MRL – Memristor Ratioed Logic

<u>S. Kvatinsky</u>, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C. Weiser

Technion – Israel Institute of Technology CNNA August 2012

Memristors are Useful for Logic

- Memristors are useful not only for memory
- This talk is about **memristor-based logic circuits**

Why Use Memristors in Logic?

Integrating memristors with standard logic Saves die area More logic on die

Our Contribution

• MRL – Memristor Ratioed Logic –

a new hybrid CMOS-memristor logic family

• An eight-bit full adder case study

Outline

- Motivation / Why logic with memristors?
- MRL Memristor Ratioed Logic
- Eight bit full adder case study
- Additional Issues
- Conclusions

MRL - AND and OR

- Voltage as logic state
- Memristors are used as computational elements

7

AND Operation

Increase resistance

AND to OR

ADE

OR Operation

$$V_{OUT} = V_{CC} \cdot \frac{R_{OFF}}{R_{ON} + R_{OFF}} \approx V_{CC}$$

$$R_{OFF} >> R_{ON}$$

Decrease resistance

Need for Amplification

• Concatenation of memristor-based logic gates

Need for Inversion

• AND and OR are not computationally complete

Need for NOT

CMOS Compatibility

- Memristors can be fabricated with CMOS
- Input/output are voltages as in standard CMOS logic
- Using CMOS inverter

J. Borghetti etl al, "A Hybrid Nanomemristor/Transistor Logic Circuit Capable of Self-Programming," PNAS 2008

Outline

- Motivation / Why logic with memristors?
- MRL Memristor Ratioed Logic
- Eight bit full adder case study
- Additional Issues
- Conclusions

Standard Cell Approach

- MRL standard cells NAND and NOR
- Robust no current leakage between stages
- Two CMOS-memristor cross-layer connections per cell – consume area and power

Optimized Approach

- Target minimize CMOS-memristor cross-layer connections
- Solution use inverters only when needed
 - Signal restoration (voltage optimization)
 - Logic function requires inversion

One Bit Standard Cell MRL Full Adder

One Bit Optimized MRL Full Adder

19

Varying Degree of Nonlinearity

Testing Different Memristors General Model – TEAM

ThrEshold Adaptive Memristor

- Tunable nonlinearity
- Current threshold

x – state variable

 $\frac{dx(t)}{dt} = \begin{cases} k_{off} \cdot \underbrace{i(t)}_{i_{off}} 1 & f_{off}(x), \quad 0 < i_{off} < i \\ 0, & i_{on} < i < i_{off} \\ k_{on} \cdot \underbrace{i(t)}_{i_{on}} - 1 & f_{on}(x), \quad i < i_{on} < 0, \end{cases}$

S. Kvatinsky et al, "TEAM: ThrEshold Adaptive Memristor Model," TCAS I, 2012

Case Study Results

- Linear memristors have better performance, area, and power in MRL
- Approx. 50% area reduction as compared to CMOS-based full adder

Parameter	#memristors	# CMOS	# vias	Power	
set		transistors		[norm.]	
CMOS –	-	288	-	-	
based					
Standard cell	144	144	144	1	
Optimized (linear)	144	160	80	0.72	0
Optimized (nonlinear)	144	256	96	355	•

Outline

- Motivation / Why logic with memristors?
- MRL Memristor Ratioed Logic
- Eight bit full adder case study
- Additional Issues
- Conclusions

Additional Issues (In the Paper but Not in This Talk)

- Design considerations
 - Dynamic hazards
 - Power
- Multiple input MRL gates

Outline

- Motivation / Why logic with memristors?
- MRL Memristor Ratioed Logic
- Eight bit full adder case study
- Additional Issues
- Conclusions

MRL – Hybrid Memristor-CMOS Logic

- Approx. 2X improvement in logic density
- Memristor-based OR and AND
- Standard cell NAND and NOR
- Optimized approach
- Linear memristor is better

Thanks!