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Abstract— Performance and energy of modern computers, 

usually built as von Neumann machines, are primarily limited by 

data transfer from the memory to the CPU and vice versa. Only a 

true non-von Neumann architecture, where data is processed and 

stored within the same unit can remove this bottleneck. Using 

emerging non-volatile resistive memory technologies (namely, 

memristors) enables the development of Memory Processing Unit 

(MPU) – a novel non-von Neumann architecture. MPU relies on 

adding computing capabilities to the memristive memory cells 

without changing the basic memory array structure, and is 

compatible with existing computing systems. This paper 

describes the MPU architecture and examines its controller.  
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I.  INTRODUCTION 
Since the 1940s, computers have been built in a von 

Neumann architecture, where data processing and data storage 
are separated into different units (namely, CPU and memory). 
von Neumann architecture has become so popular that today 
almost any type of computing machine is a von Neumann 
machine (or an improvement thereof). While von Neumann 
architecture is relatively simple to program and design, it 
suffers from several disadvantages, usually collectively called 
von Neumann bottleneck. One of the primary sources to this 
bottleneck is the need in von Neumann machines to supply the 
CPU with data from the memory, result in lower performance 
and higher energy.  

Today this bottleneck is even more severe since the speed 
of CPUs has scaled over the past decades according to 
Moore’s law by a factor of two every two years, while the 
memory access time and bandwidth have scaled at a 
substantially slower pace. This phenomenon is sometimes 
called the memory wall. Additionally, the energy of modern 
computers is dominated by memory accesses and data transfer, 
as it is substantially higher than processing operations in CPU. 

This paper show how emerging technologies enable 
development of novel non-von Neumann architectures that 
alleviate the von Neumann bottleneck. These emerging non-
volatile memory technologies include RRAM, PCM, and STT-
MRAM among others (for simplicity, we refer to all emerging 
non-volatile technologies that are based on resistance to store 
data as memristors) and are considered as attractive candidates 
to replace conventional memory technologies (e.g.,  DRAM 
and Flash) due to their speed, low power, scalability, and high 
endurance [1]. Memristive technologies have also been 
explored for additional applications such as analog circuits, 
neuromorphic computing, and logic circuits. 

For the proposed non-von Neumann architecture, 
memristive memory is used also to perform logical operations. 
Several logic families using the structure of a memristor-based 

memory have been proposed, thus enabling a unit that can 
perform both memory and processing within the same unit. 
We show such a unit called Memory Processing Unit (MPU) 
that can be dynamically changed from data processing to 
storage. MPU maintains the standard structure of the memory 
cells and the array. Thus the use of MPU is compatible with 
standard von Neumann architecture and existing operating 
systems as it can function as a standard memory or as a 
parallel processing element and the new capabilities of the 
memory are encapsulated by the memory controller. 

II. STATEFUL LOGIC 
One approach for memristor-based logic within a memory 

architecture is to treat resistance solely as the logical state, 
exactly the same way as storing data within a memristive 
memory. For this approach, the memristors are the primary 
building blocks of the logic gate. Memristors act as an input, 
output, computational element, and latch in different stages of 
the computing process. This approach is called stateful logic 
and is suitable for array architectures and can therefore be 
integrated within a standard memristor-based memory, adding 
computing capabilities to the memory without changing its 
regular functionality. Several stateful logic families have been 
proposed [2-4] based on application of different voltages 
across the rows and columns of the memory array. The applied 
voltages write the result to an output memristor based on the 
stored values in the input memristor. 

An improved stateful logic family is Memristor Aided 
Logic (MAGIC) [5]. In MAGIC, only a single applied voltage 
is used to perform a NOR logic operation, while the basic 
principles of stateful logic are maintained. The basic 
schematic of a MAGIC gate within a memristive crossbar 
array is shown in Figure 1. Stateful logic provides an 
opportunity to explore non-von Neumann architectures, where 
the memory can perform logic operations on the same devices 
that store data. 

III. MEMORY PROCESSING UNIT (MPU) ARCHITECTURE 

A. MPU - General Structure 

MPU (Memory Processing Unit) is a non-von Neumann 
architecture where the memory has inherent and independent 
processing capabilities. In MPU, retained data within the 
memory act as the input of the logical operations and the result 
of the operation is immediately stored to the memory cells 
without need to transfer data out of the memory array. The 
structure of the logic gates and memory cells is identical and 
the decision as whether an element is a data storage element or 
a processing element is done dynamically by the memory 
controller, according to the executed program. 



 
Figure 2: (a) von Neumann architecture consists of separate 

processing (CPU) and storage (memory) units. (b) The proposed 

architecture, where the memory is an MPU that also executes logical 

operations. Programs (or a fraction of them) are executed within the 

memory, without transferring data back and forth to the CPU. 

While conventional memory technologies (e.g., DRAM and 
SRAM) cannot be used for MPU, most memristive memory 
cells can also act as processing elements and therefore enable 
the proposed MPU architecture. The memristive memory 
architecture can be either a crossbar array structure [6] or 
include selectors in each memory cell [7]. Since this memory 
can also act as conventional memory in a von Neumann 
machine, MPU is compatible with standard computers and can 
have the functionality of either a conventional memory or 
hybrid memory-computing engine. The unique new 
capabilities of the memory are encapsulated by the memory 
controller and therefore the operating system does not change. 
The proposed MPU architecture is illustrated in Figure 2. 

To achieve compatibility with standard von Neumann 
architecture, the instruction set architecture (ISA) of a 
standard computer (e.g., X86, ARM) needs to be extended 
with instructions for logical and arithmetic operations within 
memory. These instructions are used to perform a specific 
computing task on known locations in the memory (i.e., 
addresses). The extended ISA is mostly based on vector 
operations since they benefit most from logic within memory. 

B. Controller - Memory and CPU Interface 

In addition to the extended ISA, a new interface protocol 
between the CPU and the memristive memory is required. The 
memory controller which resides in the CPU sends commands 
to the memory through a dedicated controller, which controls 
both conventional read and write instructions as well as 
computational operations. To perform a certain instruction 
within the memristive memory, the controller breaks the 
instruction into micro-operations which are pipelined to the 
memory, thus maximize the processing efficiency. These 
micro-operations are built on several levels of abstraction 
where the lower level of abstraction is the basic logical 
operation (i.e., NOR operation in MAGIC). For example, a 
bitwise XOR operation between two 32-bit binary vectors 
from known addresses is divided into 38 write and NOR 
operations, whereas an instruction for adding two 32-bit 
numbers is broken into 385 operations [8]. We have developed 
different optimization algorithms to optimize the performance, 
energy, and area for different instructions. Note that there is a 
tradeoff between the complexity of the controller and the 
optimality of the algorithm. 

C. MPU Contribution 

The benefits from the MPU architecture come from the 
elimination of data transfer to/from the processor since the 
logic operations can be executed simultaneously on multiple 
rows within the memory (possibly all rows in the memory 

array if desired). The potential drawbacks of this processing 
paradigm are due to the nature of the computation that relies 
on sequential execution of simple logical operations. In each 
computational step, only a single operation is executed (per 
row) and for certain applications, where there is low data-level 
parallelism, the latency of the execution can be longer than 
going to an off-chip processor. For example, a 32-bit addition 
takes 385 steps for MAGIC-based MPU [8]. 

IV. CONCLUSIONS AND FUTURE WORK 
MPU, a novel architecture for processing within a 

memristive memory is presented in this paper. MPU has a 
great potential for orders of magnitude improvement in both 
performance and energy efficiency for many types of 
applications [9], due to the significant reduction in data 
transfer and the massive parallel processing capability. Several 
implications of this new framework should be further 
researched. It is required to adjust the proposed scheme to 
various data-intensive programs that can benefit from it. 
Additionally, more algorithms for in-memory logic should be 
developed, while existing algorithms should be optimized in 
terms of processing time and power consumption. 

V. ACKNOWLEDGEMENTS 
This research was partially supported by Intel Collaborative 

Research Institute for Computational Intelligence (ICRI-CI) 
and by the Viterbi Fellowship in the Technion Computer 
Engineering Center. 

VI. REFERENCES 
[1] S. Kvatinsky et al., , "The Desired Memristor for Circuit Designers," 
IEEE CAS Magazine, Vol. 13, No. 2, pp. 17-22, second quarter 2013. 

[2] S. Kvatinsky et al., "Memristor-based IMPLY Logic Design Flow," 
ICCD 2011, pp.142-147, October 2011. 

[3] E. Lehtonen et al., "Two Memristors Suffice to Compute All Boolean 
Functions," Electronics Letters, Vol. 46, No. 3, pp. 239-240, February 2010. 

[4] E. Lehtonen et al., "Recursive Algorithms in Memristive Logic Arrays," 
IEEE JESTCS, Vol. 5, No. 2, pp. 279-292, June 2015. 

[5] S. Kvatinsky et al., "MAGIC – Memristor Aided LoGIC," IEEE 
Transactions on Circuits and Systems II: Express Briefs, Vol. 61, No. 11, pp. 
895-899, November 2014. 

[6] Z. Jiang et al., “Analysis and Predication on Resistive Random Access 
Memory (RRAM) 1S1R Array,” IMW 2015, pp. 1-4, May 2015. 

[7] S.-S. Sheu et al., "A 5ns Fast Write Multi-Level Non-Volatile 1K Bits 
RRAM Memory with Advance Write Scheme," Proceedings of 
the Symposium on VLSI Circuits, pp.82-83, June 2009. 

[8] N. Talati et al., “Logic Design within Memristive Memories Using 
Memristor Aided loGIC (MAGIC),” IEEE Transactions on Nanotechnology 
(submitted). 

[9] S. Hamdioui et al., "Memristor Based Computation-in-Memory 
Architecture for Data-Intensive Applications," DATE, pp. 1718-1725, March 
2015. 

 
Figure 1: MAGIC NOR within a memristive crossbar is executed in 
the first row, where the data initially stored within memristors IN1 
and IN2 is the input of the gate and the final state of memristor OUT 
is the result of the operation. Other rows are unselected. 


