
1

Information-Theoretic Sneak-Path Mitigation in
Memristor Crossbar Arrays

Yuval Cassuto, Senior Member, IEEE, Shahar Kvatinsky, Member, IEEE, and
Eitan Yaakobi, Member, IEEE

Abstract— In a memristor crossbar array, functioning
as a memory array, a memristor is positioned on each
row-column intersection, and its resistance, low or high,
represents two logical states. The state of every memristor
can be sensed by the current flowing through the memristor.
In this work, we study the sneak path problem in crossbar
arrays, in which current can sneak through other cells,
resulting in reading a wrong state of the memristor. Our
main contributions are modeling the error channel induced
by sneak paths, a new characterization of arrays free of
sneak paths, and efficient methods to read the array cells
while avoiding sneak paths. To each read method we match
a constraint on the array content that guarantees sneak-path
free readout, determine the resulting capacity, and provide
an efficient encoder that achieves the capacity.

Index Terms— Codes for memories, sneak paths, con-
straint codes, memristors, resistive memories, crossbar ar-
rays, Z channel.

I. INTRODUCTION

The memristor technology [16] allows packing stor-
age cells in an unprecedented density, over a simple
crossbar structure. The blessing of high storage density
and architectural simplicity comes with a major caveat:
data-dependent behavior [14]. The read accuracy, speed,
and power consumption in memristor storage may all
vary significantly depending on the instantaneous data
stored in the crossbar array. This is clearly an undesired
property for a storage medium, and a motivation for data
representations that ensure that the physical content of the
array corresponds to a well-behaving device. Memristor
storage has already motivated a novel data representation

Yuval Cassuto is with the Department of Electrical Engineering,
Technion – Israel Institute of Technology, Haifa Israel (email: ycas-
suto@ee.technion.ac.il).

Shahar Kvatinsky is with the Department of Electrical Engineering,
Technion – Israel Institute of Technology, Haifa Israel (email: sha-
har@ee.technion.ac.il).

Eitan Yaakobi is with the Department of Computer Science,
Technion – Israel Institute of Technology, Haifa Israel (email:
yaakobi@cs.technion.ac.il).

The work of Y. Cassuto was supported in part by the European Union
Marie Curie CIG grant, by the Intel Center for Computing Intelligence,
and by the Israeli Ministry of Science and Technology. The work of S.
Kvatinsky was supported by the Intel Center for Computing Intelligence
and by a Viterbi computer engineering fellowship. The work of E.
Yaakobi was supported in part by the ISEF Foundation and by the Lester
Deutsch Fellowship. Part of the results in the paper were presented
at the IEEE International Symposium on Information Theory, Istanbul
Turkey, July 2013, and part at the IEEE International Conference on
Signal Processing and Communications, Bangalore India, July 2014.

Copyright (c) 2014 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

for one instantiation of the data-dependence problem [11].
Here we address another very significant data-dependent
phenomenon called sneak paths [14], causing the read
correctness to depend on the array content. The impor-
tance of the sneak-path problem can be sensed by the
significant body of research addressing it recently in the
device and circuit literature [5]–[7], [9], [13], [14], [19],
[20].

To understand the sneak-path problem in memristor ar-
rays, we first show a simplified schematic of a memristor
array in Fig. 1(a). Each row-column pair is connected by

000

00

00

00

1

1

1

11

11

11

1

1

2

2

2

2

3

33

3

4

4

4

4

(a) (b)

Fig. 1. (a) A memristor array as an array of programmed
resistors – white: high resistance, black: low resistance. The
high-resistance cell at location (4, 1) has a sneak-path in parallel
(plotted dashed), causing it to be read as low-resistance. (b) The
corresponding logical values of the memristor array. The cell in
the square frame has a sneak-path comprising of the three cells
marked in circles.

a resistor that can be in either the high-resistance state
(marked white) or the low-resistance state (marked black).
In Fig. 1(b) appear the corresponding logical values of
the cells: logical ”0” for the high-resistance state, and
logical ”1” for the low-resistance state. The sneak-path
problem occurs when a resistor in the high-resistance state
(white) is being read, while a series of resistors in the
low-resistance state (black) exists in parallel to it, thereby
causing it to be erroneously read as low-resistance. It
is shown by the dashed line in Fig. 1(a) that the white
resistor in (row, column) location (4, 1) has a sneak path
that traverses the black resistors in locations (4, 3), (1, 3)
and (1, 1). This dashed path is in parallel to the main
current path of (4, 1) marked by a solid line.

In this paper we seek to combat memristor-array
sneak paths using information-theoretic techniques. We
first note that such an attempt was already presented
in [18] by forcing the number of zeros and ones in every
row and column to be the same. While this gives an
elegant intuitive solution that can reduce the sneak path

2

effect, our objective in this paper is to give a systematic
information-theoretic study of the sneak-path problem
and its mitigation. We begin the information-theoretic
treatment of sneak paths in Section II by calculating the
error probability as a function of the array dimensions and
the distribution of the written bits. We give precise closed-
form expressions for the error probability as a function
of these parameters, and also extend the calculations to
a model where an error occurs only if at least L distinct
sneak paths affect the read cell. This formulation of
sneak-path arrays as error channels lays the foundation
to coding for mitigating sneak-path errors.

An alternative approach to mitigating sneak paths is
to eliminate them altogether by a proper constraint code.
Here coding works to restrict the written bits in the array
to bit assignments that do not induce any sneak path to
any cell. The number of sneak-path free assignments to
an m × n memristor array was calculated by Sotiriadis
in [15]. Unfortunately, straightforward elimination of
sneak paths in the array implies storage capacity that van-
ishes with the array dimensions, which is clearly undesir-
able in practice. Hence our focus here is on generalizing
the sneak-path constraint to practical scenarios that do
not result in vanishing capacity. In Section III we derive
a succinct characterization of sneak-path free arrays that
enables the subsequent study of generalized sneak-path
constraints. Then Section IV presents methods to obtain
high-rate sneak-path free coding by selectively grounding

array rows. Grounding array rows is a well known tech-
nique to eliminate sneak paths [1]. Grounding, however,
will increase significantly the readout current [14]. Hence
the introduction of grounding methods enables a tradeoff
between power consumption (grounding many rows in-
creases read power) and storage capacity (grounding few
rows enforces harder constraints and reduces capacity).
For each of two proposed grounding methods we match
a corresponding constraint, and calculate the storage
capacity resulting from the constraint. Both methods are
shown to have non-vanishing capacities, and for both we
present capacity-achieving encoders. It is an interesting
finding from practical standpoint that for the read method
that achieves the higher capacity from the two, capacity
can be achieved by a 1-dimensional (d,∞) run-length
limited constraint. Because the 1-dimensional constraint
is only sufficient for the sneak-path constraint, but not
necessary, proving this result requires careful enumeration
of words outside the intersection of the constraints. We
close Section IV with a general model for trading off
read power and storage rate in memristor arrays, which
can help future work generalizing the specific models
we addressed herein. Finally, we conclude the paper
in Section V with some forward-looking remarks on
employing error-correcting codes in memristor arrays.

II. ERROR PROBABILITIES DUE TO SNEAK PATHS

We start the information-theoretic treatment of sneak
paths by examining the errors that they cause, and cal-

culating the resulting error probabilities. In this section
and throughout the paper we assume that a resistive
cell at location (i, j) programmed to the “0” state (high
resistance) is read in error as being at the “1” state
(low resistance) when it is affected by at least one sneak
path of any length, i.e., there exists a path as defined in
Definition 1.

Definition 1. Given a binary arrayA of size m×n, we say
that there is a sneak path of length 2k + 1 affecting the
cell at position (i, j) if ai,j = 0 and there exist 2k positive
integers 1 6 r1, . . . , rk 6 m and 1 6 c1, . . . , ck 6 n for
some k > 1 such that the following 2k + 1 cells satisfy

ai,c1 = ar1,c1 = ar1,c2 = · · · = ark−1,ck = ark,ck = ark,j = 1.

The sneak path is a closed path originating from and
returning to (i, j) and traversing “1”-state cells through
alternating vertical and horizontal steps. The integers
r1, . . . , rk and c1, . . . , ck are, respectively, the row and
column indices of the traversed cells.

A. Calculating the sneak-path bit-error probability

In an m×n array we want to calculate the probability
that a certain bit will be in error due to one or more
sneak paths affecting it. To this end we restrict ourselves
to sneak paths of length 3 (k = 1 in Definition 1), and
define that a bit will be in error due to sneak path if the
following two conditions are met:

1) The bit value is 0.
2) The bit location (i, j) has at least one combination

c1, r1 that induces a sneak path defined by

ai,c1 = ar1,c1 = ar1,j = 1. (1)

According to the definition of sneak path given in (1),
we only consider in the analysis sneak paths with 3
cells, which is a special case of the 2k + 1-cell sneak
path given in Definition 1. We do so for two reasons.
One is that sneak paths with more than 3 (5, 7, etc.)
cells are less prone to errors because of their higher
resistance. Practical realizations of memristors implement
non-linearity in the cell resistance, and so the small
increase of the path length from 3 cells to 5 may be
sufficient for the sneak current to drop to a level that
would not induce a read error. The second reason is that
analyzing longer sneak paths is much more difficult. In
Section III we show that when determining sneak-path
existence in a full m×n array, it is sufficient to consider
3-cell sneak paths as in (1).

We denote by P the conditional probability that given
that a cell is programmed to the value 0 it will be read
as 1 due to sneak path. To get from P the overall array
bit error probability due to sneak paths, we multiply it by
the fraction of 0 bits in the array Pr(ai,j = 0), because
all the sneak-path errors occur to 0 bits. Throughout
this section all the sneak-path error probabilities are

3

conditional given a 0 bit, but we keep this conditioning
implicit for notational convenience. The main challenge
in finding P stems from the fact that there are many
possible c1, r1 combinations creating sneak paths, and
multiple of them may exist simultaneously for the same
array assignment. We now define the problem formally.

Problem 1. Given an array of dimensions m × n, where
bits are written to array locations such that Pr(ai,j = 1) =
q, Pr(ai,j = 0) = 1 − q, i.i.d. for all (i, j). What is the
probability P that a 0-written array bit is read in error due
to sneak path?

It is clear that the answer to Problem 1 depends on the
parameter q. For example, it is possible to trivially make
P identically zero by setting q = 0 (hence having no 1s
in the array to create sneak paths). However, this would
not be a wise choice as the resulting information rate is
zero. The sneak-path error probability also depends on the
array dimensions, hence we re-denote P as P (m,n, q).

Theorem 2. The error probability due to sneak paths in an
m× n array with parameter q equals

P (m,n, q) = 1−
m−1
∑

u=0

n−1
∑

v=0

(

m− 1

u

)(

n− 1

v

)

·qu+v(1− q)m−1−u+n−1−v+uv.
(2)

Proof: The proof proceeds by summing the prob-
abilities of bit assignments for which there is no sneak
path affecting cell (i, j). Taking the complement yields
P (m,n, q).
We consider a location (i, j) where the bit value is 0.
Suppose column j has u 1s in row locations taken from
{1, . . . ,m} \ i, and row i has v 1s in column locations
taken from {1, . . . , n} \ j. Then in order for cell (i, j) to
have no sneak path, each intersection of a 1 in column j
with a 1 in row i must have a 0 value. An example for an
array with no sneak path for cell (i, j) = (1, 1) is given
in Fig. 2.

The probability that all these intersections have 0s is
(1 − q)uv . Now all that is needed to obtain the second
term of (2) is to sum over all u from 0 to m − 1 and
all v from 0 to n − 1 and weight with their respective
probabilities.

Theorem 2 gives an exact closed-form expression for the
probability that randomly selecting the m× n array bits
i.i.d. with parameter q will result in at least one sneak path
affecting location (i, j). Note that the same expression
applies to any array location, as (2) does not depend on
(i, j). This implies that an encoder with bias q induces
information reliability given by (2). It is important to
observe that for two locations (i1, j1) and (i2, j2) on the
same array, sneak-path error events are not independent.
For example, if i1 = i2, knowing that (i1, j1) has a sneak

(a)

0

0

0

0

0

0 0

1

1

1

11

1

2

2

3

3

4

4

X

XXX

X

Fig. 2. An example of an array with no sneak path for cell
(1, 1). Given 0/1 assignments in row i = 1 and column j = 1,
the intersections of the 1-rows with the 1-columns must be set
to zeros. In the rest of the array locations, the value can be
arbitrary, marked with X .

path makes a sneak path for (i2, j2) more likely. The
dependence between sneak-path errors within the array is
discussed in more detail in Section II-D.

B. Error probability due to L or more sneak paths

It may be the case in practice that one sneak path is
not sufficient to cause a bit error. Rather, the sensing
circuit may have sufficient margins to tolerate up to L−1
sneak paths affecting an array location, in which case a
bit error due to sneak paths requires at least L sneak paths
affecting the same array location. For this case we derive
a generalized expression for the bit-error probability due
to L or more sneak paths.

Theorem 3. The error probability due to L or more sneak
paths in an m× n array with parameter q equals

PL(m,n, q) =

(m−1)(n−1)
∑

l=L

m−1
∑

u=1

n−1
∑

v=1

(

m− 1

u

)(

n− 1

v

)(

uv

l

)

·qu+v+l(1− q)m−1−u+n−1−v+uv−l.
(3)

Proof: Given u 1s in column j and v 1s in row
i, an array will induce l sneak paths on location (i, j)
if it has exactly l 1s out of the uv cells that intersect
a 1-row of column j and a 1-column of row i. There
are
(

uv
l

)

combinations to choose these l 1s. To restrict to
exactly l 1s in the probability expression, we add (on top
of (2)) l to the exponent of q to get qu+v+l and uv− l to
the exponent of 1− q to get (1− q)m−1−u+n−1−v+uv−l.
Summing for all l greater or equal to L yields (3).

One can verify that P (m,n, q) = P1(m,n, q), hence
Theorem 2 is a special case of Theorem 3.

C. Asymptotic analysis

A practically important question is whether reliable
readout is possible in the limit of large memory arrays. As

4

it turns out, one can increase the array size without limit
while keeping the error probability constant and bounded
away from 1. That statement is true if the array grows
in one dimension, and is kept constant in the other. If
the array grows unbounded in both dimensions, then we
show that the error probability does tend to 1. We start
with the positive result.

Proposition 4 Given an integer constant b, the error prob-
ability P (b, n, q) is bounded from above by a constant
strictly smaller than 1 as n tends to infinity. The upper
bound on the error probability equals

P (b, n, q) 6 1− (1− q)b−1. (4)

Proof: For a constant number b of rows (which
include row i and b− 1 additional rows), the probability
that column j has all 0s equals

(1− q)b−1.

Since having all 0s in column j guarantees that there are
no sneak paths, we get the bound in (4).

The way in practice to keep the array-size constant in one
dimension is by grounding all rows outside a b× n sub-
array containing the read cells. When using the grounding
technique the value of b sets a tradeoff between the error
probability and the power consumption during read. The
following result shows that it is not possible to grow the
array to infinity in both dimensions while maintaining a
constant error probability.

Theorem 5. The error probability P (m,n, q) tends to 1 if
m and n tend to infinity, for any constant q.

Proof: As we did in the proof of Theorem 2, we
will look at the complement of P (m,n, q) and prove that
it tends to 0 for m and n tending to infinity. Suppose that
column j is assigned a particular vector u with weight
u = 1. Then the probability that there is no sneak path
conditioned on u in column j is given by

1−P (m,n, q|u) =

n−1
∑

v=0

(

n− 1

v

)

qv(1−q)n−1−v(1−q)v.

(5)
The power of q in (5) is the number of 1s in row i and
the first power of 1 − q is the number of 0s in row
i. The second power of 1 − q is the number of zeros
required to not have sneak path when the weight of u is
1. Simplification of (5) yields

1− P (m,n, q|u) =

(1− q)n−1(1 + q)n−1 = (1− q2)n−1 −→
n→∞

0. (6)

It is clear that for any vector u
′ in column j with

weight u > 1, the probability of having no sneak path
conditioned on u

′ similarly tends to 0. (Intuitively, more
1s in column j mean fewer assignments to the remaining
bits that do not cause sneak-path.) Hence the probability

of no sneak path conditioned on the weight of column j
being greater or equal to 1 tends to 0 as n tends to infinity.
To prove that the same applies even without conditioning,
we observe that the probability that column j has weight
0 (u′ is the all-zero vector) tends to 0 as m tends to
infinity. This completes the proof.

D. Joint distribution of sneak-path errors

The probability to have a sneak-path error is shown in
the previous section to be independent of the location
in the array, only depending on the array and source
parameters. However, it is not hard to see that a sneak-
path error in one array location is not independent from a
sneak-path error in another location given the parameters
(m,n, q). For example, a sneak path affecting an array
location increases the likelihood of a sneak path affecting
another location in the same row or column, as sneak
paths affecting locations in the same row/column have
many cells in common. One option to mitigate this de-
pendence is to perform sneak-path error-correction coding
across arrays (i.e., each bit in a codeword is assigned
to a different array with the same parameters), so that
errors within a code block can be assumed i.i.d. However,
restricting coding to be performed cross-array has signif-
icant practical drawbacks, mainly increased latency due
to the need to read multiple arrays before the decoding
of a code block can start. So to avoid this, we study in
this section the dependence between sneak-path errors in
the same array.

Consider an m×n array with bias q. Denote by ei,j the
event that cell (i, j) is affected by a sneak path, and by
ēi,j the complementary event that cell (i, j) is not affected
by a sneak path. In the notation of Section II-A we write
Pr(ei,j) = P (m,n, q) and Pr(ēi,j) = 1 − P (m,n, q).
We now want to examine the probability that two cells

within the same array column are affected by sneak paths.
In other words, we want to calculate the joint probability

Pr(ei,j , ei′,j),

for some index triple i, i′, j. We may similarly be inter-
ested in the joint probability Pr(ēi,j , ēi′,j) (one can be
obtained from the other and the individual probability
Pr(ei,j)). Denote by u the number of 1s in column j,
by v the number of 1s in row i, and by v′ the number
of 1s in row i′. In addition, denote by σ the number of
column indices in which both rows i, i′ have 1s. Hence
σ 6 min{v, v′}.

Theorem 6. The joint probability Pr(ēi,j , ēi′,j) in an m×
n array with parameter q equals the expression in (7).

Proof: Given u, v, v′ and the overlap σ, avoiding
sneak paths for both cells (i, j) and (i′, j) requires 0
assignments to the cells that intersect the u row indices
where column j has 1s, with the union of the v and v′

column indices where row i or i′ (or both) have 1s. The

5

Pr(ēi,j , ēi′,j) =

m−2
∑

u=0

n−1
∑

v=0

n−1
∑

v′=0

n−1
∑

σ=0

(

m− 2

u

)(

n− 1

v

)(

v

σ

)(

n− 1− v

v′ − σ

)

qu+v+v
′

(1−q)m−2−u+n−1−v+n−1−v′+u(v+v′−σ).

(7)

size of this union is v + v′ − σ, and this adds the right
term u(v+ v′−σ) to the exponent of (1− q) in (7). The
remaining terms in the exponent of (1−q), as well as the
terms in the exponent of q, follow from the assignment
of 0s and 1s to column j and rows i, i′ prescribed by
u, v, v′. The latter two binomial coefficients in (7) count
the number of assignments of v′ column indices having
overlap σ with a given set of v column indices.

Thanks to symmetry between rows and columns1 the
formula (7) can be used also for the case of two cells
in the same row.

We now use Theorem 6 to compare the joint error
probability of two same-column cells to the probability of
double bit error assuming independent errors. Intuitively,
since two cells in the same column share the same number
u of 1s in the column, we expect a higher likelihood of
both erring together (when u is high), and also a higher
likelihood of both not erring together (when u is low).
We validate this intuition quantitatively in the following
figures. Fig. 3 compares the probability Pr(ēi,j , ēi′,j) to
the square of the probability 1 − P (m,n, q) from Sec-
tion II-A. Fig. 4 compares the probability Pr(ei,j , ei′,j)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

q

Pr(ē, ē)

Independent

Joint

Fig. 3. Comparing the probability Pr(ēi,j , ēi′,j) from Theo-
rem 6 (dashed line) to the square of the individual-cell no-error
probability from Theorem 2 (solid line).

(calculated from Pr(ēi,j , ēi′,j) and the individual error
probability) to the square of the probability P (m,n, q).
Figs. 3 and 4 show that both the joint no-error probability
and the joint error probability of cells in the same column
(or row) are higher than those probabilities had errors
been independent.

It is possible to extend Theorem 6 to obtain the joint er-
ror probabilities of more than 2 cells in a row or column.
The importance of deriving joint error probabilities is that
these probabilities can be used to obtain error models for
the analysis and design of error-correcting codes.

1When we transpose an m×n array we obtain an n×m array where
rows and columns switch roles.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

q

Pr(e, e)

Independent

Joint

Fig. 4. Comparing the probability Pr(ei,j , ei′,j) (dashed line)
to the square of the individual-cell error probability (solid line).

III. CHARACTERIZATION OF SNEAK-PATH FREE

ARRAYS

The approach manifested in the previous section is to
regard sneak paths as a source of errors, and using error-
correcting codes to combat them. Now in this section
we explore an alternative approach of constraining the
array to bit assignments that do not have any sneak path
for any cell (i, j). Such an approach would give a
complete solution to the sneak-path problem without need
to employ error-correcting codes.

To obtain sneak-path free arrays, let us first define for-
mally and mathematically the required constraint. Recall
that for a cell at location (i, j) that is programmed to “0” a
sneak path is defined according to Definition 1. Hence we
say that an array A satisfies the sneak-path constraint if
no cell within it has a sneak path of any length. In these
cases we call the array A a sneak-path-free array.

The sneak-path constraint was already introduced and
studied in [15] with application to nanowire resistive
crossbar switching networks (R-CSNs). This previous
work addressed the same problem of high-resistance
cells being “short-circuited” by paths of cells at low-
resistance state. The contributions of [15] include an
exact count of the number of ”0”, ”1” m × n arrays
that are distinguishable by measuring resistance at the
array row/column terminals. This count can be easily
seen to be identical to the number of distinct sneak-path-
free arrays. However, the more refined characterization
of the sneak-path constraint pursued here allows obtain-
ing superior storage information rates for more general
sneak-path problems motivated by memristor arrays. For
completeness and clarity we include in the presentation
results for the simple sneak-path model, which can be
implied by results in [15].

For the ability to extend sneak-path-free coding results
to more general models, it is useful to represent the sneak-

6

path constraint by a new, more succinct constraint, which
is later shown to be equivalent. It turns out that the exis-
tence of sneak paths of any length in a memristor array
can be perfectly characterized by an abstract constraint,
which we call the isolated zero-rectangle constraint.

Definition 7. A binary array A has an isolated zero rect-

angle if there are four positive integers i1 6= i2 and j1 6= j2
such that

ai1,j1 + ai1,j2 + ai2,j1 + ai2,j2 = 3.

That is, the value of exactly one out of the four cells in the
rectangle formed by these four positions is zero.

Note the similarity between Definition 7 and Definition 1
for the special case of k = 1. The difference is that Defi-
nition 1 characterizes sneak paths affecting the particular
cell at location (i, j), while Definition 7 characterizes the
existence of sneak paths affecting any cell in the array. An
array A satisfies the isolated zero rectangle constraint

if it has no isolated zero rectangles and then it is called
an isolated zero rectangle free array.

According to the last definition, a ”0” belongs to an
isolated-zero rectangle if it is part of any rectangle in
the array, all of whose remaining vertices are ”1”s. For
example, the cell in the (4, 1) location in Fig. 1(b) belongs
to an isolated zero rectangle because it is part of a
rectangle (marked by a dashed line) with three ”1”s at
locations (1, 1), (1, 3) and (4, 3). There are no other
isolated zero rectangles in the array.

Next we show that a memristor array is free of sneak
paths of any length if and only if it has no isolated zero-
rectangles. Note that sneak paths may consist of any odd
number of cells greater than one, not necessarily three
as in the rectangle case. However, this property tells us
that rectangles, i.e. sneak paths of length three, provide a
complete characterization of the existence of sneak paths.

Theorem 8. The sneak path constraint and the isolated
zero rectangle constraint are equivalent.

Proof: We will show that an array has a sneak
path if and only if it has an isolated zero rectangle.
One direction is immediate. Assume that an array A has
an isolated zero-rectangle. Then, there are i1 6= i2 and
j1 6= j2 such that exactly one out of the four cells
{(i1, j1), (i1, j2), (i2, j1), (i2, j2)} has value ”0”. Then
the remaining three cells have value ”1” and satisfy the
condition of Definition 1 with k = 1. Thus, we are only
left with showing that if an array has a sneak path then
it also has an isolated zero rectangle.

Let us assume to the contrary that there exists an array
A which has a sneak path affecting the (i, j) cell and yet
it satisfies the isolated zero rectangle constraint. First note
that ai,j = 0 and there is a path as defined in Definition 1
starting at the i-th row and ending at the j-th column.
Assume the vertices of this path are the cells at positions

(i, c1), (r1, c1), (r1, c2), . . . , (rk−1, ck), (rk, ck), (rk, j)
for some k > 1, and these array cells have value ”1”.

We will show by induction that for all 1 6 h 6 k,
arh,c1 = 1. This property holds for h = 1 since the
(r1, c1) cell is part of the sneak path. Assume the claim
is true for some 1 6 h < k, that is, arh,c1 = 1.
We will show that arh+1,c1 = 1 as well. Note that the
vertices (rh, ch+1), (rh+1, ch+1) belong to the sneak path
and hence arh,ch+1

= arh+1,ch+1
= 1. Therefore, in the

rectangle formed by the vertices

(rh, ch+1), (rh, c1), (rh+1, ch+1), (rh+1, c1)

the first three cells have value one. Therefore, according
to the assumption that there is no isolated zero rectangle
we conclude that arh+1,c1 = 1.

From the last claim we get in particular that ark,c1 = 1.
Since the vertices (i, c1), (rk, j) belong to the sneak path,
we have ai,c1 = ark,j = 1 and since the sneak path
affects the cell at position (i, j) we also have ai,j =
0. Therefore, there exists a sneak-path with three cells
(i, c1), (rk, c1), (rk, j) in contradiction with the assump-
tion that there are no isolated zero rectangles.

From the isolated zero rectangle characterization it is
implied that for sneak paths to not exist in the array,
the ”1” cell locations in any pair of rows (or columns)
must have either full overlap or no overlap. For example,
rows 2, 3 in Fig. 1(b) have full overlap of ”1”s, rows
2, 4 have no overlap of ”1”s, and thus no sneak paths
exist between these row pairs. However, rows 1, 4 have
neither full-overlap nor no-overlap, and thus introduce a
sneak path.

Lemma 9. An array A is an isolated zero rectangle free
array if and only if the ”1”s in every two rows either
completely overlap or are disjoint.

Proof: It is clear that the condition is sufficient.
If ”1”s either completely overlap or have no overlap
between every pair of rows, then every rectangle has
either 0,1, 2 or 4 ”1”s.

To prove necessity, assume to the contrary that the
condition does not hold. That is, there are two rows,
say the i-th and j-th rows, such that the ones in these
rows neither completely overlap nor are disjoint. Assume
without loss of generality that there are more ones in
the i-th row and assume that there are ℓi > 2 ones in
positions 1, . . . , ℓi. Since the ones in the two rows are
not disjoint, there is 1 6 k 6 ℓi such that aj,k = 1,
and since they do not fully overlap, there is 1 6 h 6 ℓi,
h 6= k such that aj,k = 0. Thus, the rectangle formed
by the vertices {(i, k), (i, h), (j, k), (j, h)} is an isolated-
zero rectangle and so the array A does not satisfy the
isolated zero rectangle constraint.

Let N(m,n) be the number of m×n arrays satisfying
the isolated zero-rectangle constraint. An exact count of
N(m,n) (for an equivalent constraint) is derived in [15].

7

For the sake of completeness and clarity of the results
that follow, we provide a proof of the result that uses the
isolated zero rectangle constraint and its characterization
in Lemma 9.

First, we denote by S(k, ℓ) the number of distinct ways
that a set of k elements can be partitioned into ℓ nonempty
subsets, where it is known that

S(k, ℓ) =
1

ℓ!

ℓ
∑

t=0

(−1)ℓ−t
(

ℓ

t

)

tk =
1

ℓ!

ℓ
∑

t=0

(−1)t
(

ℓ

t

)

(ℓ−t)k.

This is known as the Stirling number of the second
kind [17].

Lemma 10. The value N(m,n) is expressed by

N(m,n) = 1+

m−1
∑

i=0

n−1
∑

j=0

(

m

i

)(

n

j

)min{m−i,n−j}
∑

ℓ=1

S(m− i, ℓ)S(n− j, ℓ)ℓ!.

Proof: Assume A is an array that satisfies the
isolated zero-rectangle constraint and is not the all zero
array. First, let us consider the zero rows and columns in
A. Assume that A has i zero rows and j zero columns
where 0 6 i 6 m − 1 and 0 6 j 6 n − 1. There are
(

m
i

)

options to choose these rows and
(

n
j

)

to choose the
columns. After removing these i rows and j columns we
obtain an (m− i)× (n− j) array A′ with no zero rows
or zero columns.

We follow the observation from Lemma 9 in which
the ”1”s in every row either completely overlap or are
disjoint, and note that the same property holds also for
the columns (otherwise this property doesn’t hold for the
rows). Therefore, the rows of A′ can be partitioned into
some 1 6 ℓ 6 m − i sets such that the rows in every
set are identical. A set of identical rows determines also
a set of identical columns, and hence the columns of A′

can also be partitioned into ℓ sets such that the columns
in every set are identical. The main idea in characterizing
A′ is to define the partition of ℓ sets of rows, ℓ sets of
columns, and then match between these two partitions.
See Fig. 5 for an illustration of the partitions of sets of
rows and columns and then matching between them.

The number of different options to partition the m −
i rows into ℓ nonempty sets is S(m − i, ℓ). Similarly,
the number of different options to partition to the n− j
columns into ℓ nonempty sets is S(n− j, ℓ). Lastly, there
are ℓ! options to match between the ℓ sets of rows and ℓ
sets of columns, yielding the expression

m−1
∑

i=0

n−1
∑

j=0

(

m

i

)(

n

j

)min{m−i,n−j}
∑

ℓ=1

S(m−i, ℓ)S(n−j, ℓ)ℓ!,

for the number of possible arrays A. Together with the
all zero array, we get the result stated in the lemma.

The second, more compact, expression for N(m,n)
in [15] can similarly be obtained using the isolated zero

(a) (b)

(c) (d)

Fig. 5. Fig. 5(a) describes the first step of choosing the third row
and fourth column as the zero rows and columns in the array A.
In Fig. 5(b), the partition of rows and columns into three sets is
determined where rows and columns with the same letter will
be identical. In Fig. 5(c), a matching between the three sets of
rows and columns, which is fixed by A → Y,B → Z,C →

X , determines the positions of ”1”s in the array A′. Lastly, in
Fig. 5(d), the zero rows and columns are brought back to A′ to
get the encoded array A.

rectangle constraint. We omit the proof since it is similar
to the one of Lemma 10, and another proof of this result
can be found in [15].

Lemma 11. The value N(m,n) can be expressed by

N(m,n) =

min{m,n}
∑

ℓ=0

S(m+ 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ!.

Unfortunately, the asymptotic behavior of the value
N(m,n) for m and n large enough states that
log2N(m,n) ≈ (m + n) log2(m + n) in case both m
and n approach infinity and the ratio m/n approaches
some positive number [15]. Thus, under these conditions
it is derived that

log2N(m,n)

mn
−→ 0, (8)

which implies a 0 asymptotic storage capacity. In fact, this
behavior holds for all values of m and n which approach
infinity (that is, the ratio m/n does not have to approach
a positive number). This indicates that the sneak path
constraint is too strong, and we need to find milder ways
to avoid sneak paths without ending up with zero capacity.
This will be the topic of the next section.

IV. REPRESENTATIONS TRADING OFF SNEAK PATHS

AND POWER CONSUMPTION

One way to eliminate memristor sneak paths with-
out resorting to any information-theoretic tools is by

8

electrically grounding all rows except the one being
read [14]. The problem with grounding all other rows
is that it significantly increases the power consumption
of the read operation due to lower equivalent resistance
through which flows the measurement current. Without
information theoretic tools, this suggests a tradeoff be-
tween power consumption (from grounded rows) and
read errors (from sneak paths). Alternatively, we propose
to replace the power-correctness tradeoff with a power-
density one, by combining partial grounding with sneak-
path constraint codes. The key idea is to specify how
many of the rows will be grounded in a read operation,
and ensure that no sneak paths exist in the part of the
array remaining “active” in the non-grounded rows. By
doing that, we can control the power consumption of the
read operation while preventing sneak-path errors. Since
many of the cells will be deactivated in grounded rows,
maintaining sneak-path-free reads will be possible with
good storage rates. The grounding schemes proposed in
the sequel are especially attractive for practical memories,
because they leave ungrounded the rows closest to the
read cell, which maximizes the read-power savings. In
contrast, the power consumed by the farther grounded
rows is less significant thanks to the resistance of the
wires. In the next two sub-sections we propose two
distinct grounding schemes, and explore the resulting
information-theoretic problems to guarantee sneak-path
free reads.

A. Grounding based upon fixed subsets

In this sub-section we divide the array rows into
disjoint subsets, and choose to ground all the rows except

those that are in the subset containing the read row. See
Fig. 6(a). Given this grounding scheme, we study the
coding required to prevent sneak paths. We will show
that when the subset size is a constant, the capacity no
longer goes to zero as in the full-array case.

Assume the array size is m × n and let b be some
positive integer which is a divisor of m. The m rows are
divided into m/b disjoint subsets of consecutive rows.
Then, any of the m/b sub-arrays of size b×n is required
to satisfy the isolated zero rectangle constraint. Since all
these sub-arrays are disjoint and thus independent, we
conclude that the number of arrays will be N(b, n)m/b.
Let us define the capacity of this constraint by C1(b).
Then, we get

C1(b) = lim
m,n→∞

log
(

N(b, n)m/b
)

mn
= lim

n→∞

log (N(b, n))

bn
.

We first prove lower and upper bounds on the value of
N(b, n).

Lemma 12. For any fixed b and n large enough the follow-
ing holds

(b+ 1)n − bn+1
6 N(b, n) 6 (b+ 1)!S(n+ 1, b+ 1).

(a)

(b)

Fig. 6. (a) depicts the grounding method based upon fixed
subsets, and (b) depicts the grounding method based upon the
read row. The read row is marked by an arrow in both cases.

Proof: According to Lemma 11

N(b, n) =

b
∑

ℓ=0

S(b+ 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ!

> S(b+ 1, b+ 1)S(n+ 1, b+ 1)b!.

Since S(b+ 1, b+ 1) = 1 and

S(n+ 1, b+ 1) =
1

(b+ 1)!

b+1
∑

i=0

(−1)i
(

b + 1

i

)

(b + 1− i)n+1

>
(b + 1)n+1 − (b + 1)bn+1

(b + 1)!
=

(b+ 1)n − bn+1

b!
,

we get

N(b, n) >
(b + 1)n − bn+1

b!
b! = (b + 1)n − bn+1.

On the other hand, if b is fixed, let us show that for n
large enough the following holds for every 0 6 ℓ < b

S(b+ 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ! 6 S(n+ 1, b+ 1)b!.

First note that

S(b + 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ!

6
(ℓ+ 1)b+1

(ℓ + 1)!
·
(ℓ+ 1)n+1

(ℓ+ 1)!
· ℓ! =

(ℓ + 1)n+b

ℓ!
,

9

and we saw that S(n+ 1, b+ 1) > (b+1)n−bn+1

b! . Now,

lim
n→∞

(ℓ+1)n+b

ℓ!
(b+1)n−bn+1

b!

= lim
n→∞

b!(ℓ+ 1)n+b

ℓ! ((b + 1)n − bn+1)

6 lim
n→∞

b!(ℓ+ 1)n+b

(b+ 1)n − bn+1

= lim
n→∞

b!(ℓ+ 1)n+b

(b+ 1)n
· lim
n→∞

(b + 1)n

(b + 1)n − bn+1
.

Let us evaluate every term independently under the as-
sumption that b is fixed.

lim
n→∞

(b+ 1)n

(b+ 1)n − bn+1
= lim
n→∞

1

1− b ·
(

b
b+1

)n

= lim
n→∞

1

1− b ·

(

(

1− 1
b+1

)b
)n/b

= lim
n→∞

1

1− b · e−n/b
= 1.

Similarly,

lim
n→∞

b!(ℓ+ 1)n+b

(b + 1)n
6 lim
n→∞

(ℓ + 1)n+b

(b+ 1)n−b

6 lim
n→∞

(ℓ+ 1)n−b

(b + 1)n−b
· b2b = lim

n→∞

(

ℓ+ 1

b+ 1

)n−b

· b2b

= lim
n→∞

(

1−
b− ℓ

b+ 1

)n−b

· b2b

6 lim
n→∞

(

1−
1

b+ 1

)n−b

· b2b

= lim
n→∞

(

(

1−
1

b+ 1

)b
)

n
b
−1

· b2b

= lim
n→∞

e−
n
b
+1 · b2b = 0.

Therefore, we get that for n large enough

N(b, n) =

b
∑

ℓ=0

S(b+ 1, ℓ+ 1)S(n, ℓ+ 1)ℓ!

6 (b+ 1)S(n+ 1, b+ 1)b! = (b+ 1)!S(n+ 1, b+ 1).

Now we are ready to calculate the capacity C1(b) for
fixed values of b.

Lemma 13. For any fixed b, C1(b) =
log(b+1)

b .

Proof: According to Lemma 12

lim
n→∞

log(N(b, n))

bn
> lim
n→∞

log
(

(b+ 1)n − bn+1
)

bn

= lim
n→∞

log
(

(b+ 1)n
(

1− b
(

b
b+1

)n))

bn

=
log(b+ 1)

b
+ lim
n→∞

log
(

1− b
(

b
b+1

)n)

bn
=

log(b+ 1)

b
.

To prove the opposite inequality, again by Lemma 12
we get

lim
n→∞

log(N(b, n))

bn
6 lim

n→∞

log((b + 1)!S(n+ 1, b+ 1))

bn

6 lim
n→∞

log((b + 1)n+1)

bn
=

log(b+ 1)

b
.

B. Grounding sets based upon the read row

In this sub-section we choose to ground all the rows
outside a subset of odd size centered at the read row. See
Fig. 6(b). Given this grounding scheme, we study the
coding required to prevent sneak paths. It turns out that a
sufficient (but not necessary) condition to have sneak-path
free reads in this case is that each column satisfies some
run-length limited (RLL) [4] constraint, which depends
on the number of ungrounded rows.

Under this model, we say that there is a b-centered-

path, where b is odd, affecting the cell in position (i, j)
if ai,j = 0 and there is a path as defined in Definition 1
which can be confined between the (i− b−1

2)-th row and

the (i+ b−1
2)-th row. That is, for some k > 1, there exist

2k positive integers max{i − b−1
2 , 1} 6 r1, . . . , rk 6

min{i+ b−1
2 ,m}, 1 6 c1, . . . , ck 6 n such that

ai,c1 = ar1,c1 = ar1,c2 = · · · = ark−1,ck = ark,ck = ark,j = 1.

Thus, we say that an array satisfies the b-centered-path

constraint if it has no b-centered-paths.

For any odd b > 1, we denote by N2(m,n; b) the num-
ber of arrays that satisfy the b-centered-path constraint
and we denote the capacity of this constraint by C2(b),
so

C2(b) = lim
m,n→∞

log (N2(m,n; b))

mn
.

Furthermore, we say that an array has a b-isolated zero

rectangle if there are four positive integers i1 6= i2, j1 6=
j2, and |i2 − i1| 6 b − 1, such that ai1,j1 + ai1,j2 +
ai2,j1+ai2,j2 = 3. An array A satisfies the b-isolated zero

rectangle constraint if it has no b-isolated zero rectangles
and then it is called a b-isolated zero rectangle free array.
The b-isolated zero rectangle constraint is the same as the
isolated zero rectangle constraint from Definition 7 when
applied to sub-arrays of A with b rows.

It is a matter of simple observation to get to the follow-
ing correspondence between the centered path constraint
and the isolated zero rectangle constraint:

Lemma 14. The b-centered-path constraint and the b+1
2 -

isolated zero rectangle constraint are equivalent.

To proceed, let us recall the one-dimensional RLL
constraint. We say that a binary sequence satisfies the
(d, k) RLL constraint if the number of zeros between
every two consecutive ones is at least d and at most k.
The capacity of the one dimensional (d, k) RLL constraint

10

is denoted by Cd,k. Next, we show that the capacity of
the (b−1

2 ,∞) RLL constraint is a lower bound on C2(b).

Lemma 15. For any odd b, C2(b) > C b−1

2
,∞.

Proof: This result follows from the observation that
if every column satisfies the (b−1

2 ,∞) RLL constraint
then necessarily there are no pairs of ones in the same
column at distance less than b−1

2 rows. In particular, there

is no rectangle confined to b+1
2 rows with an isolated zero.

The reverse inequality on C2(b) is proved in the next
lemma. This direction is less immediate than the previous
one, because the column (b−1

2 ,∞) RLL constraint is
not necessary for an array to satisfy the b-centered-path
constraint.

Lemma 16. For any odd b, C2(b) 6 C b−1

2
,∞.

Proof: Let Bm,n be the number of m × n arrays
where every column satisfies the (b−1

2 ,∞) RLL con-
straint. Let A be a b-centered-path-free array. According
to Lemma 14, A is a (b+1

2)-isolated zero-rectangle free

array. Thus, as in the proof of Lemma 9, in every b+1
2

consecutive rows of A, every two rows are either the same
or their ones are located at disjoint locations.

For a positive integer divisor d of m, we define a map-
ping Fd : {0, 1}m×n → {0, 1}m×n, which transforms
an array A to Fd(A) as follows. Starting with the first d
rows of A, if there are identical rows among these d rows,
then the first row remains the same and the subsequent
identical rows are replaced with all-zero rows. Then the
same operation is performed on the new array with the
next window of d rows, between the second and (d+1)-th
row, and so on until reaching the last window consisting
of the last d rows.

Let A′ be the array resulting under this mapping with
d = b+1

2 on the array A, that is A′ = F b+1

2

(A). The

array A′ holds the property that every column satisfies
the (b−1

2 ,∞) RLL constraint.

We note that this mapping is many to one, as there
can be several b-centered-path-free arrays A which will
be mapped to the same array A′. Given an array A′ we
can bound the number of arrays A that are mapped to it.
Assuming the arrayA′ has x zero rows, then each row can
be identical to any of the b−1

2 rows above it, or originally
all-zero. Since there are m rows in the array, we can use
a loose upper bound here (which will be sufficient for our
goal), and say that at most mm arrays will be mapped to
the array A′. Therefore, we get the following relation

N2(m,n; b) 6 mm · Bm,n.

Now we conclude that

C2(b) = lim
m,n→∞

logN2(m,n; b)

mn

6 lim
m,n→∞

log(mm · Bm,n)

mn

= lim
m,n→∞

m logm+ logBm,n
mn

= lim
m,n→∞

logBm,n
mn

= C b−1

2
,∞.

From Lemma 15 and Lemma 16, we get that

C2(b) = C b−1

2
,∞.

It turns out that the symmetric grounding set method
is better than the one based upon fixed subsets. In other
words, we can prove the inequality C2(b) > C1(b).

Theorem 17. For all odd values of b, the following holds

C2(b) > C1(b).

Proof: We need to show that C b−1

2
,∞ >

log(b+1)
b for

odd values of b. For b < 250 we numerically calculated
the values of C1(b) and C2(b) to verify this inequality.
For b > 250, we use a property from Problem 3.3 in [12]
claiming that for every positive integer m, C b−1

2
,∞ >

log(m+1)
b−1

2
+m

. In particular, we choose m = ⌊(b+ 2)/4⌋ and

get that

C b−1

2
,∞ >

log(⌊(b + 2)/4⌋+ 1)
b−1
2 + ⌊(b+ 2)/4⌋

>
log(⌊(b+ 2)/4⌋+ 1)

3b/4
.

Thus, it is enough to show that

log(⌊(b + 2)/4⌋+ 1) > (3/4) · (log(b+ 1),

or
(b + 2)/4 > (b+ 1)3/4,

which holds for b > 250.

To conclude, we compare in Table I between the
numerical values of the capacities of the two grounding
methods we introduced here for b 6 11.

TABLE I

CAPACITY VALUES AND COMPARISON BETWEEN TWO GROUNDING

METHODS.

b C1(b) =
log(b+1)

b
C2(b) = C b−1

2
,∞

2 0.792 -
3 0.667 0.694
4 0.580 -
5 0.517 0.551
6 0.468 -
7 0.423 0.465
8 0.396 -
9 0.369 0.406

10 0.346 -
11 0.326 0.362

11

C. Encoding of sneak-path free arrays

To complete the discussion of the different grounding
schemes, we discuss in this section how to encode infor-
mation using these methods. First note that encoding and
decoding of arrays according to the grounding scheme
based upon the read row (Section IV-B) can simply be
done by the encoding and decoding of sequences which
satisfy the RLL constraint. Therefore, we focus here on
the first grounding method which is based upon fixed
subsets (Section IV-A). In particular, we will study how
to encode information to sneak-path free arrays of size
b× n, as well as arbitrary sizes.

Let b be a fixed positive integer number, and we will
show how to encode information into b × n arrays that
satisfy the isolated zero rectangle constraint. The idea
is to partition the columns into b + 1 sets of the same
size (for simplicity we assume that n is a multiple of
b+ 1). The first set of columns is assigned with the first
row so the columns in this set have a single one in the
first row. Similarly, the second set of columns is assigned
with the second row and the columns in this set have a
single one in the second row. This principle repeats until
the b-th set where the columns in this set have a single
one in the last row. Lastly, the columns of the (b+ 1)-th
set will be the all-zero columns. The number of options
to partition the n columns into b + 1 sets of the same
size is n!

(n
b+1)!b+1(b+1)!

and there are (b + 1)! options to

match these sets with the b rows and all-zero column.
Then, using the approximation log x! ≈ x log x for x
large enough, we get that the number of bits that can
be stored this way is approximated to be

log





n!
(

n
b+1

)

!b+1



 = log n!− (b+ 1) log

(

n

b+ 1

)

! ≈

n logn− (b+ 1) ·

(

n

b+ 1

)

log

(

n

b+ 1

)

= n log(b + 1).

Therefore, the rate of this encoder is
log(b+1)

b , which
equals the capacity C1(b) of arrays satisfying the sneak-
path free constraint with fixed number of rows b.

We also show how this encoding idea can be extended
to an asymptotically optimal encoder for arrays of ar-
bitrary dimensions m × n, where m is not necessarily
a constant. Let S1(k) be the set of all partitions of the
numbers {1, . . . , k} into L groups, each consisting of k

L
numbers. Alternatively, we can treat S1(k) as the set of all
multipermutations over k

L numbers where each number
appears L times. The size of S1(k) is

s1(k) = |S1(k)| =
k!

(

k
L

)

!L · L!
.

Assume for now that there is a one-to-one mapping with
efficient encoding and decoding maps

F1 : {0, 1}log s1(k) → S1(k)

between all binary vectors of length log s1(k) and S1(k).
Let S2 be the set of all permutations of L numbers, so
s2 = |S2| = L!, and similarly, assume that there is a
mapping with efficient encoding and decoding maps

F2 : {0, 1}log s2 → S2.

Our approach here follows the proof of Lemma 10,
which uses the if and only if condition in Lemma 9.
We encode only arrays where the rows, columns are
partitioned into L sets of m/L, n/L, rows, columns,
respectively. Thus, every array is represented by: 1) a
partition of the rows, that is, an element from S1(m),
2) a partition of the columns, again, an element from
S1(n), and 3) a mapping between the L sets of rows and
L sets of columns, i.e., an element from S2. The encoding
and decoding maps will be clear from the encoding and
decoding of the mappings F1 and F2.

The number of bits that can be stored by this en-
coding is N = log (s1(m) · s1(n) · s2) = log s1(m) +
log s1(n) + log s2. We use again the approximation
log x! ≈ x log x for x large enough, and get

N = log s1(m) + log s1(n) + log s2

= log

(

m!
(

m
L

)

!L · L!

)

+ log

(

n!
(

n
L

)

!L · L!

)

+ log (L!)

= logm! + logn!− L log
((m

L

)

!
)

− L log
((n

L

)

!
)

− log (L!)

≈ m logm+ n logn− L ·
m

L
log
(m

L

)

− L ·
n

L
log
(n

L

)

− L log (L)

= m logm+ n logn−m log
(m

L

)

− n log
(n

L

)

− L log (L)

= (m+ n− L) log(L).

If we choose L = m+n
log(m+n) we have

N =

(

m+ n−
m+ n

log(m+ n)

)

log

(

m+ n

log(m+ n)

)

,

and for m,n large enough we get

lim
n→∞

N

(m+ n) log(m+ n)
= 1, (9)

where (m+ n) log(m+ n) is asymptotically the number
of bits that can be reliably stored in m× n arrays which
are free of sneak paths, when the ratio m/n approaches
some positive number. Thus, under the last assumption
this mapping will be asymptotically optimal.

We note that the functions F1 and F2 indeed have
implementations by applying different methods for the
enumerations of permutations and multipermutations; see
for example [2] and chapter 5.1 in [8]. However, these
schemes are still not attractive enough for memory ap-
plications that require high speed. In order to have high
encoding speed, a low complexity mapping was presented
for m×n arrays in [15], while the number of information
bits that this mapping can carry is m logn. However,
the number of bits that can be represented by all sneak-
path free arrays is roughly (m + n) log(m + n). Thus,

12

for square (m = n) arrays the mapping in [15] reaches
approximately only a half of the number of bits that could
be stored.

Lastly, we show another scheme which achieves both
encoding and decoding with efficient complexity, and yet
asymptotically achieves the number of bits that can be
represented in these arrays. Let 1 6 L 6 min{m,n}
be an integer number, and for simplicity assume it is a
power of 2. We show how to encode (m+n−L) log(L)
information bits using a mapping

H : {0, 1}(m+n−L) log(L) → A(m,n),

where A(m,n) is the set of all sneak-path free arrays
of size m × n. We consider the input bits as a vec-
tor of (m + n − L) length-log(L) vectors, denoted by
(r1, . . . , rm, c1, . . . , cn−L), so ri, cj ∈ {0, 1}log(L), for
1 6 i 6 m, 1 6 j 6 n − L. Let ψ be a function
which converts a length-log(L) binary vector to a number
between 1 and L. The input bits are encoded to an array
A as follows. The j-th column of A is denoted below by
a1:m,j .

1) For i = 1, . . . ,m, set ai,ψ(ri) = 1.
2) For j = 1, . . . , n− L, set a1:m,j+L = a1:m,ψ(cj).
3) All other bits of the array A are set to the value

zero.

It is not hard to see that the mapping H is bijective
and there are no isolated zero rectangles. As in the first
mapping in this section, if we choose L = m+n

log(m+n) we

get the same asymptotic result as in (9). Note also that the
encoding and decoding of this encoding map is efficient
since it only requires to convert between a binary vector
and an integer number.

To conclude the discussion in this section and to
compare between the three encoding schemes discussed
in this section, we plot in Fig. 7 the number of bits that
can be stored by each scheme for the case of m = n
while n is a power of 2.

1) The first encoding scheme allows one to encode

2
⌊

log
(

n!
(n/L)L·L!

)⌋

+ ⌊log(L!)⌋ bits, for L =

⌊ 2n
1+log(n)⌋.

2) The second encoding scheme is by [15] which
stores n log(n) bits.

3) The third encoding scheme is the one given by the
encoding map H and stores (2n−L)⌊log(L)⌋ bits
for L = ⌊ 2n

1+log(n)⌋.

D. Power model and savings

In this sub-section we use a simple electrical model
of the crossbar array to show the power benefits of the
proposed scheme. When reading cells in some array row,
our proposed constraint scheme suggests to leave a small
number (b − 1) of the nearby rows ungrounded. The
impact of these ungrounded rows on power consumption
will next be evaluated with a model we now define.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

5

10

15
x 10

7

n

N
u
m
b
e
r
o
f
I
n
f
o
r
m
a
t
io
n
B
it
s

First Encoder

Second Encoder [14]

Third Encoder

Fig. 7. A comparison between the number of bits stored in the
three encoding schemes.

For the sake of clarity, we consider an extremely simple
array model, with understanding that a much richer model
is needed if practical realization is sought. Let the read
cell be any cell in the i-th row. When other rows in
the array are grounded, new current paths are created
involving cells in the same column of the read cell. See
Fig. 8 for a circuit-level view. It is sufficient in the figure

i

i1

i2

V

Vread

j

Fig. 8. A simple model for parasitic power when memristors
are read with row grounding.

to consider only one column, because from symmetry
other cells in the i-th row will see similar current paths
in their respective columns (we assume here that multiple
cells in the row are read in parallel, thereby amortizing
the current paths through other columns over other read
cells). When the cell in row i is read (marked in a circle in
Fig. 8), a voltage Vread is applied on its row, and current
is measured in its column. Then a voltage V develops
on the column terminal of the read cell. The value of
V is immaterial for this analysis, but any non-zero V
implies a non-zero power consumed by other cells in

13

the j-th column. In the forthcoming analysis we define
power consumed by non-read cells in the column as
parasitic power. Minimizing parasitic power is important
not just for lowering energy costs, but also for reducing
the cell disturbances and wearout. Due to wire resistances,
the voltage V falls on a non-read cell in series to the
wire connecting it to row i. We mark these serial wire
resistances as small vertical rectangles in Fig. 8. As a
result, the parasitic power consumed by a non-read cell
decreases as its row distance to i increases. For example,
the cell in row i2 will consume less parasitic power
than the cell in row i1 because its serial resistance is
larger. By this effect it is preferred to have the grounded
rows far from the read row i, which is the case for the
constraint schemes suggested earlier in this section. We
next plot the power savings achieved by the b-centered
constraint scheme with b = 3 and b = 5 in an array with
m = 64 rows. Fig. 9 shows the fraction of saved parasitic

power as a function of the cell non-linearity. We chose for
the evaluation the weakest non-linearity model: quadratic

non-linearity [1], in which a quadratic term is added to
the linear dependence between current and voltage. Non-
linearity value of 0 corresponds to plain linear resistive
cells.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

cell non−linearity

po
w

er
 s

av
in

gs
 fr

ac
tio

n

b=5
b=3

Fig. 9. Savings of parasitic power with b-centered ungrounded
sets for b = 3 and b = 5 in an array with m = 64 rows. Savings
are plotted as a function of the cells’ non-linearity parameter.
The wire resistance per row is taken as 0.2 times the low cell-
resistance value2.

It can be seen that without non-linearity the constraint
scheme saves roughly 1/5 of the power with b = 3, and
1/3 of the power with b = 5. These fractions are much
higher compared to the fractions of non-grounded rows
(b − 1)/(m − 1), which are 0.0317 and 0.0635 for b =
3 and b = 5, respectively. With non-linearity value of
1, the power savings are even more significant: around
0.3 for b = 3 and around 0.5 for b = 5. Higher non-
linearity values reduce the parasitic powers for both the

2While 0.2 seems a high relative resistance, some materials and
geometries suffer from wire resistances at that scale [10].

fully-grounded and the b-ungrounded schemes; the saving
fractions increase with non-linearity because higher non-
linearity makes the parasitic power consumed outside the
b ungrounded rows more negligible. The results of Fig. 9
are obtained by summing the parasitic powers on all cells
i′ 6= i in column j. Each parasitic power equals Vi′ ·
Ii′ , where Vi′ is calculated by voltage divider between
the cell resistance and the wire resistance to row i′, and
Ii′ is obtained as a function of Vi′ and the non-linearity
parameter according to the model of [1] (without non-
linearity Ii′ is obtained from Vi′ by Ohm’s law and the
constant resistance of the cell).

E. Toward other schemes trading off sneak paths and

power consumption

The solutions proposed in this section treated only one
specific manifestation of the tradeoff between sneak paths
and power consumption. Arguably this central tradeoff of
memristor storage is much more general, and can benefit
from additional models beyond the presently proposed
ones. Our objective in this closing sub-section is to sketch
the more general problem for future research.
In an m × n memristor array we define a read configu-

ration Ti,j as the set of voltages we apply to the rows
and columns of the array in order to read cell (i, j). In
its most generality, the read power consumed for reading
cell (i, j) is given as a function

W (A, Ti,j),

where A is the binary matrix holding the values of all
the cells in the array. Because the read configuration Ti,j
depends on (i, j), the power function W may depend
on the location of the read cell; for example due to wire
resistances that depend upon where the read cell is located
with respect to the rest of the cells. A read operation of
cell (i, j) using configuration Ti,j returns a bit deciding
the value of the cell. For the entire array we define these
decisions through the binary-output read function

D(i, j, A, Ti,j).

The function D(i, j, A, Ti,j) returns the decision on cell
(i, j) based on electrical measurements of array A per-
formed under configuration Ti,j . This definition of the
read function assumes that decision is made indepen-
dently on each read cell. In real memory usage it may
be the case that information from previous measurements
of other cells will also be used to decide on a cell
value. In such cases we may add this prior information as
additional arguments to D(·). Given this notation, we may
now define the problem of low-power error-free readout
as the following optimization problem.

Problem 2.

find {Ti,j}
m−1,n−1
i=0,j=0 and a maximal size code C, s.t

∀A ∈ C, ∀i, j,

14

D(i, j, A, Ti,j) = ai,j ,

and with the power constraint

W (A, Ti,j) 6Wmax,

whereWmax is an upper bound on the measurement power
consumption.

In the special case studied in this paper we defined the
read function D(i, j, A, Ti,j) to be 1 if and only if either
ai,j = 1 or there exists a sneak-path contained in the rows
that are not grounded in Ti,j . In Sections IV-A,IV-B we
chose to leave the nearest rows to i ungrounded, which
implies that the function W (A, Ti,j) has the property
that the read power consumed by grounded rows in Ti,j
decays with the distance |i′ − i| between the read row i
and a grounded row i′. This behavior of W (·) is justified
by wire resistances that alleviate the power consumption
from remote grounded rows.

Beyond the models considered in this paper, there are
many directions toward solving Problem 2 in realistic
setups. For example, another typical behavior of W (·) is
that the consumed read power depends on the density of
1 values in the array. So designing sneak-path free codes
and read configurations with low density of 1 values is an
important future work, for which prior work on memristor
coding [11] can be a useful tool. Beyond that, there are
many other physical properties of crossbar readout that
can be accommodated into appropriate functionsD(·) and
W (·), and then used to solve Problem 2 in increasingly
practical scenarios.

V. CONCLUSION AND DISCUSSION

We proposed in this paper two approaches to deal
with sneak-path read errors: 1) to regard sneak-path
interference as a random error source and use error-
correcting codes to correct the errors, and 2) to enforce
constraints that completely eliminate sneak paths. For
the second approach we have proposed explicit coding
schemes and showed their optimality. For the first ap-
proach we provided analytical tools to evaluate the sneak-
path error incidence, but left the error-correcting code
design open for future work. A central issue to handle
in code design is the dependence between errors in dif-
ferent array locations. A potential solution is to perform
error-correction coding across arrays (i.e., each bit in a
codeword is assigned to a different array). This coding
structure is possible when multiple 2-dimensional arrays
are stacked as layers of a 3-dimensional architecture, and
then codewords can span multiple layers and see i.i.d.
errors within a code block.

The research in the memristor field is only in its
beginning. The focus of this work is on sneak paths as
error sources and it can be further extended. Possible
extensions include both constructing codes for the models
proposed in this paper, and extending the problem and

proposed methods to additional sneak-path models moti-
vated by real memristor devices. The common research
directions to reduce sneak paths are adding non-linearity
to the devices by fabricating additional thin-film layers
that change the memristor behavior. This method may
generate new sneak path constraints and additional inter-
esting possible problems. Memristive crossbar memories
have several fundamental differences from conventional
technologies. Specifically, the fact that data is represented
by resistance (rather than charge in conventional semi-
conductor memory technologies) and the two-terminal
structure of the storing device that prevents disconnecting
of unselected cells, raise many additional interesting
problems that can be explored by information theory
techniques. For example, during a write operation uns-
elected devices can be unintentionally written depending
on the stored data. Exploring the properties of memristive
memories will lead to new coding schemes and innovative
solutions.

VI. ACKNOWLEDGMENTS

The authors thank Ron M. Roth for pointing refer-
ence [15] to their attention, and also the associate editor
and anonymous reviewers for detailed suggestions that
significantly improved the results and their presentation.

REFERENCES

[1] A. Chen, “Accessibility of nano-crossbar arrays of resistive switch-
ing devices,” in 11th IEEE International Conference on Nanotech-
nology, August 2011.

[2] T.M. Cover, “Enumerative source encoding,” IEEE Trans. Inf.
Theory, vol. 19, no. 1, pp. 73–77, January 1973.

[3] S.W. Golomb, “The limiting behavior of the Z-channel,” IEEE
Trans. Inf. Theory, vol.26, no.3, pp.372,372, May 1980.

[4] K.S. Immink. Coding techniques for digital recorders. Prentice-
Hall, College Div., 1991.

[5] C.-M. Jung, J.-M. Choi, and K.-S. Min, “Two-step write scheme
for reducing sneak-path leakage in complementary memristor
array,” Nanotechnology, IEEE Transactions on, vol. 11, pp. 611–
618, May 2012.

[6] S. Kannan, J. Rajendran, R. Karri, and O. Sinanoglu, “Sneak-
path testing of memristor-based memories,” in 12th International
Conference on VLSI Design and Embedded Systems (VLSID),,
pp. 386–391, Jan 2013.

[7] K.-W. Kim, S. Gaba, D. Wheeler, J. Cruz-Albrecht, H. Tahir,
N. Srinivasa, and W. Lu, “A functional hybrid memristor crossbar-
array/CMOS system for data storage and neuromorphic applica-
tions,” Nano Letters, vol. 12, no. 1, pp. 389–395, 2012.

[8] D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting
and Searching, Addison-Wesley, 1998.

[9] J. Liang and H.-S. Wong, “Cross-point memory array without
cell selectors – device characteristics and data storage pattern
dependencies,” Electron Devices, IEEE Transactions on, vol. 57,
pp. 2531–2538, Oct 2010.

[10] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary
resistive switches for passive nanocrossbar memories,” Nature
Materials, vol. 9, pp. 403–406, April 2010.

[11] E. Ordentlich and R.M. Roth. Low complexity two-dimensional
weight-constrained codes. IEEE Transactions on Information
Theory, 58(6):3892–3899, 2012.

[12] R.M. Roth, Coding for Storage Systems. Technion Lecture Notes.
[13] J. Shin, I. Kim, K. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee,

S. Kim, S. Park, and H. Hwang, “Tio2-based metal-insulator-metal
selection device for bipolar resistive random access memory cross-
point application,” Journal of Applied Physics, vol. 109, no. 3,
2011.

15

[14] S. Shin, K. Kim, and S. Kang. Analysis of passive mem-
ristive devices array: data-dependent statistical model and self-
adaptable sense resistance for RRAMs. Proceedings of the IEEE,
100(6):2021–2032, 2012.

[15] P.P. Sotiriadis, “Information capacity of nanowire crossbar switch-
ing networks,” IEEE Transactions on Information Theory, vol. 52,
no. 7, pp. 3019–3032, July 2006.

[16] D. Strukov, G. Snider, D. Stewart, and R.S. Williams, “The missing
memristor found,” Nature, vol. 453, pp. 80–83, May 2008.

[17] J. van Lint and R. Wilson, A Course in Combinatorics, second
edition. Cambridge UK: Cambridge University Press, 2001.

[18] P.O. Vontobel, W. Robinett, P.J. Kuekes, D.R. Stewart,
J. Straznicky, and R.S. Williams, “Writing to and reading
from a nano-scale crossbar memory based on memristors,”
Nanotechnology, vol. 20, October 2009.

[19] J. Yang, M.-X. Zhang, M. Pickett, F. Miao, J. Strachan, W.-D.
Li, W. Yi, D. Ohlberg, B. Choi, W. Wu, J. Nickel, G. Medeiros-
Ribeiro, and R.S. Williams, “Engineering nonlinearity into mem-
ristors for passive crossbar applications,” Applied Physics Letters,
vol. 100, no. 11, 2012.

[20] M. Zidan, H. H. Fahmy, M. Hussain, and K. Salama, “Memristor-
based memory: The sneak paths problem and solutions,” Micro-
electronics Journal, vol. 44, no. 2, pp. 176 – 183, 2013.

Yuval Cassuto (S’02-M’08-SM’14) is a faculty member at the Andrew
and Erna Viterbi Department of Electrical Engineering, Technion – Is-
rael Institute of Technology. His research interests lie at the intersection
of the theoretical information sciences and the engineering of practical
computing and storage systems.

During 2010-2011 he has been a Scientist at EPFL, the Swiss Federal
Institute of Technology in Lausanne. From 2008 to 2010 he was a
Research Staff Member at Hitachi Global Storage Technologies, San
Jose Research Center. From 2000 to 2002, he was with Qualcomm,
Israel R&D Center, where he worked on modeling, design and analysis
in wireless communications.

He received the B.Sc degree in Electrical Engineering, summa cum
laude, from the Technion, Israel Institute of Technology, in 2001, and
the MS and Ph.D degrees in Electrical Engineering from the California
Institute of Technology, in 2004 and 2008, respectively.

Dr. Cassuto has won the 2010 Best Student Paper Award in data
storage from the IEEE Communications Society, as well as the 2001
Texas Instruments DSP and Analog Challenge $100,000 prize.

Shahar Kvatinsky is an assistant professor at the Andrew and Erna
Viterbi Faculty of Electrical Engineering, Technion Israel Institute of
Technology. He received the B.Sc. degree in computer engineering and
applied physics and an MBA degree in 2009 and 2010, respectively,
both from the Hebrew University of Jerusalem, and the Ph.D. degree in
electrical engineering from the Technion Israel Institute of Technology
in 2014. From 2006 to 2009 he was with Intel as a circuit designer and
was a post-doctoral research fellow at Stanford University from 2014 to
2015. Kvatinsky is an editor in Microelectronics Journal and has been
the recipient of the 2015 IEEE Guillemin-Cauer Best Paper Award, 2015
Best Paper of Computer Architecture Letters, Viterbi Fellowship, Jacobs
Fellowship, the 2014 Hershel Rich Technion Innovation Award, 2013
Sanford Kaplan Prize for Creative Management in High Tech, 2010
Benin prize, and six Technion excellence teaching awards. His current
research is focused on circuits and architectures with emerging memory
technologies and design of energy efficient architectures.

Eitan Yaakobi (S’07-M’12) is an Assistant Professor at the Computer
Science Department at the Technion — Israel Institute of Technology.
He received the B.A. degrees in computer science and mathematics,
and the M.Sc. degree in computer science from the Technion — Israel
Institute of Technology, Haifa, Israel, in 2005 and 2007, respectively,
and the Ph.D. degree in electrical engineering from the University
of California, San Diego, in 2011. Between 2011-2013, he was a
postdoctoral researcher in the department of Electrical Engineering at
the California Institute of Technology. His research interests include
information and coding theory with applications to non-volatile memo-
ries, associative memories, data storage and retrieval, and voting theory.
He received the Marconi Society Young Scholar in 2009 and the Intel
Ph.D. Fellowship in 2010-2011.

