
Evaluating Programmable Architectures
for Imaging and Vision Applications

Artem Vasilyev,∗ Nikhil Bhagdikar,∗ Ardavan Pedram,∗†

Stephen Richardson,∗ Shahar Kvatinsky‡ and Mark Horowitz∗
∗Stanford University †Movidius ‡Technion

Abstract—Algorithms for computational imaging and com-
puter vision are rapidly evolving, and hardware must follow
suit: the next generation of image signal processors (ISPs) must
be “programmable” to support new algorithms created with
high-level frameworks. In this work, we compare flexible ISP
architectures, using applications written in the Darkroom image
processing language. We target two fundamental architecture
classes: programmable in time, as represented by SIMD, and
programmable in space, as typified by coarse grain reconfigurable
array architectures (CGRA).

We consider several optimizations on these two base archi-
tectures, such as register file partitioning for SIMD, bus based
routing and pipelined wires for CGRA, and line buffer variations.
After these optimizations on average, CGRA provides 1.6x better
energy efficiency and 1.4x better compute density versus a SIMD
solution, and 1.4x the energy efficiency and 3.1x the compute
density of an FPGA. However the cost of providing general
programmability is still high: compared to an ASIC, CGRA has
6x worse energy and area efficiency, and this ratio would be
roughly 10x if memory dominated applications were excluded.

I. INTRODUCTION

Image data is exploding, driven by the availability of cheap
imagers and recent advances in computational photography
and image understanding. Unfortunately these cheap imagers
have small pixels which yield noisy low-light performance
and modest dynamic range, so creating good quality images
from this data requires extensive processing. While a GPU
can handle the computational demands, its power consumption
greatly exceeds the 100mW-range power budget typical for
these applications. Instead, a specialized image signal proces-
sor (ISP) is generally used, often expending energy of less
than 1pJ/op in a 40nm technology.

To achieve this level of efficiency, most ISPs use a collection
of fixed function, or at best microcoded, hardware blocks that
implement the sequence of functions needed for processing
the image. This fixed-function approach worked well in the
past because algorithms changed slowly – traditionally, the
algorithms were well-established and highly stable workhouse
programs for converting raw image data to RGB pixels (the
standard image pipe includes denoising, demosaicing, color
correction, and sharpening), or various standards for image
or video compression (JPEG, MPEG, H.264). Because the
application base was well known and stable, the labor inten-
sive design of both the functional units and their microcode
could acceptably be amortized over a long time and multiple
generations of product sales.

The rapid growth in computational photography and com-
puter vision is upsetting this stable application base. Today’s
cameras commonly include face detectors, panorama capture
and high dynamic range imaging, while manufacturers are
starting to explore light-field photography [1], digital zoom
by merging multiple cameras [2], depth from stereo [3] and
other techniques. Such features often get soft-coded for the
less-efficient CPU/GPU pair on an SoC because building a
new ISP block is too costly. Thus there is great interest in
creating programmable ISPs and, indeed, several ISPs with
programmable elements have been recently produced [4]–[6].

This growing need for programmability has also given rise
to new languages/compilers for this domain. Halide [7] and
Darkroom [8] are domain specific languages (DSL) that ease
the task of creating high-performance imaging implementa-
tions for CPU and GPU, and can even target ASIC or FPGA
hardware. This paper uses Darkroom applications to compare
the energy and area costs for user-programmable ISPs. Like
the RISC revolution of thirty years ago, we focus on the
performance and energy cost of running compiler-generated
rather than hand-optimized code, since this is the code that
nearly all users will run.

We explore the two basic approaches to programmability:
using instructions to configure in time, and using program-
mable wires to configure in space. A CPU, which is program-
mable in time, can execute an arbitrary compute graph by
storing the live edges of the overall graph to registers/memory,
and then using instructions to choose the right edge values
and operations at each time step. To minimize the area and
energy overhead of the instructions, we explore wide SIMD
machines, leveraging the large amount of pixel parallelism in
our target applications. FPGAs and coarse grain reconfigurable
arrays (CGRAs), which are programmable in space, execute
an arbitrary graph by configuring arithmetic/logical blocks and
the wires between them to physically create that graph.

This paper makes the following contributions:

• We create and compare two image processors, a SIMD
and a CGRA, and describe several locality optimizations
important to our target application space.

• We use the same high-level applications, compiler, and
hardware building blocks to compare SIMD and CGRA
solutions, and show that the architectures are within 2x
of each other in energy efficiency and compute density,
with CGRA having an advantage in both metrics.978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

• We show that, in our best case solution, the (not un-
expected) cost of programmability is a compute density
one-tenth that of a comparable ASIC.

Section II discusses the high memory locality of image
processing applications, and how different architectures exploit
this for energy efficiency. Section III describes the line buffer
memory architecture used in our CGRA design, while Sections
IV and V explain our SIMD and CGRA architectures and
optimizations for them. Section VI presents our evaluation
framework, explaining how we generate area and energy
numbers for our architectures, and how we compile code for
them. The results of these architectures and the comparison
with ASIC and FPGA are then given in Section VII.

II. IMAGE PROCESSING ARCHITECTURE

Image and vision applications can be executed on custom
hardware with high energy efficiency because they generally
can be blocked for extreme memory locality with high com-
pute intensity, and can use lower precision integer operations.
With few memory references, the energy/op is set by the
functional unit and local communication energy.

Minimizing energy often requires reading the input image
directly from the sensor in scan line order, and then completely
processing it before writing a result back to the memory.
Hence, the only DRAM accesses happen when writing the
finished picture. This means each pixel passes through a
function unit only once. However, since functions often need
to know the value of nearby pixels in the rows above and
below the current position, each functional unit might need a
small memory to hold enough lines of the image to provide
this context. Since these buffers each hold a few scan lines
of the image, they are called line buffers, and the resulting
structure is a line buffered pipeline. These buffers also enable
producer-consumer locality, since a function directly writes its
output into the line buffer of its successor, preventing the need
to access a more global memory.

The producer and consumer functions between successive
line buffers are referred to as kernels, and the interconnection
among kernels and line buffers mirrors the directed acyclic
graph (DAG) of operations in an application [8]. The array of
pixels used as input to each kernel is often called a stencil.

A. Existing Image Processors

Image processing pipelines have been implemented across
many platforms. We classify these platforms into three main
categories depending on how they are programmed: ASIC,
or non-programmable (fixed function) architectures; multicore,
vector and VLIW architectures which are programmable in
time; and CGRA and FPGA which are programmable in space.

ASIC fixed-function solutions achieve the best efficiency
and performance, and they are widely used to execute image
processing and computer vision algorithms. These solutions
implement the image processing pipeline directly in hardware.
They have deep pipelines with line buffers in between compute
nodes, where each node performs a specific operation in the
application’s dataflow graph. Well-known examples of ASIC

solutions include image signal processor chips used in digital
cameras, like Canon’s DIGIC [9] and Fujitsu’s Milbeaut [10].
These later appeared as fixed function blocks in mobile SoCs
such as TI’s OMAP [11], [12] and NVIDIA’s Tegra [13], [14]

A similar approach was used in automotive computer vision
systems for advanced driver assistance (ADAS), e.g. EyeQ
from Mobileye [15] or Analog Devices’ Blackfin [16]. More
recently, such chips have been used for low power implemen-
tation of modern algorithms like HDR [17].

Efficiency, however, comes at the price of flexibility. Most
ASICs typically only allow a few configurable parameters like
filter coefficients. As a result, adding new features like face
detection might require a new hardware implementation. As
imaging and vision have become more dynamic, the delay
required to create a new chip is no longer acceptable, which
creates a strong need for an efficient programmable ISP.

Programmable-in-time approaches use a computing engine
to execute the image application. Most of these solutions use
some kind of SIMD or vector approach to amortize the energy
and area overhead caused by the instruction fetch over many
pixel-parallel data operations. VLIW solutions try to increase
utilization of ALUs by allowing multiple sub-instructions to
simultaneously use CPU resources after compile time reorder-
ing [18]. Some architectures such as Cadence Vision P5 [4],
Myriad 1 [5], CEVA [19], and CogniVue [20] contain both
SIMD and VLIW engines and support longer instructions to
increase throughput, efficiency, and utilization.

GPUs add threads to SIMD by increasing the register file so
as to allow multiple threads to be resident, which enables fast
thread switching. This allows GPUs to have very high function
unit utilization, since they context switch to hide memory and
other long latency operations. As we will see, this decision
increases energy cost, and is not energy efficient for this class
of applications.

Spatially programmable architectures reconfigure their
connections to support programmability and include FPGAs,
which inspired the creation of a more specialized architecture
known as the coarse grain reconfigurable array (CGRA). Past
and present CGRA chips targeted for image processing include
RaPID [21], PiCoGA [22], RICA [23], MorphoSys [24] and
ADRES [25]. Others go beyond image processing to sup-
port other high-performance computing applications, including
PipeRench [26], Dyser [27], triggered instruction architec-
tures [28] and others. Recently, deep learning applications for
imaging have inspired CGRA accelerators for convolutional
neural networks including NeuFlow [29], NeuroCGRA [30],
Origami [31] and Diannao [32]. A detailed overview of recon-
figurable architectures and their applications can be found in
Tessier’s survey [33].

III. LINE BUFFER

As mentioned earlier, a key to achieving low energy for
image processing is to prevent intermediate data from being
read/written to DRAM, or even to a large on-chip cache. This
section discusses a local buffering mechanism for achieving

Sensor

Wx(N-1)WxH

Line
B

uffer 1

K
ernel 1

Wx(K-1)

Line
B

uffer 2

K
ernel 2

R
esult

WxH

NxN KxK1 11

Size:

Rate:
Fig. 1. Data flow for an ISP with two kernels and line buffers

NxN stencil shift regs

N-1 dual-port SRAMsPixel from
sensor SRAM2

SRAM1

SR2

SR1

SR0

Fig. 2. Multi-SRAM line buffer architecture and operation for 3x3 kernel.
Every cycle, one pixel goes from the sensor to shift register SR0; from
SRAM1 to SR1; and from SRAM2 to SR2. These operations load a new
column into the shift registers. During this same cycle the output of SR0 is
written to SRAM1 and SR1 is written to SRAM2 to move the data into the
right SRAM for the next line.

this goal, and explains the memory system we used to evaluate
different architectures.

An imaging system typically reads data directly from the
image sensor in raster order (row-wise) into a chain of
“kernels” that operate on a sliding data window. In one cycle, a
kernel reads an N×N window of data and generates an output
pixel. In the next cycle, the data window shifts one column to
the right and a new output pixel is generated in raster order.
When the data window reaches the right end of the image, it
shifts one row down and back to the left end of the image,
and the operation repeats. Thus, an image row is read N times
for an N×N kernel. We can store N-1 image lines in a local
buffer (called the line buffer or LB) and exploit this data reuse.
Similarly, each column read from a line buffer is used N times
by the N×N kernel. We store these columns in even smaller
shift registers to exploit this data reuse.

For example, consider the operation of a two-kernel pipe-
line, similar to that shown in Figure 1, where Kernel 1 is a
5×5 blur operation followed by Kernel 2, a 3×3 median filter.
We need to store at least four image lines (plus an additional
5 pixels) from the sensor in a “line buffer” before the 5x5 blur
kernel can begin processing the data. Similarly, the output of
the 5x5 filter is stored (in raster order) to another line buffer
for use by the median kernel. Since the median kernel uses
a 3×3 window, we need to store two image lines (and an
additional 3 pixels) in this line buffer.

Note that, because image sensors produce data in raster
(row-wise) order, the width of each line buffer must be equal
to the image width, while its height is equal to the height of
that buffer’s kernel window minus one. Alternatively, a full
frame of sensor output can be buffered in DRAM, and then
processed in vertical strips, reducing the width of the required
line buffers. This extra DRAM read and write usually makes
the stripped system less energy efficient, although it does

Every cycle: one pixel goes
to shift reg from sensor

Cycle 0: Write Fetch-
Size pixels from shift

reg to SRAM

Cycles 1-N: Write FetchSize
pixels to transpose buffer

Every cycle: 1xN
pixels go to kernel

Single-ported SRAM

Transpose buffer
N x FetchSize x 2

Fig. 3. Single-SRAM line buffer architecture and operation showing how a
wide access singled ported SRAM can be used as a line buffer. By fetching
M pixels each access, we only need to fetch each row every M cycles. If
M > N , we have enough cycles to fetch all the rows needed and write the
new data into the memory using a single port.

reduce the line buffer area. A comprehensive treatment of the
tradeoffs involved with stripping can be found in Brunhaver’s
thesis [34].

Figure 2 shows the detailed operation and construction of a
line buffer feeding an N×N kernel. This simple line buffer
consists of N-1 dual-port SRAMs, SRAM1 to SRAMN−1,
each containing an image line; and N shift registers, SR0 to
SRN−1 holding N pixels each. During each cycle, the line
buffer receives one input pixel. The incoming pixel goes to
SR0, which represents the newest row of the image, while the
remaining shift registers SRi (0 < i < N) are fed by reading
one pixel each from SRAMi. This feeds a new column of
pixels into the shift registers, so the needed N×N data window
for the kernel is provided by these shift registers. As the new
column of pixels is stored in the shift registers, the column of
pixels shifted out of the registers is written back to the SRAM,
but shifted by one row: each shift register SRi is written into
SRAMi+1. This row shift moves the data into the right location
for computation of the next line in the image (the data from
the top line, SRN−1, is not needed any more and is dropped).1

While simple in construction, the multi-SRAM line buffer
of Figure 2 has high area (dual-ported SRAM) and energy
overhead (narrow access width). A more compact and efficient
line buffer can be constructed from one wide single-ported
SRAM and a “transpose buffer,” as shown in Figure 3. The
SRAM in this line buffer always reads or writes M pixels
per cycle, where M ≥ N. The incoming pixel is stored in an
M pixel shift register. Out of every M cycles, a) data is read
from the SRAM for N-1 cycles, one access for each row that is
stored in SRAM; b) the incoming shift register is written into
the SRAM during 1 cycle; and c) in the remaining (M - N)
cycles, the SRAM is idle and gated off to save power. The
transpose buffer is a cyclic buffer that writes data into it row
wise, but reads data out column wise. Each cycle, a column

1If you are willing to put a crossbar between the SRAM and the shift
registers, you don’t need to move the data between the SRAMs. Instead,
since the oldest pixel (top-right in the stencil in the diagram) is no longer
needed, the newest pixel (bottom-right) goes from SR0 to SRAMN−1 for
later usage, over-writing the dropped pixel. After completing the line, use an
N×N crossbar to “relabel” the SRAMs (SRAMi becomes SRAMi+1 mod N),
so there is only one pixel written independent of the size of the input stencil.

of pixels is read from the transpose buffer to the stencil shift
registers (not shown in the figure).

For the CGRA, we created a small line buffer building block
using this efficient approach, and can combine these blocks to
form larger LBs. Each LB block contains a 16kB SRAM that
can hold two rows of 16 bit single-channel data from a 4K-
wide image, natively supporting stencil heights up to 3 pixels.
Multiple-channel pixel support is handled by using additional
LB blocks in parallel, operating in lock step with each other.
To implement an LB with larger height we chain the LB blocks
together like we chained the SRAMs in the simple line buffer
model. The input data is fed into the first LB block. The pixel
of the output column that is going to be dropped is fed as
the input of the next LB block, in addition to being sent to
the kernel. With this arrangement, the newest two lines come
from the first LB block, and the next two lines come from
the next LB block, etc. Chains can be of arbitrary length. For
example, a 5×5 kernel would chain two such blocks.

The base architecture for our CGRA implementation re-
placed some columns of block RAMs with LB blocks. To
estimate the area/energy of these blocks, we used an ASIC
flow to implement the control logic and transpose buffer that
are needed in addition to the SRAM. As expected, SRAMs
dominate the area and energy of the LB blocks; the added
logic adds just 10% area and 15% energy overhead over the
SRAM cost.

This structure was not used for the SIMD machine. Since
the SIMD processes a kernel over multiple cycles, the SIMD
line buffer does not need to read or write pixels every
clock cycle. This reduced memory bandwidth, combined with
intrinsic wide fetches, made scratchpad memory an efficient
line buffer, and the register file served as the transpose buffer.
Similarly, this approach has no LB-specific control logic, so
the energy overhead associated with this “line buffer” is simply
the energy used by the SIMD’s load and store instructions.
Thus for SIMD, the line buffer energy is easy to estimate
from the memory energy. Because the scratchpad is part of
the SIMD base architecture, it has no extra LB-specific area
overhead.

IV. SIMD ARCHITECTURE OVERVIEW

Like most compute engines for highly data parallel applica-
tions, we use a SIMD architecture to amortize the instruction
overhead over multiple data elements processed in parallel,
and choose a SIMD width to make the resulting instruction
overhead small. We parallelize over the image data, so if
we represent the imaging application as a directed graph
of operations, each SIMD lane processes this graph for its
pixel. Like many others we use VLIW techniques to increase
performance by enabling multiple ops to be processed each
cycle, which also enables overlap of data movement (memory
load/store) and computation.

Our SIMD fetches an instruction from the instruction RAM,
decodes it, and broadcasts control signals to multiple execution
lanes (see Figure 4). Each lane contains some local storage
(register file), a processing element (PE), and a port to the

Instruction
RAM

IFetch and
Decode

Line Buffer
Bank #1

Line Buffer
Bank #2

Line Buffer
Bank #3

Load/Store and Alignment

Lane 1

Register
File

PE

Lane 2

Register
File

PE

Lane 3

Register
File

PE

Lane 4

Register
File

PE

Fig. 4. Programming-in-time (SIMD) architecture: data and control flow for
a single core in a multicore system. Line buffer banks are used to ’strip’ the
image across multiple cores.

memory hierarchy. There are no inter-lane communication
ports. A load-store unit for the SIMD engine fetches wide
data from the system memory, splits it into the size for each
lane, and loads it into the register file, or else it takes the data
from the lanes, aggregates it and stores it into the memory.
This unit contains a double wide register allowing data from
two memory fetches to be concatenated together, and then a
funnel shifter which can extract any contiguous vector from
this register to present the needed data to the right SIMD
lane. This shifter is used to correctly align memory data for
the SIMD engine.

To explore the energy/area efficiency of this type of architec-
ture we use a SIMD engine with 32 16-bit-wide independent
lanes which, as we will show later, is enough to reduce the
effect of instruction overhead to 14%, while not causing too
much inefficiency with the block size. It has a conventional
seven stage execution pipeline with variable length VLIW
instructions. The base architecture has a limited VLIW ex-
tension, allowing the overlap of load and compute ops, and
optimally encoding instructions that do not use both VLIW
slots. Our functional unit supports 16-bit integer arithmetic
(including multiply), logical and shift operations. It has two
inputs and one output. The register file is initially sized to
accommodate the largest active working set among all appli-
cations, while the instruction RAM is sized to accommodate
the largest application. (Application and sizing details can be
found in Sections VI and VII respectively.) The application
DAG is scheduled using a depth-first scheduler [35].

We use fine grain vectorization, i.e. adjacent lanes operate
on adjacent pixels. This scheme can handle many different
image widths, which is critical when we need to use multiple
SIMD cores. The down side of fine grain vectorization is
that the data needed by adjacent lanes overlaps for filter
convolution. We can supply overlapping input data by storing
multiple copies of the data in the register files or by sharing
data across lanes. While, as we will see later, the number of
registers is an issue, the shareable input pixel values form a
small subset of the active data set. Thus removing duplicated
values would not significantly decrease register access area or

0

0.5

1

1.5

2

SI
M

D
 C

o
re

 E
n

e
rg

y
(p

J/
o

p
)

Single Core SIMD Energy

LD/ST + Decode

Vector RF

PE

I-RAM

0K

5K

10K

15K

20K

25K

30K

SI
M

D
 C

o
re

 A
re

a
(µ

m
2
)

Single Core SIMD Area

LD/ST + Decode
Vector RF
PE
I-RAM

Fig. 5. SIMD area and energy components before architectural optimizations.
The vector register file dominates both metrics.

energy. Since our LD/ST unit allows us to duplicate the data
without increasing the number of memory fetches, and the cost
of even adjacent inter-lane sharing is greater than the cost of
a register file fetch, we duplicated data in the register file
and do not support inter-lane communication. This decision
also simplifies the compiler and the physical design of the
hardware.

We implement the line buffers as blocks in a large scratch-
pad memory. The access width of the scratchpad is equal to
the SIMD vector width. We read the data that the kernel will
operate on, one SIMD vector at a time, from the scratchpad
memory into the load store unit. The load store unit funnels
the incoming data to create multiple shifted vectors, which are
then loaded in the register file, one at a time. The loading of
K vectors along the row of a K×N window triggers only two
LB reads and K shifts in the load store unit. A K×N stencil
gets stored in the register file as KN entries.

We implemented the SIMD engine described above using
TSMC’s 40nm technology. Figure 5 shows the area and energy
breakdown for this base SIMD architecture. Next, we describe
some optimizations used to improve the base architecture.

A. Hierarchical Register File

Figure 5 shows that, in our SIMD base architecture, the
energy and area were dominated by the register file, which was
sized to accommodate the largest active data set. Clearly some
memory hierarchy is needed. We split the register file into two
levels, RF and L0. RF, the lower level of the hierarchy, has
multiple read-write ports, connects to the PE, and stores data
to be utilized in the near future. This RF is built using flip-
flops and muxes. The L0 is implemented using single ported
SRAM to reduce area, increasing compute density. Given the
static nature of the compute graph for these applications,
the compiler can determine the data movement between the
L0 and the RF during compile time. Because of this static
scheduling, we can use SRAMs with wide I/O to amortize
access cost across all lanes.

Our statically scheduled VLIW machine handles data move-
ment without any performance overhead, overlapping the data
movement with computation. The extra slot in the instruction
does increase the code size and thereby the instruction fetch
energy cost, however this impact is minimal because it is
amortized across all SIMD lanes. To get the greatest area
saving, we want to reduce RF size as much as possible. The
lower bound for RF size is a function of the L0 bandwidth.

As we reduce the size of the RF, the data movement to/from
the L0 level increases rapidly and eventually overwhelms the
L0. We chose the smallest RF size that was within the L0
bandwidth limit. The final design is discussed in the results
section.

B. Other Optimizations

Introducing a single level of memory hierarchy reduces the
total SIMD area considerably. Still, L0 area dominates (see
results section). With this large fixed memory area, the only
way to improve compute density is to put additional functional
units in each lane and try to schedule multiple operations
per cycle. These functional units can be controlled either by
adding extra VLIW computation slots and scheduling multiple
independent operations per cycle, or by fusing statistically
prevalent dependent operations into a single new operation.
Of course the higher computation rate will increase the re-
quired L0 bandwidth. The VLIW approach also necessitates
an increase in the number of RF ports and requires availability
of independent operations to schedule in each cycle. If the
independent operations are temporally far apart, this approach
increases the active working set of the application, which
either increases the RF size or the L0 bandwidth. On the
other hand, the fused-operations approach does not affect the
working set of the code. While supporting fused instructions
requires additional register ports, it generally needs fewer
additional RF ports than VLIW.

We implemented and scheduled ISPs using both approaches
to measure their energy and area efficiencies. For the VLIW
approach, we extended our baseline two-slot VLIW by adding
a third functional slot. This required a doubling of the register
file ports, and the addition of another PE. For the fused
operations approach, based on our analysis of the application
graphs, we added an extra fused-add-subtract unit at the tail
of the existing PE. This unit, when enabled in the instruction,
takes one of its operands from the result of the PE and the other
operand from a newly added register file port, and overrides
the PE output. The results are shown in Section VII.

C. Multicore SIMD Implementation

The optimizations so far have focused on improving SIMD
compute density and energy efficiency. However, the through-
put of a single SIMD core is much less than the throughput
of our CGRA and ASIC architectures. To process demanding
applications at full frame rate, and for a fair architectural
comparison, we need to increase the SIMD throughput.

The most obvious way to improve performance is to imple-
ment a multi-core SIMD system. We can divide the image into
multiple “strips” and allow each core to process a strip. The
downside of this approach is that the overlapping region at the
strip boundaries must be read multiple times. However, with
this approach, all cores follow the same schedule, and there
are no inter-core dependencies. This makes the scheduling and
implementation easier. The line buffer is divided into banks,
with each bank storing data for a single core. The number of
pixels stored in a bank is equal to the strip width. A core can

access up to K (K=3 in Figure 4) banks to its right, in order
to support kernels with width greater than the strip width and
to allow the kernel to access its neighbor’s strip for data in
the overlap region.

Since the schedule for all cores is identical, the read and
write addresses of all banks are identical and change in lock-
step, avoiding any memory contention. The area overhead in
this arrangement comes from additional muxes, and increased
line buffer area due to higher bandwidth requirement. The
energy overhead is mainly due to re-fetching pixels from the
overlap region across multiple SIMD machines. For example,
as an extreme case, if the kernel width is equal to the width of
two strips, the data in each bank will be fetched twice: once
for its own core, and once for the core to the left. This might
seem excessive, but if the line buffer energy is not a significant
component of the total pixel energy, the overhead is small. In
our experiments the per-pixel energy increased by a maximum
of 10% due to multi-core implementation. The area overhead
was less than 5%.

V. CGRA ARCHITECTURE OVERVIEW

Our CGRA architecture is based on a standard FPGA
design, allowing us to use VPR [36] for our research. VPR is
a set of tools that performs mapping, placement and routing
for FPGA-like designs. It also provides a fair way to compare
our results to a reference FPGA (based on Stratix IV) in terms
of performance, area and energy/power [37].

Like an FPGA, our CGRA uses an island style [38], [39]
organization where a chip consists of a certain number of tiles
and each tile has three kinds of blocks:

• Processing Element (PE), also known as the logic box,
responsible for performing functions on the inputs.

• Switch Box (SB), responsible for implementing connec-
tions between any two tiles and connecting the PE output
to other tiles. Such connections are done using wire
segments, and the SB enables building a longer segment
out of two shorter ones.

• Connection Box (CB), responsible for connecting the PE
inputs to the wires passing through the SB.

Tiles live on a 2D grid and connect to each other with a certain
number of tracks of wire segments. Like most FPGAs we use
a simple mesh connection topology.

Our architecture consists of two kinds of tiles, memory
and compute. Compute tiles (PEs), shown in Figure 6, are
homogeneous and consist of ALU, MULT and LUT blocks,
with two 16-bit bus inputs and one 1-bit input. All inputs
are connected to the functional elements through an optional
register. This register can be used for pipelining or storing
constant inputs to the PEs. A PE has one 16-bit output and
one 1-bit output. Additionally, there are a few global control
signals which are not shown in the figure, like clock, clock
enable and reset. The line buffer blocks are used for the
memory tiles. Like most FPGAs, the memory and compute
tiles are placed in columns in the final layout.

CB

SB C
B

PE

Fig. 6. How PEs connect to programmable wires in a CGRA tile. The PE
consists of registers on the CB outputs, LUTs, adder and multiplier. It also
contains internal muxes and some other logic. The solid lines represent 16 bit
buses and the dashed wires represent individual wires.

A. Interconnect architecture

All connections in the application’s DAG can be separated
into two groups of signals: 16-bit buses and 1-bit signals. For
both groups we use identical routing architecture composed
of switch boxes, connection boxes and wire segments. We
use heterogeneous length wire segments in the wiring tracks,
and measure segments in terms of the number of tiles that
they span. In our architecture roughly 50% are length 1
wires, 20% are length 4 and 30% are length 8. We explored
routability using a VPR-based method [40] and found that
this combination of lengths works slightly better for our
benchmarks.

A key parameter for CGRA is the number of tracks that
pass through a tile. The larger this number, the more area
(and energy) the SB and CB will take, but in return it allows
greater flexibility in connections. If the number of tracks is
too low, an application can become unroutable.

We set the number of tracks at 12 for both bus and bit-wide
connections in both horizontal and vertical directions. We use
unidirectional wire segments (a common practice in FPGAs)
meaning that there are six 16-bit buses plus six 1-bit wires
entering each tile from four sides and six buses plus six wires
exiting from each side. We picked 12 because it was enough to
route any application from our benchmark set (most of them
need less).

Our switch boxes use a Wilton pattern [41] with Fs=3 to
change track direction, and they consist of 4:1 MUXes, one
per output wire segment. This means each incoming bus/wire
to a switch box can only leave on one track in each output
direction. The MUX is 4:1 because each output can come from
one track in three possible input directions (this parameter is
commonly called Fs) or from the PE’s output. Remember that
not all wire segments end at every switch box. Long segments
route through switch boxes and don’t require this MUX. For
our wire length distribution, around 60% of a tile’s outputs
have MUXes and around 40% just pass through the switch-
box. Additionally, each SB has four registers per group of
signals, such that each wire (but not all wires at once!) can
be optionally registered for better timing. To support our 12
16-bit track system, the SB has 14, 16-bit 4:1 MUXes (7 for
the vertical and 7 for the horizontal), and 4 16-bit registers.
The SB for our 12, 1-bit signals has the same architecture.

A CB allows an input of a PE to be connected to nearby

Unconnect

LB Block

Kernel

N registers
per LB output

Remove all
constants

Fig. 7. Application mapping. The compiler builds kernels and line buffers,
which we process and map onto the CGRA hardware as shown.

tracks. Only tracks that are next to a tile connect to the CB.
As shown in Figure 6, the CB on the right of the tile connects
to the vertical tracks, while the CB on the top of the tile
connects to the horizontal tracks. In order to reduce the area
of a CB in FPGAs, CBs connect only to a subset of nearby
tracks, a technique called depopulation. Depopulation exploits
inherent redundancy in connectivity but it also makes routing
harder; also, the right degree of depopulation is not obvious.
In our case, we get the benefit of depopulation for free by
using buses and doing bus based routing instead of routing
each bit individually. This technique allows us to have each
CB connected to all tracks. Our PE has two bus inputs and one
1-bit input; this translates to two bus-based CBs each having
a 12:1 16-bit MUX, and one single-bit CB with a 12:1 MUX.

B. Extra elements

Besides the MUXes, the SB in each tile will have some
number of signal repeaters for signal regeneration of long
wires that span multiple tiles and buffers. We account for
these buffers in energy and area calculations without explicitly
mentioning it.

Another “hidden” element is the configuration; this storage
holds the programmed select values for all the CB and SB
MUXes, plus opcodes, MUX selects, and register enable bits
etc. for the PEs. Overall, each tile needs 12 bytes of storage
for configuration, which we model with latches. Note that this
is additional storage needed for configuration; the storage for
the LUTs has already been included in the PE area.

C. Mapping DSL application to CGRA

To map an application from DSL to CGRA, our compiler
first converts it to a DAG of LBs and kernels, where each
kernel is in turn represented by a DAG of operations, as shown
back in Figure 1. Next we map the application’s line buffers
into our LB blocks, grouping/chaining them to create buffers
of the correct size. Since our LB blocks output a column of
pixels each cycle, the final pixel shift registers are built from
the registers in the PE blocks. We pulled the final shift registers
out of the LB blocks to increase the locality of this highly used
data as shown in Figure 7. The kernel’s operations are then
mapped to the CGRA PE blocks, building the configuration

0

0.2

0.4

0.6

0.8

1

1.2

C
G

R
A

 T
ile

 E
n

e
rg

y
(p

J/
o

p
)

CGRA Tile Energy

Wires
Config
PE
SB
CB

0K

1K

2K

3K

4K

5K

C
G

R
A

 T
ile

 A
re

a
(µ

m
2
)

CGRA Tile Area

Wires
Config
PE
SB
CB

Fig. 8. CGRA area and energy components before optimization.

of blocks and connections needed to create the desired kernel
DAGs.

In this mapping process we move constant storage (parame-
ters that don’t change during invocation, like filter parameters)
close to where it is used. When mapping a kernel, we trim the
connections which route constants, and place the constant in
a local register to reduce the energy and area of the resulting
implementation.

Now we have a complete representation of the application
in terms of elements that have to be placed in the CRGA
architecture. We use VPR for placement and routing, opti-
mizing for the delay between connected nodes in the design,
which is identical to minimizing total wire length. VPR doesn’t
support bus based routing, so we represent all 16-bit buses
with specially marked single bit wires. Even though buses and
bits become indistinguishable, the routing result is still valid
because we use identical interconnect resources for these two
groups.

D. CGRA Optimization

Running VPR provided the energy and area of our base
CGRA architecture, shown in Figure 8. While the energy/op
is good, the architecture suffered from long critical paths,
which limited maximum operating frequency and affected area
efficiency. The easiest way to solve this is through pipelining,
since each kernel is a DAG, which can be pipelined to any
depth without breaking functionality. Unfortunately, pipelining
the PEs didn’t help (it was in the base design) because the long
delay was caused by long wires. Like some recent FPGAs, we
added registers to the SBs to allow us to pipeline the wires
and create a better design. The challenge was to fit it into the
existing design flow.

To pipeline the design we take the routed output from VPR,
which has the X,Y coordinates of each CGRA element, along
with a list of the SBs used to make each connection in the
design. From this data we extract the original compute graph,
annotated with the SBs used to form each connection along
with the length of the wires between these switch boxes. Based
on this information, we use static timing analysis to find where
pipeline registers are required to achieve our target clock
frequency. This analysis includes the delays of all SBs along
the path, plus CB and source PE; these delays are taken from
the synthesis report of corresponding blocks implemented in

Kernel Ops

Nodes from
LB mapping

SB from
Routing

Pipeline
registers

To
Line Buffer

From
Line Buffer

From
Line Buffer

Reg

LUT

Reg

Reg MULT

ALU

Fig. 9. Data flow for a kernel after it has been placed and routed on the
CGRA architecture and then pipelined. The registers are the architectural
delays from the application, and the thin blue boxes are the registers added
from pipelining. Notice that the total pipeline delay added to each input of a
functional block must be the same.

Shift Mux Logic Div ALU Mult Complexity
Harris 14 1 4 0 51 20 86
Fast 1 1 351 0 50 3 77
ISP 129 198 41 0 584 61 975
FCAM 289 1285 198 4 3313 302 5205
Stereo 0 65 0 1 9683 1 9750

TABLE I
APPLICATION COMPLEXITY AS MEASURED IN BASIC OPERATIONS.

“COMPLEXITY” IS THE SUM OF ALL OPERATIONS WEIGHTED BY BIT
WIDTH AND NORMALIZED TO 16 BITS.

Synopsys PT. Lastly we add additional registers to balance the
cycle delay of each input and guarantee that functionality is
not broken, as illustrated in Figure 9. The pipeline registers
are implemented from the registers that were added to the
SBs, so adding them doesn’t change the routing information.
After pipeline insertion, we have a complete view of the im-
plemented application with all the blocks required to estimate
its energy.

We found that pipelined wires greatly improve area effi-
ciency of the CGRA by increasing its clock frequency 2-11x
and making it the same as the SIMD machine. This resulted
in about 10% increase in tile area and between 2% and 10%
decrease in the energy efficiency.

VI. EVALUATION FRAMEWORK

The previous sections presented the SIMD and CGRA
architectures and discussed the optimizations we used to
improve their energy efficiency (pJ/operation) and compute
density (operations/mm2). To derive these metrics, we ran the
same applications on each architecture and tracked the activity
of the hardware blocks during execution, e.g. RF, L0, PE and
memory accesses for SIMD, and bus transitions for CGRA.
We then combined this activity data with a table of the actual
energy costs of the operations extracted from simulating block
implementations.

Table I lists the applications used and their complexity in
terms of how many operations produce one pixel of result.
Harris [42] and Fast [43] are corner detectors, where Fast

uses a much simpler algorithm and hence has faster runtimes.
ISP and FCAM are both complete image processing pipelines.
ISP is a generic imaging pipeline that performs demosaicing,
white balance, color correction, crosstalk correction, dead
pixel suppression, and black level correction. FCAM is a
more sophisticated version of this pipeline that does various
levels of noise reduction, as well as higher quality (and
more computationally intensive) versions of the other steps.
Stereo [3] implements maximum similarity detection within a
linear search distance. A prior paper describes some of these
applications in more detail [8]

The applications were chosen to stress different architec-
tural components. For example, the Harris corner detector is
dominated by line buffer accesses while Stereo is computation
dominated. Fast contains many single bit operations and
benefits from an FPGA architecture, which can pack many
such operations in a CLB. The large operation count of Stereo
(two orders of magnitude larger than Harris) stresses the VPR
mapper and the depth-first scheduler. Stereo also demands the
highest amount of architectural resources like PEs, routing
tracks and register file entries, and it lets us measure metrics
at the upper utilization bound. ISP and FCAM are examples
of “typical” applications that run on ISPs.

These benchmarks, written in the Darkroom DSL [8],
were compiled to an intermediate representation (IR) which
consisted of multiple kernels (filters) connected to produce a
final image, plus descriptions of the DAG for each kernel as
was mentioned earlier. The DAG description consists of nodes
doing simple operations like ADD, AND, MUX and MULT
that can be scheduled on PEs.

On the SIMD engine, we scheduled each kernel’s DAG in
a depth-first-search manner (keeping any intra-kernel loops
intact), and counted the number of clock cycles, register file
accesses, instruction memory accesses, and load/stores needed
to generate an output pixel. For CGRA, we used VPR to map
the completely unrolled DAGs onto a homogeneous CGRA-
tile array with configurable routing. We counted the number
of tracks being used in each channel, the number of live buses
in each CGRA tile, and the minimum number of CGRA tiles
needed to fully route the DAG. In addition to predicting usage
for computing energy, these metrics also enabled us to design
the architectural components.

We implemented the architectural components as Verilog
models and placed and routed them using industry standard
tools for the TSMC 40G (40nm) technology node, to deter-
mine performance and area. To estimate energy consumed, we
simulated the routed netlists by applying uniformly random
data to the data inputs while keeping the control signals
constant at their expected values. This gave us toggle counts
and, using the parasitics from the routed netlists, Synopsys’
Primetime-PX tool estimated gate and wire energy. We com-
piled the memory instances used in the architectures with
ARM’s single port SRAM memory compiler and derived
their performance, area, and access energy from the resulting
compiler-generated datasheets.

SIMD energy and compute density
For SIMD, we assume each IR instruction requires an instruc-
tion fetch i, plus one or more data fetches r from the register
file, plus execution of an op in the PEs, and possibly a line
buffer fetch L. We counted each of these events while running
the scheduled code to get totals ni, nr, nop and nL respectively.
Then, using the per-event energy found by simulation, and
given time tapp for the app to run, we calculated energy E
and compute density C

E = (niei + nrer + nopeop + nLeL)/(nop)

C = (nop/tapp)/(total area)

CGRA energy and compute density
For CGRA, each IR instruction is mapped to a tile. The tiles
are then placed and routed using VPR to minimize tile array
size while ensuring complete connectivity. We obtained the
number of live buses in every tile and the number of active
and passive tiles from VPR logs (tiles that have been mapped
to an IR operation are active tiles, while tiles that are used
only for routing are passive tiles). We simulated tiles with
different numbers of live buses and different PE mappings. We
thereby got the energy of CGRA tile components for different
activity levels. Using these energy numbers and VPR statistics,
we derived the energy and compute density of each CGRA
application in the same manner as with SIMD.

FPGA energy and compute density
For FPGA comparison we used the k6-frac-N10-frac-chain-
mem32K-40nm architecture from VPR’s distribution. This al-
lowed us to use the same set of tools for placement and routing
as we used for CGRA. Like CGRA, this is a 40nm part, and the
model comes annotated with timing and energy information,
providing a good comparison. It has 6-input, 2-output LUTs
with carry chains for fast arithmetic and hard DSP and RAM
blocks, all of which we use in our designs.

However, our reference FGPA doesn’t support pipelined
wires. This was a very important feature for getting good area
efficiency in our CGRA, so for fair comparison we estimate its
effect on the baseline FPGA. To do this, we generate FPGA
area and energy numbers using VPR, then increase the SB
area by the area of the pipelining flip-flop assuming 1 pipeline
register per track. For energy, we assume that the clock is
running at peak frequency and adjust dynamic power from
VPR’s report by the ratio of peak frequency over frequency
achieved by VPR. Finally we increase the energy by the
same amount as “pipelining” in CGRA. While this energy
adjustment is a crude approximation, given the small energy
cost of pipelining, the resulting error will be small.

For each application, we ran a design with no initial pipeline
registers, and one that was pipelined. These designs’ dynamic
energy varied by up to 30% even after accounting for the
energy of the flops, so we took the lower energy as our starting
point and added the pipeline energy to that.

ASIC energy and compute density
For the ASIC comparison we translated each application’s
graph directly to Verilog and used standard synthesis and

CGRA SIMD FPGA+pw ASIC
Harris 1.38 2.08 3.69 0.53
Fast 3.91 6.27 3.19 0.52
ISP 0.91 1.68 1.12 0.20
FCAM 1.04 1.41 1.42 0.15
Stereo 1.30 1.94 3.19 0.13
Average 1.71 2.68 2.35 0.31
Peak 0.38 0.76 1.35 0.03

TABLE II
ENERGY PER OP FOR THE SELECTED IMAGING APPLICATIONS

ON EACH ARCHITECTURE, IN PJ/OP.

back-end tools to generate the physical implementation. Area,
performance and energy numbers were extracted from this
implementation. The ASIC designs used the same SRAM
library as the other implementations, but could use memory
sizes that were optimized for that particular application. These
designs did not worry about being compatible with a range of
applications.

VII. RESULTS

We implemented the SIMD, CGRA, ASIC, and FPGA
architectures, as explained in the methodology section, using
our initial estimates of architectural parameters. Based on the
feedback from these initial experiments, we optimized the ar-
chitectures using techniques mentioned earlier in the paper. In
this section, we present our analysis and results for efficiencies
of various architectures and architectural improvements.

A. Energy/Op

Table II shows the energy per op for each architecture. To
separate out structural overhead, versus the overhead caused by
communication, we include a “peak” energy efficiency number
in this table. The peak number gives the energy cost of a
single local operation for each of the different architectures,
i.e. a not-to-be-exceeded number that would happen only if
the application consisted only of 16-bit adds with locally-
generated inputs. So the ASIC peak number is simply a 16-bit
adder running at 1 GHz. Peak CGRA efficiency reflects one tile
doing 16-bit adds at 800 MHz with data coming from adjacent
units. SIMD peak efficiency is calculated for a single core with
32 lanes performing 16-bit adds at 800 MHz where two vectors
are read while one is written to the register file. FPGA peak
energy efficiency is modeled as a single CLB doing 16-bit add
at 741 MHz counting the energy of CLB, SB and CB.

The peak numbers show the large energy overhead of
creating a programmable system with flexible communication,
even with locality. The lowest possible energy/op for all
programmable platforms uses over 10x more energy than
ASIC, which only contains the energy of the adder. The buses,
muxes, registers, etc. that you include to make the adder part
of a PE all add overhead to its fundamental operation. While
this overhead energy is not large, the add energy is very small,
so the overhead energy dominates it.

Since the CGRA and SIMD machines use the same basic
function-unit design, their energy difference is caused by the
cost of the register file relative to the connection box cost. This

0.0

0.5

1.0

1.5

2.0

Stereo Fcam ISP Harris

Leakage

Instructions

Line Buffer

Data Spill Ram

Vector Reg File

Func Unit

0.0

0.5

1.0

1.5

2.0

Stereo Fcam ISP Harris

Leakage

Clock

Line Buffer

Shift Regs

Pipelining

Wires

SB

CB

PE

Fig. 10. Energy breakdown in pJ/op for the selected imaging applications (SIMD on the left, CGRA on the right).

CGRA SIMD FPGA+pw ASIC
Harris .013 .013 .039 .0046
Fast .034 .046 .032 .0038
ISP .007 .010 .016 .0011
Fcam .006 .009 .017 .0006
Stereo .006 .008 .024 .0004
Average .013 .017 .026 .0021
Peak .005 .008 .012 .00009

TABLE III
AREA EFFICIENCY FOR SELECTED IMAGING APPLICATIONS

ON EACH ARCHITECTURE, IN MM2 /GOPS,
INCLUDING LINE BUFFER AREA.

difference makes sense, as the SIMD register file explicitly
does some amount of communication that the CGRA must
do with longer with wires. Thus while the peak SIMD:CGRA
ratio is 2:1, on average SIMD takes 1.6 times the energy of
a CGRA implementation. The energy difference between an
FPGA with pipelined wires and the CGRA is mostly caused by
slightly longer wires in the FPGA and less efficient functional
units, so FPGA takes 1.4 times more energy than CGRA.

While the line buffer energy is not a significant factor in the
programmable solutions, it is important in ASIC implementa-
tions. For applications like FCAM and Stereo whose kernels
have significant computation between line buffers, computa-
tion energy dominates even in the ASIC implementation and
the gap between CGRA and ASIC is around 10x in energy.
However, smaller applications like Harris, Fast and ISP that
are dominated by LB memory accesses have only around 3x
gap in energy efficiency, since the line buffer energy in both
implementations is similar.

Figure 10 breaks down energy consumption in SIMD and
CGRA architectures. Since we use the same functional units in
both designs, it is not surprising that the energy of the function
units are nearly identical for the two architectures. (“func unit”
for SIMD, “PE” for CGRA). The difference in total energy
comes from the different cost of communication. In SIMD
this is the combination of the register file and spill RAM
energy and averages over 1 pJ/op, while the combined cost
of the wires, switch box and connection box in the CGRA is
around 0.5 pJ/op. Note that in both architectures the “overhead
energy” is generally low.

B. Area per Op/s

Table III tells the required area/GOPS for the different
implementation approaches, with the peak line again giving
the minimum possible mm2/GOPS. We use the same base
configuration for calculating the peak compute density as
energy for all the targets except for FPGAs, where we now
include multipliers with the LUTs. When viewing these num-
bers, it is important to remember that the presence of the
line buffers makes calculating compute density tricky for two
reasons. First, since the LB area doesn’t scale with application
performance, lower performance (and hence smaller area)
solutions have worse compute densities. So, since a single-
core SIMD machine has lower performance and lower area
than the competing architectures—e.g. for FCAM it requires
2.6mm2 compared to CGRA’s 25mm2—to fairly compare their
compute density, we used multiple SIMD cores to create
solutions with matching performance.

The second issue is the size of LB that is included in the area
cost. In an ASIC solution, you build the size LB that its single
application requires. For a programmable solution, you provide
sufficient resources to solve the entire range of problems
it might see. Thus for most applications, the programmable
engine has surplus memory that it doesn’t use. This extra
memory further decreases the compute density. So, while the
actual hardware contains a maximally-sized LB, Table III
calculates a per-application area efficiency using only that
portion of the LB that was required for each application, with
the assumption that a user generally tries to put as much of the
computation on the accelerator as will fit: it is unlikely that
only Harris would use the accelerator, so when the accelerator
is actually deployed in a real system, other applications would
be using the part of the LB that that the Harris application
didn’t need.

To quantitatively address these issues, Table IV provides
the area of an LB block in each of our programmable archi-
tectures, and the size LB needed for each application. It also
provides the GOP rate of each application. Together this data
allows one to compute the area/GOPS overhead that is caused
by the LB (for the size LB you choose to use). In addition
we give the mm2 per GOPS for the hardware excluding the
LB, so adding the two terms together generates the data in

Area efficiency, mm2/GOPS LB size, Perf,
CGRA SIMD FPGA+pw rows GOPS

Harris .007 .008 .022 8 69
Fast .029 .041 .018 6 62
ISP .005 .009 .012 20 780
Fcam .005 .008 .015 50 4164
Stereo .006 .008 .022 70 7800

Size of 16kB LB in mm2 16kB LB,
CGRA SIMD FPGA+pw # rows -

.104 .094 .266 2 -
TABLE IV

1) AREA EFFICIENCY WITHOUT LINE BUFFER, MM2 /GOPS. 2) LB SIZE
REQUIRED PER APPLICATION, IN NUMBER OF ROWS. 3) APPLICATION

PERFORMANCE AT 800MHZ, IN GOPS. 4) PER-ARCHITECTURE LB SIZE
(BECAUSE OF PER-ARCHITECTURE DIFFERENCES IN CONTROL LOGIC AND

OVERHEAD, LB HAS DIFFERENT AREA IN EACH ARCHITECTURE). 5) A
16KB LB HOLDS TWO ROWS OF PIXELS, ASSUMING 4K IMAGE WIDTH.

SIMD lane CGRA tile
Func Unit 1313 PE 1327
Vector Reg File 1405 SB 1517
Data Spill Ram 2681 CB 545
Iram 875 Configuration 633

TABLE V
ABSOLUTE AREA BREAKDOWN COMPARISON FOR AN OPTIMIZED SIMD

LANE AND AN OPTIMIZED CGRA TILE, µm2 .

Table III.
For example, in Table IV we see that Harris uses about

one tenth of the LB that Stereo requires. CGRA compute
hardware for Harris uses 0.007 mm2/GOPS, so adding just the
LB it needs (8 rows or 4 LB blocks) adds 0.42 mm2 / 69 GOPS
or 0.006 mm2/GOPS yielding 0.013 mm2/GOPS, which is the
approximately the number in Table III. Yet if you add the area
for the full line buffer, the LB area increases by almost 10x,
and the area/GOPS increases to 0.6 mm2/GOPS. This means
for Harris the programmable solution is either around 3x or
12x the area of the ASIC solution depending on how you
account for the LB area. Since the LB is only important for
the simpler applications and depends on interpretation, the rest
of this discussion will focus on the compute density excluding
the LB.

Table IV shows that Fast is an outlier since it is dominated
by binary operations. Neither SIMD nor CGRA was optimized
for this type of operation (even though they could be) so their
compute density falls by about 5x. The table shows that CGRA
and SIMD compute density are not far apart, being on average
only about 40% different (excluding Fast), i.e. SIMD is taking
about 40% more resources than CGRA and thus has about
40% lower compute density. The reason for this difference
can be seen in Table V. Again, the area of the functional units
is nearly the same in the two designs, but the area used for
the programmable wires in the CGRA is less than the area
required for the memory in the SIMD, even after the register
file has been optimized.

Both SIMD and CGRA initally had much better compute
density than FPGA, largely because of the difference in clock
rate. Pipelining the CGRA wires and functional units was

0

5

10

15

20

25

30

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256

(R
F+

L0
)

En
e

rg
y/

O
p

 (
p

J)

(R
F+

L0
)

A
re

a
('

0
0

0
 s

q
. µ

)

Register File Entries

RF + L0 Energy RF + L0 Area

Fig. 11. Total reg file (RF+L0) area and access energy for different RF sizes.

App
Peak
op/cy

L0
bandwidth

Feasible
op/cy

Area eff.
improve

Harris 1.82 0 1.82 29%
ISP 1.96 99% 1.96 38%
FCam 1.98 138% 1.43 1%
Stereo 1.99 238% 1.10 -23%

TABLE VI
FEASIBILITY OF CO-SCHEDULING OPS CONSIDERING LIMITED L0

BANDWIDTH AND THE CORRESPONDING COMPUTE DENSITY
IMPROVEMENT.

essential to reach 800 MHz. Adding wire pipelines to the
FPGA greatly improved its area efficiency, but it is still 3.1 x
worse if Fast is excluded (see FPGA+pw in Table IV), because
LUTs are less efficient than ALUs for addition and because
its hard macro blocks are not as well tuned to the application
domain. The FPGA memory is dual ported and not as wide as
our LB blocks, and the DSP block is a multi-precision 36-bit
unit.

C. SIMD Compute Density Optimization

To optimize the SIMD architecture, we partitioned the
register file into an RF and an L0, as explained earlier. For our
set of imaging applications, the RF needed a minimum of 16
entries to keep the L0 traffic below one word/cycle bandwidth,
so we used that as the base RF size. The corresponding L0
size is around 200 entries. The largest active data set belongs
to Stereo, which set the total (RF+L0) register file size. The
partitioning reduced energy per register-file fetch by 25%,
and total register file area by 80% (Figure 11). Although the
total register file area reduced considerably, the L0 portion
still dominated with 42% of the total SIMD area (“Data
Spill RAM” in Table V). So, to improve the compute density
further, we tried extended-VLIW and operation-fusion to better
amortize the L0 area, techniques that were discussed in the
SIMD section.

The extended VLIW approach, i.e. extending VLIW width
from two to three, increased total SIMD lane area by 42%
because of the additional register file ports and PE. We modi-
fied our scheduler to put independent operations in the newly
added functional slot, and it found independent operations
to co-schedule almost for all cycles. However, because of
the nature of the application graph, the distance between
such independent operations was large. Co-scheduling such
operations increased traffic to the L0 level, overwhelming its

bandwidth for certain applications. In the best case, we could
increase the number of operations scheduled per cycle from 1.0
to 1.96 without overwhelming the L0 bandwidth, increasing
the effective compute density by 38%. However, the VLIW
extension decreased the effective compute density by 23% for
Stereo because the additional slot area could not be offset,
as the L0 bandwidth limited the slot utilization. Table VI lists
the applications, the peak operations per cycle possible without
considering L0 bandwidth, the highest feasible operations per
cycles possible without saturating the L0 bandwidth, and the
effective computation density improvement.

Meanwhile, the fused-operation approach increased total
area by 11%. This overhead is significantly less than that for
the VLIW approach because only one RF port was added
for fused operations, as compared to four for VLIW. Also,
the tail unit added for fusion supports only add and subtract
operations, as opposed to the fully functional PE needed for
VLIW. By suitably enabling the unit, we could increase the
number of operations executed per cycle by a maximum factor
of 2x for Stereo, giving a compute density improvement of
80%. Improvements for other applications were smaller. By
combining the VLIW and operation fusion techniques area
efficiency got better, on average, by 30%.

Referring again to Table III, it is clear that the resulting
compute density of CGRA and SIMD units is still quite small
compared to ASIC solutions. Adding operand fusion and more
complex functional units can improve computational density,
but our preliminary results indicate that these approaches will
only make modest (30%) changes in overall compute density.

VIII. CONCLUSIONS

As use of image data grows explosively, it is critical to
create systems that allow programmers to quickly develop and
deploy efficient image applications. Using a modern image
DSL (Darkroom), we were able to fairly compare different
approaches for building programmable image processors, eval-
uating SIMD, CGRA and FPGA approaches, and comparing
them to a custom ASIC solution. To optimize the performance
of our implementations, it was critical to exploit the locality in-
herent in imaging applications. For SIMD this meant creating
a small, low energy register file, and for CGRA it meant bus
based routing and pipelining the programmable wires. With
these changes the SIMD and CGRA results were similar, with
the CGRA able to achieve 1.0 pJ/op and 0.006 mm2/GOPS,
which is state-of-the-art for a programmable ISP. We also
discovered that memory and register file overheads in the
SIMD machine made it worse than the CGRA equivalent by
around 60% in energy efficiency and by about 40% in area
efficiency.

On the other hand, when we compare these programmable
solutions to ASIC blocks for computationally intensive ker-
nels, we see that programmability still has significant energy
and area costs. This is troubling, since these kernels can
dominate the total computation performed. These results ex-
plain why current programmable ISPs are often hybrid designs
that contain both programmable hardware and fixed function

unit, and raise the challenge of compiling code for these
machines. We believe that these energy and area gaps can be
reduced by making coarser grained processing elements and
by implementing operation fusion, and we plan to address this
issue in future work.

ACKNOWLEDGMENT

This work was supported in part by C-FAR, one of the six
SRC STARnet Centers, sponsored by MARCO and DARPA.
S. Kvatinsky is partially supported by the Viterbi Fellowship
in the Technion Computer Engineering Center.

REFERENCES

[1] T. Georgiev, Z. Yu, A. Lumsdaine, and S. Goma, “Lytro camera
technology: theory, algorithms, performance analysis,” in Proc. SPIE,
vol. 8667, 2013, p. 86671J.

[2] S. A. Shroff and K. Berkner, “Image formation analysis and high
resolution image reconstruction for plenoptic imaging systems,” Applied
optics, vol. 52, no. 10, pp. D22–D31, 2013.

[3] Z. Lu, Y.-W. Tai, F. Deng, M. Ben-Ezra, and M. S. Brown, “A 3d
imaging framework based on high-resolution photo- metric-stereo and
low-resolution depth,” International journal of computer vision, vol. 102,
no. 1-3, pp. 18–32, 2013.

[4] P. Desai, “Choosing the right DSP for high-resolution imaging in
mobile and wearable applications,” http://ip.cadence.com/uploads/899/
Tensilica Vision P5 WP Final 100515-pdf.

[5] M. H. Ionica and D. Gregg, “The Movidius Myriad architecture’s
potential for scientific computing,” IEEE Micro, vol. 35, no. 1, pp. 6–14,
2015.

[6] T. R. Halfhill, “Silicon Hive breaks out,” Microprocessor Report, Dec,
vol. 1, 2003.

[7] J. R. Kelley, C. Barnes, A. Adams, S. Paris, S. Amarasinghe et al.,
“Halide: A language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines,” SIGPLAN Not.,
vol. 48, no. 6, pp. 519–530, 2013.

[8] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: Compiling
high-level image processing code into hardware pipelines,” ACM Trans.
Graph., vol. 33, no. 4, pp. 144:1–11, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2601097.2601174

[9] E. Angel, “DIGIC processors explained,” Canon, Inc.,
http://www.learn.usa.canon.com/resources/articles/2012
/digic processors.shtml, January 2012.

[10] S. Komatsu, M. Kimura, A. Okawa, and H. Miyashita, “Milbeaut image
signal processing LSI chip for mobile phones,” Fujitsu Sci. Tech. J,
vol. 49, no. 1, pp. 17–22, 2013.

[11] G. Martin and H. Chang, Eds., The TI OMAP platform approach to SoC.
Springer, 2003, ch. 5.

[12] D. Witt, “OMAP4430 architecture and development,” in Technical
Record of the 21st Hot Chips Conference, 2009.

[13] M. Ditty, J. Montrym, and C. Wittenbrink, “NVIDIA’s Tegra K1 system-
on-chip,” in Technical Record of the 26th Hot Chips Conference, 2014.

[14] D. Boggs, G. Brown, N. Tuck, and K. Venkatraman, “Denver: NVIDIA’s
first 64-bit ARM processor,” Micro, IEEE, vol. 35, no. 2, pp. 46–55, Mar
2015.

[15] G. Stein, E. Rushinek, G. Hayun, and A. Shashua, “A computer vision
system on a chip: a case study from the automotive domain,” in
Computer Vision and Pattern Recognition - Workshops, 2005. CVPR
Workshops. IEEE Computer Society Conference on, June 2005, pp. 130–
130.

[16] R. Bushey, H. Tabkhi, and G. Schirner, “Flexible function-level accel-
eration of embedded vision applications using the pipelined vision pro-
cessor,” in Signals, Systems and Computers, 2013 Asilomar Conference
on, Nov 2013, pp. 1447–1452.

[17] R. Rithe, P. Raina, N. Ickes, S. V. Tenneti, and A. P. Chandrakasan, “Re-
configurable processor for energy- efficient computational photography,”
Solid-State Circuits, IEEE Journal of, vol. 48, no. 11, pp. 2908–2919,
2013.

http://ip.cadence.com/uploads/899/Tensilica_Vision_P5_WP_Final_100515-pdf
http://ip.cadence.com/uploads/899/Tensilica_Vision_P5_WP_Final_100515-pdf
http://doi.acm.org/10.1145/2601097.2601174

[18] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke,
C. Koob, A. Ingle, C. Tabony, and R. Maule, “Hexagon DSP: An
architecture optimized for mobile multimedia and communications,”
Micro, IEEE, vol. 34, no. 2, pp. 34–43, 2014.

[19] R. Merritt, “CES: Ceva recognizes gestures with new core,” EE Times,
January 2012, http://www.eetimes.com/document.asp?doc id=1260890.

[20] B. Hariri, S. Abtahi, S. Shirmohammadi, and L. Martel, “Demo: Vision
based smart in-car camera system for driver yawning detection,” in Dis-
tributed Smart Cameras (ICDSC), 2011 Fifth ACM/IEEE International
Conference on. IEEE, 2011, pp. 1–2.

[21] C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD–reconfigurable
pipelined datapath,” in Field-programmable logic smart applications,
new paradigms and compilers. Springer, 1996, pp. 126–135.

[22] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. Guerri-
eri, “A VLIW processor with reconfigurable instruction set for embedded
applications,” Solid-State Circuits, IEEE Journal of, vol. 38, no. 11, pp.
1876–1886, 2003.

[23] S. Khawam, I. Nousias, M. Milward, Y. Yi, M. Muir, and T. Arslan,
“The reconfigurable instruction cell array,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 16, no. 1, pp. 75–85, 2008.

[24] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
M. C. Eliseu Filho, “Morphosys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” Computers, IEEE
Transactions on, vol. 49, no. 5, pp. 465–481, 2000.

[25] F.-J. Veredas, M. Scheppler, W. Moffat, and B. Mei, “Custom imple-
mentation of the coarse-grained reconfigurable ADRES architecture for
multimedia purposes,” in Field Programmable Logic and Applications,
2005. International Conference on. IEEE, 2005, pp. 106–111.

[26] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor, “Piperench: A reconfigurable architecture and compiler,”
Computer, vol. 33, no. 4, pp. 70–77, 2000.

[27] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
no. 5, pp. 38–51, 2012.

[28] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel et al., “Triggered instruc-
tions: A control paradigm for spatially-programmed architectures,” ACM
SIGARCH Comp. Arch. News, vol. 41, no. 3, pp. 142–153, 2013.

[29] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “Neuflow: A runtime reconfigurable dataflow processor
for vision,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on. IEEE, 2011,
pp. 109–116.

[30] S. M. A. H. Jafri, T. N. Gia, S. Dytckov, M. Daneshtalab, A. Hemani,
J. Plosila, and H. Tenhunen, “NeuroCGRA: A CGRA with support
for neural networks,” in High Performance Computing & Simulation
(HPCS), 2014 International Conference on. IEEE, 2014, pp. 506–511.

[31] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A convolutional network accelerator,” in Proceed-
ings of the 25th edition on Great Lakes Symposium on VLSI. ACM,
2015, pp. 199–204.

[32] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284,
2014.

[33] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing archi-
tectures,” Proc. of the IEEE, vol. 103, no. 3, pp. 332–354, 2015.

[34] J. S. Brunhaver, “Design and optimization of a stencil engine,” Ph.D.
dissertation, Stanford University, 2015.

[35] D. Grune, K. van Reeuwijk, H. E. Bal, C. J. Jacobs, and K. Langendoen,
Modern Compiler Design, 2nd ed. Springer Science & Business Media,
2012.

[36] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in Field-Programmable Logic and Applications.
Springer, 1997, pp. 213–222.

[37] K. K. Poon, S. J. Wilton, and A. Yan, “A detailed power model for field-
programmable gate arrays,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 10, no. 2, pp. 279–302, 2005.

[38] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-
programmable gate arrays. Springer Science & Business Media, 2012,
vol. 180.

[39] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for deep-
submicron FPGAs. Springer Science & Business Media, 2012, vol.
497.

[40] V. Betz and J. Rose, “FPGA routing architecture: Segmentation and
buffering to optimize speed and density,” in Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field programmable
gate arrays. ACM, 1999, pp. 59–68.

[41] S. J. Wilton, “Architectures and algorithms for field-programmable
gate arrays with embedded memory,” Ph.D. dissertation, University of
Toronto, 1997.

[42] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Alvey vision conference, vol. 15. Manchester, UK, 1988, p. 50.

[43] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine
learning approach to corner detection,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 32, no. 1, pp. 105–119, 2010.

http://www.eetimes.com/document.asp?doc_id=1260890

