

A Fully Analog Memristor-Based Neural Network

with Online Gradient Training

Eyal Rosenthal, Sergey Greshnikov, Daniel Soudry*, and Shahar Kvatinsky

Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa, Israel 3200003

* Department of Statistics, Columbia University, New York, NY 10027, USA

Abstract — In recent years, Neural Networks (NNs) have

become widely popular for the execution of different machine

learning algorithms. Training an NN is computationally intensive

since it requires numerous multiplications of matrices that

represent synaptic weights. It is therefore appealing to build a

hardware-based NN accelerator to gain parallelism and efficient

computation. Recently, we have proposed a compact circuit of a

non-volatile synaptic weight based on two CMOS transistors and

a memristor. In this paper, we present a fully analog NN design

based on our previously proposed synapse with a full design of the

different layers and their supporting CMOS circuits. We show

that the presented NN significantly reduces the area as compared

to a CMOS-based NN, while executing online gradient training

with similar accuracy and computational speed improvement as a

software implementation.

Keywords—Multilayer Neural Networks, machine learning,

backpropagation, neuromorphic, memristor, CMOS, RRAM

I. INTRODUCTION

Machine learning algorithms have become widely common
in computer science for classification problems. One of the most
popular machine learning systems is neural networks (NNs). NN
algorithms can accurately solve complex tasks with a wide range
of input data. For example, a single layer neural network (SNN)
consists of input and output neurons, and synapses. The synapses
are the connections between the neurons and they represent the
weights of the NN. For a multilayer neural network (MNN), the
output neurons of the previous layer become the input neurons
of the next layer. A common method to train NNs is online
gradient descent [1], where the error from the output neurons
propagates backwards to the input neurons, and the network
updates its synapses to minimize the error.

Realistic datasets require a very large NNs. Training such
networks can be prohibitive in both time (e.g., weeks [2] or
more) and energy. For example, an NN layer with M inputs and
N outputs requires 𝑁 ∙ 𝑀 synapses and a single learning step
using the online gradient descent method requires 𝑂(𝑁 ∙ 𝑀)
operations for updating all the synapses. If the NN is
implemented in software, the synapses are represented by
matrices. Then the primary computational bottlenecks are a
matrix-vector multiplication and a vector-vector outer product
[3, 13].

A hardware implementation of an NN can potentially relieve
the computational bottleneck due to its massive parallelization
nature. The key for hardware implementation is to create weight

units that can locally compute, store and update their own
weights simultaneously and independently of the other synapses.
Previously proposed dedicated hardware solutions have required
numerous transistors per synaptic weight [4-11] which resulted
in high area and power consumption. Additionally, creating a
non-volatile weight unit is difficult with standard CMOS
technology.

In this paper, we design a hardware solution that is based on
emerging non-volatile memristive technology [12] to store the
synaptic weight as proposed in [13]. This solution greatly
decreases the number of transistors per synapse as compared to
CMOS-only designs. In [13], the NN has been designed and
evaluated with ideal periphery circuits without considering their
influence on the NN. In this paper, we integrate the synapse
design into a fully analog NN circuit, discuss the relevant issues
to make it completely functional, and show that the proposed
design has high noise robustness and achieves similar accuracy
as software execution on machine learning algorithms when
comparing it to software execution results.

The rest of the paper is organized as follows. Background on
memristors, machine learning and the synapse design is given in
Section II. The proposed single layer design is presented in
Section III, followed by a multilayer design in Section IV.
Results for three different benchmarks are shown in Section V.
The paper is concluded in Section VI.

II. BACKGROUND

A. Memristor

Memristors are analog passive devices with varying
resistance [12]. Memristors are non-volatile by their definition,
and today most of resistive non-volatile memory technologies
can be considered as memristors (in their broader definition).
Memristors are usually fabricated in a BEOL CMOS process in
a metal-insulator-metal structure, resulting in a smaller area than
a CMOS transistor. The dynamic behavior of memristors is
usually highly non-linear. To accurately model the memristive
non-linear behavior in our evaluation, the TEAM model [14] is
used in this paper.

B. Online Gradient Descent

The circuit is designed to execute the Online Gradient
Descent algorithm, as shown in Fig. 1. To update the weights of
the system, the output vector 𝒓 is first determined by [13]

 𝒓 = 𝑾𝒙

978-1-4799-5341-7/16/$31.00 ©2016 IEEE

1394

where 𝑾 is the synaptic weights matrix of the size 𝑁 ∙ 𝑀.
The synaptic weight update rule [13] is

 ∆𝑊𝑛𝑚 = 𝜂𝑥𝑚𝑦𝑛

where 𝒙 and 𝒚 are as defined in Fig. 1, ∆𝑾 is the difference of
the weight between time steps and 𝜂 is the learning rate. From
(2), the update rule for the synaptic weights is independent for
each synapse, thus full parallelism of the training is possible.

C. Synapse Model

In [13], we have proposed a synapse circuit which consists
of a PMOS transistor, an NMOS transistor and a memristor, as
shown in Fig. 2. The output of the synapse is the current flowing
through the memristor. The inputs 𝑢 and 𝑢 always hold 𝑢 =
−𝑢 . An enable signal 𝑒 determines which transistor is
conducting and consequently the sign of the input sample to the
synapse. The enable signal can have three values: 𝑒 = 𝑉𝐷𝐷,
where only the NMOS is conducting, 𝑒 = −𝑉𝐷𝐷 , where only
the PMOS is conducting, and 𝑒 = 0, where both transistors are
non-conducting. The weight of the synapse 𝑊 depends on the
internal state of the memristor state 𝑠 and its resultant
resistance 𝑅𝑚𝑒𝑚(𝑠).

To update the synaptic weight based on the sign of the
error 𝑦, 𝑒 selects the relevant transistor to enable current in the
proper direction through the memristor. The duration of the
applied signal 𝑒 is determined by the magnitude of 𝑦 . To
properly execute (2), 𝑥 is the voltage across the memristor, 𝜂 is
the rate at which the resistance of the memristor changes. The
TEAM model [14] describes a non-linear resistance change,
where the magnitude of the memristor current defines the change
rate of its state variable, consequently its resistance. To achieve
an effective linearity approximation for the memristor behavior
around a certain operating point, small update time intervals are
used.. Therefore, 𝜂 depends on the memristor’s current, which
is defined almost entirely by the magnitude of the input 𝑥. For a
high voltage input, the training rate is faster than a low voltage
input. To read from the synapse, 𝑒 selects the PMOS transistor,
allowing 𝑢 to be applied across the memristor.

III. SINGLE LAYER DESIGN

An SNN layer consists of a synaptic grid and the online
gradient descent supporting circuitry. The synaptic grid is based
on our previously proposed synapse design [13] with a few
changes in the synapse cell and the array as explained in this
section. To achieve non-destructive read, the input of the array
is normalized by a factor of 𝑎 to 𝑢/𝑎, resulting in current lower
than the threshold of the memristor. The output of the synapse is
amplified by a factor of 𝑎 for proper behavior. Figure 3
illustrates a schematic of a two by two synaptic grid.

A. Shock Capacitor

In a fully analog design of the synaptic grid, high voltage
spikes occur during the training process. To eliminate these
spikes, a relatively small capacitor that absorbs the spikes is
added between the memristor and the transistors.

B. Voltage Output

Since the operation during reads requires relatively low
operating voltages, it is difficult to use current mirrors to support
the use of current as the output. Hence, a resistor 𝑅𝑜𝑢𝑡 is added
to the output row to convert the output current into voltage. To
keep 𝑅𝑜𝑢𝑡 from interfering with the read process, the resistor
must be significantly low (i.e., 𝑅𝑜𝑢𝑡 ≪ 𝑅𝑚𝑒𝑚(𝑠)).

C. Subtracting the Operating Point

We define the synaptic weight of a single synapse as

 𝑊𝑛𝑚 =
𝑉𝑜𝑢𝑡,𝑛𝑚

𝑢𝑚
=

𝑢𝑚
𝑅𝑚𝑒𝑚(𝑠𝑛𝑚)

∙𝑅𝑜𝑢𝑡

𝑢𝑚
=

𝑅𝑜𝑢𝑡

𝑅𝑚𝑒𝑚(𝑠𝑛𝑚)

Where 𝑉𝑜𝑢𝑡, 𝑛𝑚 is the voltage contribution of the 𝑛, 𝑚 synapse.
Note that 𝑊 cannot be zero or negative since 𝑠 varies between
[0…1]. To achieve non-positive synaptic weight values, we
define 𝑠 = 0.5 as 𝑊 = 0 by adding a resistor 𝑅𝑟𝑒𝑓 , connected

to the input �̅� at the output row output, where 𝑅𝑟𝑒𝑓 =
𝑅𝑚𝑒𝑚(𝑠 = 0.5). The synaptic weight of each synapse is then
defined as

 𝑊𝑛𝑚 = (
1

𝑅𝑚𝑒𝑚(𝑠𝑛𝑚)
−

1

𝑅𝑟𝑒𝑓
) ∙ 𝑅𝑜𝑢𝑡.

Single Layer
Neural NetworkInput

Result
Errord

x
y

r

W

Figure 1: Illustration of an online gradient descent training of a single

layer. The system receives an input vector 𝒙 . The result vector 𝒓 is

subtracted from the desired output vector 𝒅 . the result of the

subtraction 𝒚 is the error input to the system.

NMOS

PMOS

Memristor

u

u

e

Figure 2: Schematic of the synapse proposed in [13]. The synapse

consists of two CMOS transistors and a memristor.

Figure 3: Illustration of a 2x2 single layer showcasing the synaptic grid,

the generation of the error y and the feedback circuit which executes

online gradient descent.

1395

By superposition and the 𝑅𝑜𝑢𝑡 ≪ 𝑅𝑚𝑒𝑚(𝑠) constraint, it can be
shown that

𝑣𝑜𝑢𝑡,𝑛 = ∑ 𝑢𝑖 (
1

𝑅𝑚𝑒𝑚(𝑠𝑛𝑖)
−

1

𝑅𝑟𝑒𝑓
) ∙ 𝑅𝑜𝑢𝑡𝑚

𝑖=1 ,

which executes (1). Additionally, a transistor is added to disable
the subtraction during the write process. An example is shown
in Fig. 3.

D. Feedback Circuit

The feedback circuit, which is the main component for the
learning algorithm execution, is shown in Figure 4. The circuit
produces a pulse for a time period that is linearly dependent on
the error 𝑦. The inputs of the feedback circuit are the absolute
value of the row error |𝑦| , its sign 𝑆𝑖𝑔𝑛(𝑦) and a sawtooth
voltage source 𝑉𝑠𝑎𝑤 . The output of the circuit is a pulse 𝑒 that
defines the duration and direction of the write
operation. 𝑆𝑖𝑔𝑛(𝑦) determines which part of the circuit is
active. For 𝑆𝑖𝑔𝑛(𝑦) > 0, the NMOS of Figure 4 is conducting
and 𝑉𝑠𝑎𝑤 starts increasing over time. As long as |𝑦| > 𝑉𝑠𝑎𝑤 , the
comparator outputs its supply positive voltage (2𝑉), and the
output of the circuit is 𝑒 = 5𝑉. When 𝑉𝑠𝑎𝑤 ≥ |𝑦|, the
comparator outputs 0V and the output of the circuit is 𝑒 = 0𝑉.
The operation for 𝑆𝑖𝑔𝑛(𝑦) < 0 is symmetric. The behavior of
the signals during training is illustrated in Figure 5.

IV. MULTI LAYER DESIGN

In an MNN, multiple layers of neurons are connected
between different synaptic grids, as illustrated in Figure 6. Each
neuron layer generates the inputs for the next layer such as
(where 𝐿 is the number of layers)

 𝒙𝑘+1 = 𝜎(𝒓𝑘) , 𝑘 = 1 … 𝐿 − 1,

where 𝜎(∙) is a sigmoid activation function. The error of the last
layer is determined as in Fig. 1 while the errors for the other
layers are determined by

 𝒚𝑘 = 𝜎′(𝒓𝑘)𝜹𝑘+1,

where the vector 𝜹 is

 𝜹𝑘+1 = 𝒚𝑘+1 ∙ (𝑾𝑘+1)𝑇

To support MNN execution, additional circuits to mediate
between the grids are required. Additionally, there is a third
execution step during each training iteration that we call an
inverted read. Inverted read occurs after the read phase of all the
synaptic grids except the first layer. During an inverted read, the
roles of the rows and columns of the grid are inverted, thus
implementing the transpose weight matrix 𝑾𝑇. During the time
the grid receives 𝒚 as input, (8) is implemented.

A. Sigma Function

A comparator-based operational amplifier with a relatively
small gain is used to implement a simple sigmoid function as the
activation function 𝜎(∙). The output of the comparator can be
either 1 or -1, and due to its poor gain, the transition between the
different outputs behaves as a sigmoid.

The derivative 𝜎′(∙) is designed to execute the approximate
expression

 𝜎′(𝑥) ≅ 𝜎′(0) ∙ (1 − 𝜎2(𝑥)), (9)

where 𝜎′(0) is the gain of the comparator. Operational
amplifiers are used for the multipliers and subtractors. The
approximation in (9) is sufficiently accurate – its mean square
difference from the numerical derivative is approximately
10−11 , for 𝜎′(0) = 500.

V. EVALUATION

We design the proposed circuit using CMOS 0.18um process
and the TEAM model. The circuit parameters are listed in Table
1. For preprocessing we used Zscore Normalization and then
Sigmoid Transform [15] on the dataset. All weights have been
initialized to W=0. Additionally, a bias synapse has been added
to each row with a constant input 𝑉𝑏𝑖𝑎𝑠 = 𝑢 = −�̅�, the bias
synapse acts as an additional weight unit and allows shifting the
values of the outputs and activation function. In addition to the
normal simulations, noisy simulations have been performed
adding up to 10% error to the inputs and simulating thermal
noise at 90℃. We compare the results of the analog simulations
to Matlab software simulations, implemented as described in
Section II. The learning rate of the Matlab simulation is set
as 𝜂 = 0.1.

To evaluate the accuracy and performance of the proposed
design, three datasets [16, 17] have been tested on different
networks. Table 2 lists the specifications of the datasets. The

u
/u a

y

sawV ()abs y

e
State

0
DDV

EEV

Time
readT writeT

Input

Figure 5: Waveform illustration of a single training iteration.

Figure 6: Illustration of a MNN depicting several synaptic grids

connected by sigma functions and the generation of the error vector

y for each grid.

Figure 4: The feedback circuit.

1396

results of the three datasets are listed in Table 3. For the SNN
we get similar training errors as in software with a speed
improvement of an order of magnitude. MNN results are not
included since they require further optimization of circuit
parameters that is planned as a future work.

VI. CONCLUSIONS

The execution of SNN and MNN in hardware has a great
potential to surpass the perfomance and energy efficiency of
software execution. The proposed use of compact hybrid
memristor-CMOS synapses enables efficient hardware for SNN
and MNN with online learning. While the previously-presented
design of hybrid memristor-CMOS SNN and MNN has
achieved impressive accuracy for different machine learning
benchmarks, the supporting circuitry has relied on ideal devices
and only in this paper the implications of a full analog design are
considered.

We show that with a few modifications, such as adding
shock capacitors and transferring the output current into voltage,

the proposed technique achieves sufficient accuracy. The
proposed circuit has significantly lower area than CMOS-based
synapses even with the additional devices. The circuit is also an
order of magnitude faster than software implementation with the
potential for even faster execution. We believe that further
investigation of the different implications and parameters of the
circuit will further improve the accuracy and performance of the
proposed NNs.

ACKNOWLEDGEMENTS

The authors would like to thank Goel Samuel for his

technical support. This research is partially supported by the

Gruss Lipper Charitable Foundation, Intel Collaborative

Research Institute for Computational Intelligence (ICRI-CI)

and by the Viterbi Fellowship in the Technion Computer

Engineering Center.

REFERENCES

[1] A. Blum, “On-Line Algorithms in Machine Learning,” Online
Algorithms: the state of the art, A. Fiat and G. J. Woeginger (Ed.),
Springer-Verlag Berlin Heidelberg, Chapter 14, pp. 306-325, 1998.

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
September 2014.

[3] Y. A. Lecun, L Bottou, G. B. Orr, and K. R. Muller, “Efficent BackProp,”
Neural Networks: Tricks of the trade, 2nd Edition, Springer-Verlag Berlin
Heidelberg, Chapter 3, pp. 9-48, 1998.

[4] G. Cauwenberghs, C. F. Neugebauer, and A. Yariv, "Analysis and
Verification of an Analog VLSI Incremental Outer-Product Learning
System," in IEEE Transactions on Neural Networks, Vol. 3, No. 3, pp.
488-497, May 1992.

[5] H. C. Card , C. R. Schneider, and W. R. Moore, “Hebbian Plasticity in
MOS Synapses,” IEE Proceedings-F (Radar and Signal Processing), Vol.
138, No. 1, pp. 13, February 1991.

[6] C. Schneider and H. Card, “Analogue CMOS Hebbian Synapses,”
Electronics letters, Vol. 29, No. 9, pp. 785-786, April 1991.

[7] M. Valle, D. D. Caviglia, and G. M. Bisio, “An Experimental Analog
VLSI Neural Network with On-Chip Back-Propagation Learning,”
Analog Integrated Circuits and Signal Processing, Vol. 9, No. 3, pp. 231-
245, April 1996.

[8] C. Lu, B. Shi, and L. Chen, “An On-Chip BP Learning Neural Network
with Ideal Nneuron Characteristics and Learning Rate Adaptation,”
Analog Integrated Circuits and Signal Processing, Vol. 31, No. 1, pp. 55-
62, April 2002.

[9] T. Morie and Y. Amemiya, “An All-Analog Expandable Neural Network
LSI with On-Chip Backpropagation Learning,” IEEE Journal of Solid-
State Circuits, Vol. 29, No. 9, pp. 1086-1093, September 1994.

[10] T. Shima and T. Kimura, “Neuro Chips with On-Chip Back-Propagation
and/or Hebbian Learning,” IEEE Journal of Solid-State Circuits, Vol. 27,
No. 12, pp. 1868-1876, December 1992.

[11] T. Simonite, “IBM Chip Processes Data Similar to the Way Your Brain
Does,” MIT Techonlogy Report, August 2014.

[12] L. O. Chua, “Memristor - the Missing Circuit Element,” IEEE
Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507–519, September
1971.

[13] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
"Memristor-Based Multilayer Neural Networks With Online Gradient
Descent Training," IEEE Transactions on Neural Networks and Learning
Systems, Vol. 26, No.10, pp. 2408-2421, October 2015.

[14] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM:
ThrEshold Adaptive Memristor Model,” IEEE Transactions on Circuits
and Systems I: Regular Papers, Vol. 60, No. 1, pp. 211–221, January
2013.

[15] H. Li, C. L. P. Chen and H. P. Huang, “Data Preprocessing,” Fuzzy Neural
Intelligent Systems: Mathematical Foundation and the Applications in
Engineering, 1st Edition, CRC Press, Chapter 15, pp. 255-267, September
2000.

[16] M. Lichman, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml], 2013.

[17] O. L. Mangasarian and W. H. Wolberg, "Cancer Diagnosis via Linear
Programming," SIAM News, Vol. 23, No. 5, pp 1-18, September 1990.

Parameter Value Parameter Value

Power Source Memristor

𝑉𝐷𝐷, 𝑉𝐸𝐸 ±5V 𝐾𝑜𝑛/𝑜𝑓𝑓 ±100𝑛
𝑚

𝑠

PMOS 𝐼𝑜𝑛/𝑜𝑓𝑓 ±1𝜇𝐴

𝑊/𝐿 2.39 𝛼𝑜𝑛/𝑜𝑓𝑓 2

NMOS 𝑅𝑜𝑛 100Ω

𝑊/𝐿 9.6 𝑅𝑜𝑓𝑓 200kΩ

Circuit Timing

𝑉𝑠𝑎𝑤 15mV 𝑇𝑟𝑒𝑎𝑑 5𝜇𝑠

𝜎′(0) 500 𝑇𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑
−𝑟𝑒𝑎𝑑

 5𝜇𝑠

d 8mV 𝑇𝑤𝑟𝑖𝑡𝑒 10𝜇𝑠

a 10 Bias input

𝑅𝑜𝑢𝑡 1kΩ
𝑉𝑏𝑖𝑎𝑠 0.18V

𝑅𝑟𝑒𝑓 100.05kΩ

Table 1: Circuit parameters for the analog simulations.

Dataset

Unique

training

samples

Unique

test

samples

No. of

inputs

No. of

outputs

NN

size

Wisconsin
Diagnostic

Breasts Cancer

300 120 30 2 30x2

Wine 96 48 13 3 13x3

Iris 90 60 4 3 4x3

Table 2: Information regarding each dataset and the NN design. Both the

Wine and Cancer Diagnostic datasets are linearly separable between all

classes, while the Iris dataset is not linearly separable between two of its

classes, making it more difficult to be learned.

 Error % Runtime

Dataset Samples
Analog

model

Noisy

analog

model

Matlab

model

Analog

model

Matlab

model

SNN

Wine 1200
3.75%

±0.52%

2.5%

±0.52%

2.29%

±1.09%
18ms 278.5ms

Breast

Cancer
1200

3%

±0.5%

4.67%

±0.67%

3.10%

±1.83%
18ms 210ms

Iris 1080
15.67%

±0.79%

16.5%

±0.67%

15.33%

±0.03%
16.2ms 95.3ms

Table 3: Results of the SNN training simulations of both the analog

circuit and the Matlab model. Note that our results differ from the results

in [13] since a different error function has been used. For the sake of

simplicity, the error function in this work is mean square error, while in

[13] a cross entropy error is used.

1397

