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Abstract—Memristive technologies are attractive candidates to 
replace conventional memory technologies, and can also be used 
to perform logic and arithmetic operations using a technique 
called 'stateful logic.' Combining data storage and computation 
in the memory array enables a novel non-von Neumann 
architecture, where both the operations are performed within a 
Memory Processing Unit (MPU). The use of an MPU alleviates 
the primary restriction on performance and energy in von 
Neumann machine, which is the data transfer between CPU and 
memory. To optimize the speed, energy, and area efficiency of the 
MPU, different algorithms need to be developed. This paper 
discusses the considerations in setting the sequence of computing 
operations in an MPU and presents examples of two operations 
that can benefit from processing within memristive memory. 
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I. INTRODUCTION 

Currently, almost all general purpose computing systems 
use von Neumann architecture or an ameliorated version of it, 
which separates the processing unit(s) from the memory. Due 
to this separation, there is always a bus activity to and from 
processor and memory, which causes a massive overhead of 
power consumption and performance. This is called von 
Neumann bottleneck, and thus, researchers are trying to come 
up with substitute for this architecture. 

Emerging nonvolatile resistive memory technologies, such 
as RRAM, PCM, STT-MRAM etc. (namely, memristors) are 
considered as attractive candidates to replace conventional 
memory technologies (i.e., DRAM and Flash) by offering 
enhanced speed, lower power consumption, better scalability, 
and higher endurance [1]. In addition to standard storage 
capabilities, memristors can perform logic operations within 
the memory array using a technique called stateful logic, 
where the memristors are the primary building blocks of the 
logic gate and the resistance represents the logical state. 
Different voltage patterns across the bitlines and wordlines of 
the memory array lead to several stateful logic families [2-5]. 
In this paper, we use the Memristor-Aided LoGIC (MAGIC) 
family [5]. 

Adding computing capabilities to memristive memories 

enables the development of novel non-von Neumann 

architectures, where data storage and processing are 

combined, which we refer to as the Memory Processing Unit 

(MPU). This MPU maintains the structure of a standard 

memory and thus, it is compatible with conventional von 

Neumann architectures. Additionally, MPU enhances data 

processing and reduces energy for designated applications. 

Generally, the use of MPU allows alleviating the von 

Neumann bottleneck. 

To maximize the benefits of the MPU, new algorithms for 

executing logic operations within memory are required to be 

defined and developed. These algorithms should be optimized 

by exploiting the parallelism offered by memristive memories. 

This paper describes the basic considerations of such in-

memory processing algorithm design. 

II. PROCESSING WITHIN MEMRISTIVE MEMORIES 

MAGIC NOT and NOR are compatible for logic execution 
within memory due to the connection pattern among input and 
output memristors. In MAGIC NOT (NOR) execution, input 
memristor(s) is (are) excited with execution voltage V0 and an 
output memristor is connected to ground [5]. This section 
discusses the concept of processing within memory, relevant 
design considerations and extension of MAGIC to various 
logic and arithmetic operations, with examples of full-adder 
and processing within an image. To exploit the symmetric 
feature of the memristive memory crossbar, a set of memory 
control and sense amplifiers can be replicated in the 
conventional memory circuit to access each memory cell from 
all directions (as opposed to only one direction in conventional 
memory). This is called the transpose memory [6], which adds 
the additional functionality to the memory crossbar in terms of 
logic execution. 

A. Processing within an MPU - Concept and Considerations 

To execute different logical and arithmetical operations, a 
definite sequence of NOT and NOR operations is performed 
within the MPU. Since performance, energy and area trade off 
in an MPU computation, different algorithmic approaches 
should be considered. For example, writing to many 
memristors simultaneously or duplicating data to different 
memristors prior to execution may dramatically improve the 
speed of computation. This performance optimization, 
however, increases the energy and occupied area. 
Alternatively, data can be moved or copied to any location 
within memory using two consecutive NOT operations (i.e., A 
= NOT(NOT(A))). A move/copy operation removes the 
wastage of memory space and energy in duplication, but 
lowers speed of execution. Furthermore, the choice of correct 
electrical parameters, such as the applied execution voltage V0, 
influences the latency and energy of each MAGIC gate [6]. 



Since every memristor is both a memory cell and also a part 
of the logic gate, storing and processing can be done at any 
desired location within a memory sub-array. Thus, each 
operation may be performed dynamically in different areas of 
the memory, controlled by a designated controller. However, 
to assure that the stored data is not erased while computing, 
expensive management of the memory by the operating 
system is essential. To alleviate the complexity of this control, 
processing areas either can be pre-defined, where the rest of 
the memory serves solely as storage, or can be defined 
dynamically in terms of location and size by the controller or 
the operating system. Furthermore, controlling different areas 
within the memory can also be used for wear leveling to 
increase the lifetime of the memory. 

Execution of complex functions can be performed either by 
combining many lower levels of abstraction, which includes 
basic NOT/NOR operations or by using pre-developed higher 
abstraction level building blocks of simple operations (e.g., 
AND/OR gates). The former may be optimized better but 
requires more investment in terms of algorithm design and a 
complicated memory controller. 

Paralleling basic logical operations can be done at the 
lowest abstraction level of logic execution (logic gates). This 
data-level parallelism (DLP) is enabled, given a particular data 
distribution pattern within the memory. For example, the input 
memristors of MAGIC gates should be situated in the same 
bitlines within the same subarray (or the same wordlines for a 
transpose operation [6]); and output memristors should be 
situated in the same bitline (or same wordline for transpose 
memory [6]), as shown in Figure 1. Thus, when V0 and ground 
voltages are asserted, multiple MAGIC gates can be 
implemented simultaneously. Hence, the effective execution 
time to compute logic over several such basic gates would be 
equal to a single gate delay, which can attain significant 
performance enhancement. This principle is further illustrated 
in the next subsection. 

B. Vector and Matrix Operations – Toy Examples 

To demonstrate the benefits from the parallelism offered by 
the MPU, we present addition operation of vectors. The one-
bit full adder is implemented in terms of NOT and NOR 
operations. Note that both the sum and carry can be computed 
simultaneously under this representation [6]. Different 
sequences of operations can be performed to optimize either 
speed or area with approximately the same energy. The area- 
optimized approach computes the output of full adder using 
four redundant functional memristors (different from inputs 
and outputs) and 15 execution cycles [6]. The latency- 
optimized approach requires six functional memristors and 13 
execution cycles to compute this output [6]. This bit-wise 
implementation of an adder can be extended to N-bit addition. 
Now, consider two vectors, each of length M, having N-bit 
integers as each argument. Thus, each N-bit addition can be 
executed in parallel assuming that the input vectors 
corresponding to each entry are present in different wordlines, 
in the same way as parallelizing the execution of MAGIC 
NOR gates. Hence, the effective time to compute vector 
addition boils down to the delay of adding a single entry of 
two vectors, which is independent of M. 

One illustrative application of a matrix operation is image 
processing, where the same operation is performed on millions 

of pixels. Since an image is stored as a matrix in the memory, 
pixels from the same wordlines or bitlines can be processed 
simultaneously in the MPU. The number of cycles required to 
perform logic functions on an M by N image depends linearly 
on MAX(N, M), as illustrated in Figure 2. Since image 
processing is a data intensive application, the processing 
within memory, which diminishes the necessary data transfer, 
has the potential to dramatically reduce latency and power 
consumption, even for complex operations. 

III. CONCLUSIONS AND FUTURE WORK  

MPU is a recently developed architecture, where the 
memory element can function both as a data storage unit and a 
parallel processing element. To benefit from this concept, 
algorithmic framework has to be constructed. This paper 
discusses the algorithmic considerations and tradeoffs between 
performance, area and energy in such designs and describes 
data distribution considerations. Several such efforts have 
been made in this line of work, whereas further evaluations 
have to be made to determine which benefits the most between 
proposed approach and CMOS based computing. 
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Figure 1: Parallel execution of MAGIC NOR and isolation of 
wordline(s) within MPU. Isolation is carried out by applying VISO [6]. 

  
Figure 2: OR operation with an image of MxN pixels stored within a 
memristive memory using MAGIC: A OR B = NOT(A NOR B) 
(1) NOT(B): M cycles and MxN operations. (2)  NOT(NOT(B))=B: N 
cycles and MxN operations. (3)  A NOR B: M cycles and MxN 
operations. (4)  NOT(A NOR B): N cycles and MxN operations. 
Takes a total of: 2M+2N cycles, 4MxN operations. 


