
Algorithmic Considerations in Memristive

Memory Processing Units (MPU)

Rotem Ben Hur, Nishil Talati, and Shahar Kvatinsky, Member, IEEE

Andrew & Erna Viterbi Faculty of Electrical Engineering

Technion – Israel Institute of Technology

Haifa 3200003, ISRAEL

Abstract—Memristive technologies are attractive candidates to
replace conventional memory technologies, and can also be used
to perform logic and arithmetic operations using a technique
called 'stateful logic.' Combining data storage and computation
in the memory array enables a novel non-von Neumann
architecture, where both the operations are performed within a
Memory Processing Unit (MPU). The use of an MPU alleviates
the primary restriction on performance and energy in von
Neumann machine, which is the data transfer between CPU and
memory. To optimize the speed, energy, and area efficiency of the
MPU, different algorithms need to be developed. This paper
discusses the considerations in setting the sequence of computing
operations in an MPU and presents examples of two operations
that can benefit from processing within memristive memory.

Keywords— Memristive systems, memristor, logic design,
MAGIC, crossbar memory, memory controller, CPU, MPU.

I. INTRODUCTION

Currently, almost all general purpose computing systems
use von Neumann architecture or an ameliorated version of it,
which separates the processing unit(s) from the memory. Due
to this separation, there is always a bus activity to and from
processor and memory, which causes a massive overhead of
power consumption and performance. This is called von
Neumann bottleneck, and thus, researchers are trying to come
up with substitute for this architecture.

Emerging nonvolatile resistive memory technologies, such
as RRAM, PCM, STT-MRAM etc. (namely, memristors) are
considered as attractive candidates to replace conventional
memory technologies (i.e., DRAM and Flash) by offering
enhanced speed, lower power consumption, better scalability,
and higher endurance [1]. In addition to standard storage
capabilities, memristors can perform logic operations within
the memory array using a technique called stateful logic,
where the memristors are the primary building blocks of the
logic gate and the resistance represents the logical state.
Different voltage patterns across the bitlines and wordlines of
the memory array lead to several stateful logic families [2-5].
In this paper, we use the Memristor-Aided LoGIC (MAGIC)
family [5].

Adding computing capabilities to memristive memories

enables the development of novel non-von Neumann

architectures, where data storage and processing are

combined, which we refer to as the Memory Processing Unit

(MPU). This MPU maintains the structure of a standard

memory and thus, it is compatible with conventional von

Neumann architectures. Additionally, MPU enhances data

processing and reduces energy for designated applications.

Generally, the use of MPU allows alleviating the von

Neumann bottleneck.

To maximize the benefits of the MPU, new algorithms for

executing logic operations within memory are required to be

defined and developed. These algorithms should be optimized

by exploiting the parallelism offered by memristive memories.

This paper describes the basic considerations of such in-

memory processing algorithm design.

II. PROCESSING WITHIN MEMRISTIVE MEMORIES

MAGIC NOT and NOR are compatible for logic execution
within memory due to the connection pattern among input and
output memristors. In MAGIC NOT (NOR) execution, input
memristor(s) is (are) excited with execution voltage V0 and an
output memristor is connected to ground [5]. This section
discusses the concept of processing within memory, relevant
design considerations and extension of MAGIC to various
logic and arithmetic operations, with examples of full-adder
and processing within an image. To exploit the symmetric
feature of the memristive memory crossbar, a set of memory
control and sense amplifiers can be replicated in the
conventional memory circuit to access each memory cell from
all directions (as opposed to only one direction in conventional
memory). This is called the transpose memory [6], which adds
the additional functionality to the memory crossbar in terms of
logic execution.

A. Processing within an MPU - Concept and Considerations

To execute different logical and arithmetical operations, a
definite sequence of NOT and NOR operations is performed
within the MPU. Since performance, energy and area trade off
in an MPU computation, different algorithmic approaches
should be considered. For example, writing to many
memristors simultaneously or duplicating data to different
memristors prior to execution may dramatically improve the
speed of computation. This performance optimization,
however, increases the energy and occupied area.
Alternatively, data can be moved or copied to any location
within memory using two consecutive NOT operations (i.e., A
= NOT(NOT(A))). A move/copy operation removes the
wastage of memory space and energy in duplication, but
lowers speed of execution. Furthermore, the choice of correct
electrical parameters, such as the applied execution voltage V0,
influences the latency and energy of each MAGIC gate [6].

Since every memristor is both a memory cell and also a part
of the logic gate, storing and processing can be done at any
desired location within a memory sub-array. Thus, each
operation may be performed dynamically in different areas of
the memory, controlled by a designated controller. However,
to assure that the stored data is not erased while computing,
expensive management of the memory by the operating
system is essential. To alleviate the complexity of this control,
processing areas either can be pre-defined, where the rest of
the memory serves solely as storage, or can be defined
dynamically in terms of location and size by the controller or
the operating system. Furthermore, controlling different areas
within the memory can also be used for wear leveling to
increase the lifetime of the memory.

Execution of complex functions can be performed either by
combining many lower levels of abstraction, which includes
basic NOT/NOR operations or by using pre-developed higher
abstraction level building blocks of simple operations (e.g.,
AND/OR gates). The former may be optimized better but
requires more investment in terms of algorithm design and a
complicated memory controller.

Paralleling basic logical operations can be done at the
lowest abstraction level of logic execution (logic gates). This
data-level parallelism (DLP) is enabled, given a particular data
distribution pattern within the memory. For example, the input
memristors of MAGIC gates should be situated in the same
bitlines within the same subarray (or the same wordlines for a
transpose operation [6]); and output memristors should be
situated in the same bitline (or same wordline for transpose
memory [6]), as shown in Figure 1. Thus, when V0 and ground
voltages are asserted, multiple MAGIC gates can be
implemented simultaneously. Hence, the effective execution
time to compute logic over several such basic gates would be
equal to a single gate delay, which can attain significant
performance enhancement. This principle is further illustrated
in the next subsection.

B. Vector and Matrix Operations – Toy Examples

To demonstrate the benefits from the parallelism offered by
the MPU, we present addition operation of vectors. The one-
bit full adder is implemented in terms of NOT and NOR
operations. Note that both the sum and carry can be computed
simultaneously under this representation [6]. Different
sequences of operations can be performed to optimize either
speed or area with approximately the same energy. The area-
optimized approach computes the output of full adder using
four redundant functional memristors (different from inputs
and outputs) and 15 execution cycles [6]. The latency-
optimized approach requires six functional memristors and 13
execution cycles to compute this output [6]. This bit-wise
implementation of an adder can be extended to N-bit addition.
Now, consider two vectors, each of length M, having N-bit
integers as each argument. Thus, each N-bit addition can be
executed in parallel assuming that the input vectors
corresponding to each entry are present in different wordlines,
in the same way as parallelizing the execution of MAGIC
NOR gates. Hence, the effective time to compute vector
addition boils down to the delay of adding a single entry of
two vectors, which is independent of M.

One illustrative application of a matrix operation is image
processing, where the same operation is performed on millions

of pixels. Since an image is stored as a matrix in the memory,
pixels from the same wordlines or bitlines can be processed
simultaneously in the MPU. The number of cycles required to
perform logic functions on an M by N image depends linearly
on MAX(N, M), as illustrated in Figure 2. Since image
processing is a data intensive application, the processing
within memory, which diminishes the necessary data transfer,
has the potential to dramatically reduce latency and power
consumption, even for complex operations.

III. CONCLUSIONS AND FUTURE WORK

MPU is a recently developed architecture, where the
memory element can function both as a data storage unit and a
parallel processing element. To benefit from this concept,
algorithmic framework has to be constructed. This paper
discusses the algorithmic considerations and tradeoffs between
performance, area and energy in such designs and describes
data distribution considerations. Several such efforts have
been made in this line of work, whereas further evaluations
have to be made to determine which benefits the most between
proposed approach and CMOS based computing.

ACKNOWLEDGMENT

This work is supported by Intel Collaborative Research
Institute for Computational Intelligence (ICRI-CI) and Viterbi
Fellowship to the Technion Computer Engineering Center.

REFERENCES

[1] S. Kvatinsky et al., "The Desired Memristor for Circuit Designers," IEEE CAS
Magazine, Vol. 13, No. 2, pp. 17-22, Second Quarter 2013.

[2] S. Kvatinsky et al., "Memristor-based IMPLY Logic Design Flow," Proc. of IEEE
ICCD, pp.142-147, October 2011.

[3] J. Borghetti et al., “Memristive Switches Enable Stateful Logic Operations via
Material Implication,” Nature, Vol. 464, pp. 873–876, Apr. 2010.

[4] E. Lehtonen et al., "Recursive Algorithms in Memristive Logic Arrays," IEEE
JETCAS, Vol. 5, No. 2, pp. 279-292, June 2015.

[5] S. Kvatinsky et al., "MAGIC – Memristor Aided LoGIC," IEEE TCAS-II, Vol. 61,
No. 11, pp. 895-899, November 2014.

[6] N. Talati et al., “Logic Design within Memristive Memories Using Memristor-Aided
loGIC (MAGIC),” IEEE TNANO, Vol. 15, No. 6, pp. 1-16, July 2016.

Figure 1: Parallel execution of MAGIC NOR and isolation of
wordline(s) within MPU. Isolation is carried out by applying VISO [6].

Figure 2: OR operation with an image of MxN pixels stored within a
memristive memory using MAGIC: A OR B = NOT(A NOR B)
(1) NOT(B): M cycles and MxN operations. (2) NOT(NOT(B))=B: N
cycles and MxN operations. (3) A NOR B: M cycles and MxN
operations. (4) NOT(A NOR B): N cycles and MxN operations.
Takes a total of: 2M+2N cycles, 4MxN operations.

