Power Grid Analysis Based on a Macrocircuit Model

Shahar Kvatinsky, Eby G. Friedman,* Avinoam Kolodny, and Levi Schächter

Technion – Israel Institute of Technology *University of Rochester IEEEI 2010

Outline

Review of Conventional Model

- Basic Microcircuit Model
- Macrocircuit Model
- Feedback Between the Power Grid and Current
 Consumer
- Summary Advantages and Potential Applications

2

Power Distribution Networks

3

Power Grid Voltage Drop

- Slows the circuit performance and functionality compromised
- Excessive voltage drop logic errors
- Power grid design low voltage drop in all
 - of the nodes

Decoupling Capacitors

Lowers the supply voltage fluctuations

Decoupling Capacitors

Lowers the supply voltage fluctuations

Decoupling Capacitors

Lowers the supply voltage fluctuations

7

Current Consumers

- Billions of transistors in a modern IC
- Every logic gate consumes current from the power supply
- Transistors are non-linear devices

Conventional Current Consumer Model – Ideal Current Source

- Simulate individual circuit blocks, including transistors and parasitic elements within
 - the power interconnect
- Replace each block by an ideal current source
 - a linear device

Conventional Current Consumer Model – Characterization

Outline

- Review of Conventional Model
- Basic Microcircuit Model
- Macrocircuit Model
- Feedback Between the Power Grid and Current
 Consumer
- Summary Advantages and Potential Applications

12

Power Supply Time Scale

Power Supply Time Scale

Power Supply Time Scale

Effective Impedance

- Effective capacitance accurately represents average energy stored in the element
- Effective resistance accurately represents average power dissipated by v_{grid+}

the element

Determining the Effective Impedance

- Determine the effective impedance at the maximum switching rate of the element
- Determine the actual effective impedance of the element
 - A fraction of the maximum switching rate

Maximum Switching Rate

Based on delivered charge and energy

$$W_{D} = \frac{1}{R_{1}} \int_{0}^{T/2} V_{1}^{2}(t) dt + \frac{1}{R_{2}} \int_{T/2}^{T} V_{2}^{2}(t) dt$$

$$R_{0} = \frac{V_{CC}^{2}}{W_{D}} \cdot T = \frac{1 - E_{1}E_{2}}{(C_{1} + C_{2})(1 - E_{1})(1 - E_{2})} \cdot T$$

$$E_{1} = \exp\left[-\frac{T}{2R_{1}(C_{1} + C_{2})}\right], E_{2} = \exp\left[-\frac{T}{2R_{2}(C_{1} + C_{2})}\right] = 26$$

Outline

- Review of Conventional Model
- Basic Microcircuit Model
- Macrocircuit Model
- Feedback Between the Power Grid and Current
 Consumer
- Summary Advantages and Potential Applications

Macrocircuit

Expandable to numerous parallel microcircuits

▶ For N microcircuits in parallel (N~10⁶)

$$R_0 = R_{0,1} \parallel R_{0,2} \parallel ... \parallel R_{0,N}$$
$$C_0 = C_{0,1} + C_{0,2} + ... + C_{0,N}$$

31

Macrocircuit – Effective Impedance

- Actual switching rate is less than the maximum rate
- Activity function of the macro circuit is considered

Power Grid Analysis

$$\tilde{C} = C_0 + C_{eff}(t)$$

$$\frac{1}{\tau(t)} \equiv \frac{1}{\tilde{C(t)}} \left[\frac{1}{R_{eff}(t)} + \frac{1}{R_0} \right]$$

$$Q_{\tilde{c}}(t) \equiv \tilde{C(t)} V_R(t)$$

Power Grid Analysis

$$\tilde{C} = C_0 + C_{eff}(t)$$

$$\frac{1}{\tau(t)} \equiv \frac{1}{\tilde{C(t)}} \left[\frac{1}{R_{eff}(t)} + \frac{1}{R_0} \right]$$

$$Q_{\tilde{C}}(t) \equiv \tilde{C(t)} V_R(t)$$

$$Q_{\tilde{c}}(t) = Q_{\tilde{c}}(0)e^{-\int_{0}^{t}dt'\frac{1}{\tau(t')}} + \frac{V_{0}}{R_{0}}e^{-\int_{0}^{t}dt'\frac{1}{\tau(t')}} \cdot \left[\int_{0}^{t}dt'e^{\int_{0}^{t'}dt''\frac{1}{\tau(t'')}}\right]$$

Outline

- Review of Conventional Model
- Basic Microcircuit Model
- Macrocircuit Model
- Feedback Between the Power Grid and Current Consumer
- Summary Advantages and Potential Applications

Comparison Between the Models – Feedback Issue

Outline

- Review of Conventional Model
- Basic Microcircuit Model
- Macrocircuit Model
- Feedback Between the Power Grid and Current
 Consumer
- Summary Advantages and Potential Applications

Summary	V_{grid+} $R_{eff}(t)$ L V_{grid-}
Old Model	New Model
Intuitive	Less intuitive
Know every node's voltage	Can't know every node voltage drop
Significant computational time	More time efficient than the conventional model
Active supply as a consumer - misleading	Based only passive elements
Ignores effect of voltage drop on the current consumer	Considers the interactions between the power grid and the element
Complex	Complex reduced

Thank You!

