Power Grid Analysis Based
on a Macrocircuit Model

Shahar Kvatinsky, Eby G. Friedman,”
Avinoam Kolodny, and Levi Schachter

Technion - Israel Institute of Technology
*University of Rochester
[EEEI 2010




Outline

» Review of Conventional Model
» Basic Microcircuit Model
» Macrocircuit Model

» Feedback Between the Power Grid and Current
Consumer
» Summary - Advantages and Potential

Applications

P



Power Distribution Networks
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Power Grid Voltage Drop

» Slows the circuit - performance and

functionality compromised

» Excessive voltage drop - logic errors

» Power grid design - low voltage drop in all
of the nodes
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Decoupling Capacitors
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Lowers the supply voltage fluctuations




Decoupling Capacitors
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Decoupling Capacitors
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Lowers the supply voltage fluctuations




Current Consumers

» Billions of transistors in a modern IC

» Every logic gate consumes current from the

power supply

» Transistors are non-linear devices




Conventional Current Consumer
Model - Ideal Current Source

» Simulate individual circuit blocks, including
transistors and parasitic elements within

the power interconnect

» Replace each block by Varic:

an ideal current source

- a linear device = =




Conventional Power grid Model
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Conventional Current Consumer
Model - Characterization

Old Model

Intuitive
Know every node’s voltage
Significant computational time

Active supply as a consumer -
misleading

Ignores effect of voltage drop
on the current consumer

Complex




Outline

» Review of Conventional Model
» Basic Microcircuit Model
» Macrocircuit Model

» Feedback Between the Power Grid and Current
Consumer
» Summary - Advantages and Potential

Applications

P

12



Power Supply Time Scale
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Power Supply Time Scale
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Microcircuit Model




Microcircuit Model

Vgrid+
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Clock Time Scale
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Microcircuit Model
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Microcircuit Model
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Effective Impedance

» Effective capacitance - accurately represents

average energy stored in the element

» Effective resistance - accurately represents

average power dissipated by

Vgrid+

the element
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Determining the Effective Impedance

» Determine the effective impedance at the

maximum switching rate of the element

» Determine the actual effective impedance of

the element Vgria+

o A fraction of the maximum
switching rate TReff(t) ==Cerr(t)
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Maximum Switching Rate
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1 » Steady state assumption

» A non-trivial solution exists
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Effective Impedance at Maximum
Switching Rate

» Based on delivered charge and energy

dissipation for every cycle

Q= }dt[(t)

Current vs. Time
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Effective Impedance at Maximum
Switching Rate

» Based on delivered charge and energy

dissipation for every cycle

0= }dﬂ(r)




Effective Impedance at Maximum
Switching Rate

» Based on delivered charge and energy

dissipation for every cycle
T/2

W, ——jv (r)dt+—jv (t)dt

2 T/2

Voltage vs. time

Voltage [Volf]
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Effective Impedance at Maximum
Switching Rate

» Based on delivered charge and energy

dissipation for every cycle
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Effective Impedance at Maximum
Switching Rate

» Based on delivered charge and energy

dissipation for every cycle
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Effective Impedance at Maximum
Switching Rate

» Based on delivered charge and energy

dissipation for every cycle
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Effective Impedance at Maximum
Switching Rate

» Based on delivered charge and energy

dissipation for every cycle

R,C,=T| |C,=C +C,
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Macrocircuit

» Expandable to numerous parallel microcircuits
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» For N microcircuits in parallel (N~10°)
R, =R, | R, , ...l R,

C, = CO,1 + CO,2 +...+ CO,N
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Macrocircuit - Effective Impedance

» Actual switching rate is less than the

maximum rate

» Activity function of the macro circuit is

considered
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Power Grid Analysis
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Power Grid Analysis

C=C,+C, (1)
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Feedback Between the Power Grid and
Current Consumer

Negative feedback — decrease voltage drop

Ideal current source model

ignores this interaction
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Feedback Between the Power Grid and
Current Consumer

Negative feedback — decrease voltage drop

> V,-AV
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Feedback Between the Power Grid and
Current Consumer

Negative feedback — decrease voltage drop

> V,-AV+ AV’

Ideal current source model

ignores this interaction
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Comparison Between the Models -

Feedback Issue
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Resr(t) ==Cerr(t)
Summary
Old Model New Model
Intuitive Less intuitive
Know every node’s voltage Can’t know every node voltage
drop
Significant computational time More time efficient than the
conventional model
Active supply as a consumer - Based only passive elements
misleading
Ignores effect of voltage drop Considers the interactions
on the current consumer between the power grid and
the element
Complex Complex reduced
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