
a change in a single bit of the input message must result in a
change of 50% of the hash value bits on average. MemHash
shares several properties with the PUF structure. Hence, we
combine these parameters with the PUF-related criteria defined
in [16].

The first parameter, uniqueness, reflects the variance bet-
ween responses to the same message from different instances
of the evaluated circuit. Uniqueness is measured in Hamming
distance (HD) between the hash values.

The next parameter, di f f useness, reflects the variance be-
tween hash values for the same instance and different input
messages. The uniqueness parameter reflects sensitivity to the
key, and di f f useness reflects sensitivity to the data, similarly
to Shannon’s diffusion and confusion respectively. Therefore,
we expect both of the parameters to have an average value of
50%. The uni f ormity parameter reflects the balance between
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Fig. 5. Diffuseness histogram. Hamming distance between hash values for
different messages with the same circuit. The solid bars show the results for
random messages, and the striped bars show the results for message pairs that
differ in one bit.



0’s and 1’s in the hash value. It is obtained by summing up the
bits in the hash value and dividing the result by the number
of bits in it. Finally, the bit− aliasing parameter reflects the
balance of 0’s and 1’s obtained from different instances for
every bit individually.

To obtain the diffuseness for MemHash, we generated 32
circuits according to Table I. For every circuit, we ran 32
different random messages. For other parameters, we gene-
rated 32 random messages and applied each of them to 32
different circuits. Table II shows the average and standard
deviation figures obtained from the simulations. Figure 5
illustrates the diffuseness parameter distribution. For all the
parameters, we look to achieve an average of 50% and a
small standard deviation. The uniqueness value is almost
satisfactory. However, average diffuseness is off by 8% from
the target. This can be explained by observing the bit-aliasing
numbers for individual bits of the hash values, which reach
values of up to 90%. We hypothesize that this phenomenon
is caused by certain cell pairs being biased towards a specific
differential state. An additional interesting observation is that
the diffuseness statistics are identical for random messages and
almost identical messages (HD=1). These results suggest that
MemHash achieves entropy slightly lower than the maximum
possible entropy with the given hash size.

TABLE II
STATISTICAL EVALUATION

Parameter Average Standard deviation
Uniqueness 46% 7.5%

Diffuseness (random) 42% 8%
Diffuseness (HD=1) 43% 8%

Uniformity 50% 18%
Bit-aliasing 50% 18%

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a conceptually new design of
a keyed hash function, a memristive hardware hash function
(MemHash) that exploits the non-linear behavior of memristive
devices. MemHash takes advantage of the write disturb phe-
nomenon in memristive crossbar arrays, when writing to one
cell affects other cells in the array. In addition, we exploited
manufacturing process variations to create unique keys for
each instance of the function.

The MemHash concept calls for further development of
analytical models for comprehensive security analysis. For
example, MemHash can be viewed as a dynamical system,
in which time is a discrete space represented by cycles, and
state space is the collection of all possible quasistable states
of MemHash.

In security analysis, various cryptanalysis techniques should
be applied to MemHash to evaluate the one-wayness and
collision-free properties. The obtained diffuseness and unique-
ness values show that MemHash generates entropy slightly
lower than the maximum. This weakness can be exploited to
find collisions. In addition, modeling attacks try to extract the
parameters of the system (in our case, the electrical parameters

of the memristors) by applying different inputs and solving
a system of equations. We believe that the differential read
scheme makes modeling attacks on MemHash unlikely.

Finally, the reliability (robustness) of MemHash, as well as
the accuracy requirements for analog components such as the
differential read block, should be further investigated.
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