
Memory Processing Unit for In-Memory Processing
Rotem Ben Hur and Shahar Kvatinsky, Member, IEEE

The Andrew and Erna Viterbi Faculty of Electrical Engineering

Technion – Israel Institute of Technology

Haifa 3200003, ISRAEL

Abstract— Performance and energy of modern computers,

usually built as von Neumann machines, are primarily limited by

data transfer from the memory to the CPU and vice versa. Only a

true non-von Neumann architecture, where data is processed and

stored within the same unit can remove this bottleneck. Using

emerging non-volatile resistive memory technologies (namely,

memristors) enables the development of Memory Processing Unit

(MPU) – a novel non-von Neumann architecture. MPU relies on

adding computing capabilities to the memristive memory cells

without changing the basic memory array structure, and is

compatible with existing computing systems. This paper

describes the MPU architecture and examines its controller.

Keywords— Memristive systems, memristor, logic design,

MAGIC, Crossbar memory, memory controller, CPU, MPU.

I. INTRODUCTION
Since the 1940s, computers have been built in a von

Neumann architecture, where data processing and data storage
are separated into different units (namely, CPU and memory).
von Neumann architecture has become so popular that today
almost any type of computing machine is a von Neumann
machine (or an improvement thereof). While von Neumann
architecture is relatively simple to program and design, it
suffers from several disadvantages, usually collectively called
von Neumann bottleneck. One of the primary sources to this
bottleneck is the need in von Neumann machines to supply the
CPU with data from the memory, result in lower performance
and higher energy.

Today this bottleneck is even more severe since the speed
of CPUs has scaled over the past decades according to
Moore’s law by a factor of two every two years, while the
memory access time and bandwidth have scaled at a
substantially slower pace. This phenomenon is sometimes
called the memory wall. Additionally, the energy of modern
computers is dominated by memory accesses and data transfer,
as it is substantially higher than processing operations in CPU.

This paper show how emerging technologies enable
development of novel non-von Neumann architectures that
alleviate the von Neumann bottleneck. These emerging non-
volatile memory technologies include RRAM, PCM, and STT-
MRAM among others (for simplicity, we refer to all emerging
non-volatile technologies that are based on resistance to store
data as memristors) and are considered as attractive candidates
to replace conventional memory technologies (e.g., DRAM
and Flash) due to their speed, low power, scalability, and high
endurance [1]. Memristive technologies have also been
explored for additional applications such as analog circuits,
neuromorphic computing, and logic circuits.

For the proposed non-von Neumann architecture,
memristive memory is used also to perform logical operations.
Several logic families using the structure of a memristor-based

memory have been proposed, thus enabling a unit that can
perform both memory and processing within the same unit.
We show such a unit called Memory Processing Unit (MPU)
that can be dynamically changed from data processing to
storage. MPU maintains the standard structure of the memory
cells and the array. Thus the use of MPU is compatible with
standard von Neumann architecture and existing operating
systems as it can function as a standard memory or as a
parallel processing element and the new capabilities of the
memory are encapsulated by the memory controller.

II. STATEFUL LOGIC
One approach for memristor-based logic within a memory

architecture is to treat resistance solely as the logical state,
exactly the same way as storing data within a memristive
memory. For this approach, the memristors are the primary
building blocks of the logic gate. Memristors act as an input,
output, computational element, and latch in different stages of
the computing process. This approach is called stateful logic
and is suitable for array architectures and can therefore be
integrated within a standard memristor-based memory, adding
computing capabilities to the memory without changing its
regular functionality. Several stateful logic families have been
proposed [2-4] based on application of different voltages
across the rows and columns of the memory array. The applied
voltages write the result to an output memristor based on the
stored values in the input memristor.

An improved stateful logic family is Memristor Aided
Logic (MAGIC) [5]. In MAGIC, only a single applied voltage
is used to perform a NOR logic operation, while the basic
principles of stateful logic are maintained. The basic
schematic of a MAGIC gate within a memristive crossbar
array is shown in Figure 1. Stateful logic provides an
opportunity to explore non-von Neumann architectures, where
the memory can perform logic operations on the same devices
that store data.

III. MEMORY PROCESSING UNIT (MPU) ARCHITECTURE

A. MPU - General Structure

MPU (Memory Processing Unit) is a non-von Neumann
architecture where the memory has inherent and independent
processing capabilities. In MPU, retained data within the
memory act as the input of the logical operations and the result
of the operation is immediately stored to the memory cells
without need to transfer data out of the memory array. The
structure of the logic gates and memory cells is identical and
the decision as whether an element is a data storage element or
a processing element is done dynamically by the memory
controller, according to the executed program.

Figure 2: (a) von Neumann architecture consists of separate

processing (CPU) and storage (memory) units. (b) The proposed

architecture, where the memory is an MPU that also executes logical

operations. Programs (or a fraction of them) are executed within the

memory, without transferring data back and forth to the CPU.

While conventional memory technologies (e.g., DRAM and
SRAM) cannot be used for MPU, most memristive memory
cells can also act as processing elements and therefore enable
the proposed MPU architecture. The memristive memory
architecture can be either a crossbar array structure [6] or
include selectors in each memory cell [7]. Since this memory
can also act as conventional memory in a von Neumann
machine, MPU is compatible with standard computers and can
have the functionality of either a conventional memory or
hybrid memory-computing engine. The unique new
capabilities of the memory are encapsulated by the memory
controller and therefore the operating system does not change.
The proposed MPU architecture is illustrated in Figure 2.

To achieve compatibility with standard von Neumann
architecture, the instruction set architecture (ISA) of a
standard computer (e.g., X86, ARM) needs to be extended
with instructions for logical and arithmetic operations within
memory. These instructions are used to perform a specific
computing task on known locations in the memory (i.e.,
addresses). The extended ISA is mostly based on vector
operations since they benefit most from logic within memory.

B. Controller - Memory and CPU Interface

In addition to the extended ISA, a new interface protocol
between the CPU and the memristive memory is required. The
memory controller which resides in the CPU sends commands
to the memory through a dedicated controller, which controls
both conventional read and write instructions as well as
computational operations. To perform a certain instruction
within the memristive memory, the controller breaks the
instruction into micro-operations which are pipelined to the
memory, thus maximize the processing efficiency. These
micro-operations are built on several levels of abstraction
where the lower level of abstraction is the basic logical
operation (i.e., NOR operation in MAGIC). For example, a
bitwise XOR operation between two 32-bit binary vectors
from known addresses is divided into 38 write and NOR
operations, whereas an instruction for adding two 32-bit
numbers is broken into 385 operations [8]. We have developed
different optimization algorithms to optimize the performance,
energy, and area for different instructions. Note that there is a
tradeoff between the complexity of the controller and the
optimality of the algorithm.

C. MPU Contribution

The benefits from the MPU architecture come from the
elimination of data transfer to/from the processor since the
logic operations can be executed simultaneously on multiple
rows within the memory (possibly all rows in the memory

array if desired). The potential drawbacks of this processing
paradigm are due to the nature of the computation that relies
on sequential execution of simple logical operations. In each
computational step, only a single operation is executed (per
row) and for certain applications, where there is low data-level
parallelism, the latency of the execution can be longer than
going to an off-chip processor. For example, a 32-bit addition
takes 385 steps for MAGIC-based MPU [8].

IV. CONCLUSIONS AND FUTURE WORK
MPU, a novel architecture for processing within a

memristive memory is presented in this paper. MPU has a
great potential for orders of magnitude improvement in both
performance and energy efficiency for many types of
applications [9], due to the significant reduction in data
transfer and the massive parallel processing capability. Several
implications of this new framework should be further
researched. It is required to adjust the proposed scheme to
various data-intensive programs that can benefit from it.
Additionally, more algorithms for in-memory logic should be
developed, while existing algorithms should be optimized in
terms of processing time and power consumption.

V. ACKNOWLEDGEMENTS
This research was partially supported by Intel Collaborative

Research Institute for Computational Intelligence (ICRI-CI)
and by the Viterbi Fellowship in the Technion Computer
Engineering Center.

VI. REFERENCES
[1] S. Kvatinsky et al., , "The Desired Memristor for Circuit Designers,"
IEEE CAS Magazine, Vol. 13, No. 2, pp. 17-22, second quarter 2013.

[2] S. Kvatinsky et al., "Memristor-based IMPLY Logic Design Flow,"
ICCD 2011, pp.142-147, October 2011.

[3] E. Lehtonen et al., "Two Memristors Suffice to Compute All Boolean
Functions," Electronics Letters, Vol. 46, No. 3, pp. 239-240, February 2010.

[4] E. Lehtonen et al., "Recursive Algorithms in Memristive Logic Arrays,"
IEEE JESTCS, Vol. 5, No. 2, pp. 279-292, June 2015.

[5] S. Kvatinsky et al., "MAGIC – Memristor Aided LoGIC," IEEE
Transactions on Circuits and Systems II: Express Briefs, Vol. 61, No. 11, pp.
895-899, November 2014.

[6] Z. Jiang et al., “Analysis and Predication on Resistive Random Access
Memory (RRAM) 1S1R Array,” IMW 2015, pp. 1-4, May 2015.

[7] S.-S. Sheu et al., "A 5ns Fast Write Multi-Level Non-Volatile 1K Bits
RRAM Memory with Advance Write Scheme," Proceedings of
the Symposium on VLSI Circuits, pp.82-83, June 2009.

[8] N. Talati et al., “Logic Design within Memristive Memories Using
Memristor Aided loGIC (MAGIC),” IEEE Transactions on Nanotechnology
(submitted).

[9] S. Hamdioui et al., "Memristor Based Computation-in-Memory
Architecture for Data-Intensive Applications," DATE, pp. 1718-1725, March
2015.

Figure 1: MAGIC NOR within a memristive crossbar is executed in
the first row, where the data initially stored within memristors IN1
and IN2 is the input of the gate and the final state of memristor OUT
is the result of the operation. Other rows are unselected.

