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Abstract — In recent years, Neural Networks (NNs) have 

become widely popular for the execution of different machine 

learning algorithms. Training an NN is computationally intensive 

since it requires numerous multiplications of matrices that 

represent synaptic weights. It is therefore appealing to build a 

hardware-based NN accelerator to gain parallelism and efficient 

computation. Recently, we have proposed a compact circuit of a 

non-volatile synaptic weight based on two CMOS transistors and 

a memristor. In this paper, we present a fully analog NN design 

based on our previously proposed synapse with a full design of the 

different layers and their supporting CMOS circuits. We show 

that the presented NN significantly reduces the area as compared 

to a CMOS-based NN, while executing online gradient training 

with similar accuracy and computational speed improvement as a 

software implementation. 

Keywords—Multilayer Neural Networks, machine learning, 

backpropagation, neuromorphic, memristor, CMOS, RRAM 

I. INTRODUCTION 

Machine learning algorithms have become widely common 
in computer science for classification problems. One of the most 
popular machine learning systems is neural networks (NNs). NN 
algorithms can accurately solve complex tasks with a wide range 
of input data. For example, a single layer neural network (SNN) 
consists of input and output neurons, and synapses. The synapses 
are the connections between the neurons and they represent the 
weights of the NN. For a multilayer neural network (MNN), the 
output neurons of the previous layer become the input neurons 
of the next layer. A common method to train NNs is online 
gradient descent [1], where the error from the output neurons 
propagates backwards to the input neurons, and the network 
updates its synapses to minimize the error. 

Realistic datasets require a very large NNs. Training such 
networks can be prohibitive in both time (e.g., weeks [2] or 
more) and energy. For example, an NN layer with M inputs and 
N outputs requires 𝑁 ∙ 𝑀  synapses and a single learning step 
using the online gradient descent method requires 𝑂(𝑁 ∙ 𝑀)  
operations for updating all the synapses. If the NN is 
implemented in software, the synapses are represented by 
matrices. Then the primary computational bottlenecks are a 
matrix-vector multiplication and a vector-vector outer product 
[3, 13]. 

A hardware implementation of an NN can potentially relieve 
the computational bottleneck due to its massive parallelization 
nature. The key for hardware implementation is to create weight 

units that can locally compute, store and update their own 
weights simultaneously and independently of the other synapses. 
Previously proposed dedicated hardware solutions have required 
numerous transistors per synaptic weight [4-11] which resulted 
in high area and power consumption. Additionally, creating a 
non-volatile weight unit is difficult with standard CMOS 
technology. 

In this paper, we design a hardware solution that is based on 
emerging non-volatile memristive technology [12] to store the 
synaptic weight as proposed in [13]. This solution greatly 
decreases the number of transistors per synapse as compared to 
CMOS-only designs. In [13], the NN has been designed and 
evaluated with ideal periphery circuits without considering their 
influence on the NN. In this paper, we integrate the synapse 
design into a fully analog NN circuit, discuss the relevant issues 
to make it completely functional, and show that the proposed 
design has high noise robustness and achieves similar accuracy 
as software execution on machine learning algorithms when 
comparing it to software execution results. 

The rest of the paper is organized as follows. Background on 
memristors, machine learning and the synapse design is given in 
Section II. The proposed single layer design is presented in 
Section III, followed by a multilayer design in Section IV. 
Results for three different benchmarks are shown in Section V. 
The paper is concluded in Section VI. 

II. BACKGROUND 

A. Memristor 

Memristors are analog passive devices with varying 
resistance [12]. Memristors are non-volatile by their definition, 
and today most of resistive non-volatile memory technologies 
can be considered as memristors (in their broader definition). 
Memristors are usually fabricated in a BEOL CMOS process in 
a metal-insulator-metal structure, resulting in a smaller area than 
a CMOS transistor. The dynamic behavior of memristors is 
usually highly non-linear. To accurately model the memristive 
non-linear behavior in our evaluation, the TEAM model [14] is 
used in this paper. 

B. Online Gradient Descent 

The circuit is designed to execute the Online Gradient 
Descent algorithm, as shown in Fig. 1. To update the weights of 
the system, the output vector 𝒓 is first determined by [13] 

 𝒓 = 𝑾𝒙 
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where 𝑾 is the synaptic weights matrix of the size 𝑁 ∙ 𝑀. 
The synaptic weight update rule [13] is 

 ∆𝑊𝑛𝑚 = 𝜂𝑥𝑚𝑦𝑛 

where 𝒙 and 𝒚 are as defined in Fig. 1, ∆𝑾 is the difference of 
the weight between time steps and 𝜂 is the learning rate. From 
(2), the update rule for the synaptic weights is independent for 
each synapse, thus full parallelism of the training is possible. 

C. Synapse Model 

In [13], we have proposed a synapse circuit which consists 
of a PMOS transistor, an NMOS transistor and a memristor, as 
shown in Fig. 2. The output of the synapse is the current flowing 
through the memristor. The inputs 𝑢  and 𝑢  always hold  𝑢 =
−𝑢 . An enable signal 𝑒  determines which transistor is 
conducting and consequently the sign of the input sample to the 
synapse. The enable signal can have three values:  𝑒 = 𝑉𝐷𝐷, 
where only the NMOS is conducting,  𝑒 = −𝑉𝐷𝐷 , where only 
the PMOS is conducting, and 𝑒 = 0, where both transistors are 
non-conducting. The weight of the synapse 𝑊 depends on the 
internal state of the memristor state 𝑠  and its resultant 
resistance 𝑅𝑚𝑒𝑚(𝑠).  

To update the synaptic weight based on the sign of the 
error 𝑦, 𝑒 selects the relevant transistor to enable current in the 
proper direction through the memristor. The duration of the 
applied signal 𝑒  is determined by the magnitude of  𝑦 . To 
properly execute (2), 𝑥 is the voltage across the memristor, 𝜂 is 
the rate at which the resistance of the memristor changes. The 
TEAM model [14] describes a non-linear resistance change, 
where the magnitude of the memristor current defines the change 
rate of its state variable, consequently its resistance. To achieve 
an effective linearity approximation for the memristor behavior 
around a certain operating point, small update time intervals are 
used.. Therefore, 𝜂 depends on the memristor’s current, which 
is defined almost entirely by the magnitude of the input 𝑥. For a 
high voltage input, the training rate is faster than a low voltage 
input. To read from the synapse, 𝑒 selects the PMOS transistor, 
allowing 𝑢 to be applied across the memristor.  

III. SINGLE LAYER DESIGN 

An SNN layer consists of a synaptic grid and the online 
gradient descent supporting circuitry. The synaptic grid is based 
on our previously proposed synapse design [13] with a few 
changes in the synapse cell and the array as explained in this 
section. To achieve non-destructive read, the input of the array 
is normalized by a factor of 𝑎 to 𝑢/𝑎, resulting in current lower 
than the threshold of the memristor. The output of the synapse is 
amplified by a factor of 𝑎  for proper behavior. Figure 3 
illustrates a schematic of a two by two synaptic grid. 

A. Shock Capacitor 

In a fully analog design of the synaptic grid, high voltage 
spikes occur during the training process. To eliminate these 
spikes, a relatively small capacitor that absorbs the spikes is 
added between the memristor and the transistors. 

B. Voltage Output 

Since the operation during reads requires relatively low 
operating voltages, it is difficult to use current mirrors to support 
the use of current as the output. Hence, a resistor 𝑅𝑜𝑢𝑡 is added 
to the output row to convert the output current into voltage. To 
keep 𝑅𝑜𝑢𝑡  from interfering with the read process, the resistor 
must be significantly low (i.e., 𝑅𝑜𝑢𝑡 ≪ 𝑅𝑚𝑒𝑚(𝑠)). 

C. Subtracting the Operating Point 

We define the synaptic weight of a single synapse as 

 𝑊𝑛𝑚 =
𝑉𝑜𝑢𝑡,𝑛𝑚

𝑢𝑚
=

𝑢𝑚
𝑅𝑚𝑒𝑚(𝑠𝑛𝑚)

∙𝑅𝑜𝑢𝑡

𝑢𝑚
=

𝑅𝑜𝑢𝑡

𝑅𝑚𝑒𝑚(𝑠𝑛𝑚)
 

Where 𝑉𝑜𝑢𝑡, 𝑛𝑚 is the voltage contribution of the 𝑛, 𝑚 synapse. 
Note that 𝑊 cannot be zero or negative since 𝑠 varies between 
[0…1]. To achieve non-positive synaptic weight values, we 
define 𝑠 = 0.5 as 𝑊 = 0 by adding a resistor 𝑅𝑟𝑒𝑓 , connected 

to the input 𝑢̅  at the output row output, where 𝑅𝑟𝑒𝑓 =
𝑅𝑚𝑒𝑚(𝑠 = 0.5). The synaptic weight of each synapse is then 
defined as 

 𝑊𝑛𝑚 = (
1

𝑅𝑚𝑒𝑚(𝑠𝑛𝑚)
−

1

𝑅𝑟𝑒𝑓
) ∙ 𝑅𝑜𝑢𝑡.
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Figure 1: Illustration of an online gradient descent training of a single 

layer. The system receives an input vector 𝒙 . The result vector 𝒓  is 

subtracted from the desired output vector 𝒅 . the result of the 

subtraction 𝒚 is the error input to the system. 
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Figure 2: Schematic of the synapse proposed in [13]. The synapse 

consists of two CMOS transistors and a memristor. 

Figure 3: Illustration of a 2x2 single layer showcasing the synaptic grid, 

the generation of the error y and the feedback circuit which executes 

online gradient descent. 
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By superposition and the 𝑅𝑜𝑢𝑡 ≪ 𝑅𝑚𝑒𝑚(𝑠) constraint, it can be  
shown that  

𝑣𝑜𝑢𝑡,𝑛 = ∑ 𝑢𝑖 (
1

𝑅𝑚𝑒𝑚(𝑠𝑛𝑖)
−

1

𝑅𝑟𝑒𝑓
) ∙ 𝑅𝑜𝑢𝑡𝑚

𝑖=1 ,

which executes (1). Additionally, a transistor is added to disable 
the subtraction during the write process. An example is shown 
in Fig. 3. 

D. Feedback Circuit 

The feedback circuit, which is the main component for the 
learning algorithm execution, is shown in Figure 4. The circuit 
produces a pulse for a time period that is linearly dependent  on 
the error 𝑦. The inputs of the feedback circuit are the absolute 
value of the row error |𝑦| , its sign 𝑆𝑖𝑔𝑛(𝑦)  and a sawtooth 
voltage source 𝑉𝑠𝑎𝑤 . The output of the circuit is a pulse 𝑒 that 
defines the duration and direction of the write 
operation.  𝑆𝑖𝑔𝑛(𝑦)  determines which part of the circuit is 
active. For 𝑆𝑖𝑔𝑛(𝑦) > 0, the NMOS of Figure 4 is conducting 
and 𝑉𝑠𝑎𝑤  starts increasing over time. As long as |𝑦| > 𝑉𝑠𝑎𝑤 , the 
comparator outputs its supply positive voltage (2𝑉), and the 
output of the circuit is  𝑒 = 5𝑉.  When  𝑉𝑠𝑎𝑤 ≥ |𝑦|,  the 
comparator outputs 0V and the output of the circuit is 𝑒 = 0𝑉. 
The operation for 𝑆𝑖𝑔𝑛(𝑦) < 0 is symmetric. The behavior of 
the signals during training is illustrated in Figure 5.  

IV. MULTI LAYER DESIGN 

In an MNN, multiple layers of neurons are connected 
between different synaptic grids, as illustrated in Figure 6. Each 
neuron layer generates the inputs for the next layer such as 
(where 𝐿 is the number of layers) 

 𝒙𝑘+1 = 𝜎(𝒓𝑘)  , 𝑘 = 1 … 𝐿 − 1, 

where 𝜎(∙) is a sigmoid activation function. The error of the last 
layer is determined as in Fig. 1 while the errors for the other 
layers are determined by 

 𝒚𝑘 = 𝜎′(𝒓𝑘)𝜹𝑘+1, 

where the vector 𝜹 is 

 𝜹𝑘+1 = 𝒚𝑘+1 ∙ (𝑾𝑘+1)𝑇 

To support MNN execution, additional circuits to mediate 
between the grids are required. Additionally, there is a third 
execution step during each training iteration that we call an 
inverted read. Inverted read occurs after the read phase of all the 
synaptic grids except the first layer. During an inverted read, the 
roles of the rows and columns of the grid are inverted, thus 
implementing the transpose weight matrix 𝑾𝑇. During the time 
the grid receives 𝒚 as input, (8) is implemented. 

A. Sigma Function 

A comparator-based operational amplifier with a relatively 
small gain is used to implement a simple sigmoid function as the 
activation function 𝜎(∙). The output of the comparator can be 
either 1 or -1, and due to its poor gain, the transition between the 
different outputs behaves as a sigmoid. 

The derivative 𝜎′(∙) is designed to execute the approximate 
expression 

 𝜎′(𝑥) ≅ 𝜎′(0) ∙ (1 − 𝜎2(𝑥)), (9) 

where 𝜎′(0)  is the gain of the comparator. Operational 
amplifiers are used for the multipliers and subtractors. The 
approximation in (9) is sufficiently accurate – its mean square 
difference from the numerical derivative is approximately 
10−11 , for 𝜎′(0) = 500. 

V. EVALUATION 

We design the proposed circuit using CMOS 0.18um process 
and the TEAM model. The circuit parameters are listed in Table 
1. For preprocessing we used Zscore Normalization and then 
Sigmoid Transform [15] on the dataset. All weights have been 
initialized to W=0. Additionally, a bias synapse has been added 
to each row with a constant input 𝑉𝑏𝑖𝑎𝑠 = 𝑢 = −𝑢̅,  the bias 
synapse acts as an additional weight unit and allows shifting the 
values of the outputs and activation function. In addition to the 
normal simulations, noisy simulations have been performed 
adding up to 10% error to the inputs and simulating thermal 
noise at 90℃. We compare the results of the analog simulations 
to Matlab software simulations, implemented as described in 
Section II. The learning rate of the Matlab simulation is set  
as 𝜂 = 0.1. 

To evaluate the accuracy and performance of the proposed 
design, three datasets [16, 17] have been tested on different 
networks. Table 2 lists the specifications of the datasets. The 
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Figure 5: Waveform illustration of a single training iteration. 

Figure 6: Illustration of a MNN depicting several synaptic grids 

connected by sigma functions and the generation of the error vector 

y for each grid. 

Figure 4: The feedback circuit. 
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results of the three datasets are listed in Table 3. For the SNN 
we get similar training errors as in software with a speed 
improvement of an order of magnitude. MNN results are not 
included since they require further optimization of circuit 
parameters that is planned as a future work.  

VI. CONCLUSIONS 

The execution of SNN and MNN in hardware has a great 
potential to surpass the perfomance and energy efficiency of 
software execution. The proposed use of compact hybrid 
memristor-CMOS synapses enables efficient hardware for SNN 
and MNN with online learning. While the previously-presented 
design of hybrid memristor-CMOS SNN and MNN has 
achieved impressive accuracy for different machine learning 
benchmarks, the supporting circuitry has relied on ideal devices 
and only in this paper the implications of a full analog design are 
considered. 

We show that with a few modifications, such as adding 
shock capacitors and transferring the output current into voltage, 

the proposed technique achieves sufficient accuracy. The 
proposed circuit has significantly lower area than CMOS-based 
synapses even with the additional devices. The circuit is also an 
order of magnitude faster than software implementation with the 
potential for even faster execution. We believe that further 
investigation of the different implications and parameters of the 
circuit will further improve the accuracy and performance of the 
proposed NNs.  
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Parameter Value Parameter Value 

Power Source Memristor 

𝑉𝐷𝐷, 𝑉𝐸𝐸 ±5V 𝐾𝑜𝑛/𝑜𝑓𝑓 ±100𝑛
𝑚

𝑠
 

PMOS 𝐼𝑜𝑛/𝑜𝑓𝑓 ±1𝜇𝐴 

𝑊/𝐿 2.39 𝛼𝑜𝑛/𝑜𝑓𝑓 2 

NMOS 𝑅𝑜𝑛 100Ω 

𝑊/𝐿 9.6 𝑅𝑜𝑓𝑓 200kΩ 

Circuit Timing 

𝑉𝑠𝑎𝑤 15mV 𝑇𝑟𝑒𝑎𝑑 5𝜇𝑠 

𝜎′(0) 500 𝑇𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑
−𝑟𝑒𝑎𝑑

 5𝜇𝑠 

d 8mV 𝑇𝑤𝑟𝑖𝑡𝑒 10𝜇𝑠 

a 10  Bias input 

𝑅𝑜𝑢𝑡 1kΩ 
𝑉𝑏𝑖𝑎𝑠 0.18V 

𝑅𝑟𝑒𝑓 100.05kΩ 

Table 1: Circuit parameters for the analog simulations. 

Dataset  

Unique 

training 

samples 

Unique 

test 

samples 

No. of 

inputs 

No. of 

outputs 

NN 

size 

Wisconsin 
Diagnostic 

Breasts Cancer 

300 120 30 2 30x2 

Wine 96 48 13 3 13x3 

Iris  90 60 4 3 4x3 

Table 2: Information regarding each dataset and the NN design. Both the 

Wine and Cancer Diagnostic datasets are linearly separable between all 

classes, while the Iris dataset is not linearly separable between two of its 

classes, making it more difficult to be learned. 

  Error % Runtime 

Dataset Samples 
Analog 

model 

Noisy 

analog 

model 

Matlab 

model 

Analog 

model 

Matlab 

model 

SNN 

Wine 1200 
3.75% 

±0.52% 

2.5% 

±0.52% 

2.29% 

±1.09% 
18ms 278.5ms 

Breast 

Cancer 
1200 

3% 

±0.5% 

4.67% 

±0.67% 

3.10% 

±1.83% 
18ms 210ms 

Iris 1080 
15.67% 

±0.79% 

16.5% 

±0.67% 

15.33% 

±0.03% 
16.2ms 95.3ms 

Table 3: Results of the SNN training simulations of both the analog 

circuit and the Matlab model. Note that our results differ from the results 

in [13] since a different error function has been used. For the sake of 

simplicity, the error function in this work is mean square error, while in 

[13] a cross entropy error is used. 
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