
Logic Design

with Memristors

Shahar Kvatinsky

Technion – Israel Institute of Technology
ACRC Workshop March 2012

1

Memristors are Useful for Logic

• Two terminal resistive device

• Not only memory

• This talk is about

memristor-based logic circuits

2

Resistor

v R i 

Capacitor

 q C v 

Inductor

L i  

Memristor





M q  

Chua, “Memristor – The Missing Circuit Element,” IEEE Trans., 1971

Chua and Kang, “Memristive Devices and Systems,” Proceedings of the IEEE, 1976

RON

ROFF

Voltage [V]
C

u
rr

e
n

t
[m

A
]

Logic with Memristors

• Memristors as a building block

• Memristor can:

– Store an input value

– Store an output value

– Perform logic operation

– Act as a state register
(latch, Flip-Flop)

– Act as a configurable switch

3

Why Use Memristors in Logic?

Integrating memristors
with standard logic

4

Logic inside the
memory

Memristor layer

CMOS

layer

Save die area

More logic on die Beyond Von-Neumann

Flexible

Memristor Polarity

5

Decrease resistance Increase resistance

Current

Voltage

Current

Outline

• Motivation / Why logic with memristors?

• Integrating memristor with standard logic

• Memristor-based logic inside the memory:

– IMPLY logic Gate

– Memristor Aided LoGIC (MAGIC)

• Design methodology

• Conclusions

6

AND and OR (Eshraghian 2011)

• Voltage as logic state

• Memristors only as computational elements

7

K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011

OR AND

IN1
IN1

IN2 IN2

OUT OUT

AND Operation

8

K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011

Decrease resistance

AND IN2 IN1

0 0 0

0 1 0

0 0 1

1 1 1

ROFF

RON

0

0

No current 0

1

1

1

Increase resistance

ROFF >> RON

~0

IN1

IN2

OUT

ON ON
OUT CC CC CC

ON OFF OFF

R R
V V V V

R R R
    



AND to OR

9

K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011

AND IN2 IN1

0 0 0

0 1 0

0 0 1

1 1 1

IN1

IN2

OUT

OR IN2 IN1

0 0 0

1 1 0

1 0 1

1 1 1

AND OR

OR Operation

10
K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011

OR IN2 IN1

0 0 0

1 1 0

1 0 1

1 1 1

1

0

Increase resistance

Decrease resistance

RON

ROFF

~1

OFF
OUT CC CC

ON OFF

R
V V V

R R
  

 ROFF >> RON

Need for Amplification

• Chain of memristor-based logic gates

11

AND

OR

0

VCC

VCC

0
OR

1 V

1 V

ON
CC

ON OFF

R
V

R R




OFF
CC

ON OFF

R
V

R R




0.97 V

OFF ON OFF
CC

ON OFF ON OFF

R R R
V

R R R R


 

 0.01V

0.99V

VCC = 1V

RON = 100 Ω

ROFF = 10 kΩ

CMOS Compatibility

• Memristors can be fabricated with CMOS

• Input/output are voltages – as in standard
CMOS logic

• Amplify signal – signal restoration

12
K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011
J. Borghetti etl al, “A Hybrid Nanomemristor/Transistor Logic Circuit Capable of Self-Programming,” PNAS 2008

AND OR

Integrating Memristor with
Standard Logic - Summary

• Good for integration with standard logic

• Signal restoration through CMOS

• Save die area: 2 transistor - 2 memristor

• CMOS - memristor layer transition:

vias, power and area overhead

13

Outline

• Motivation / Why logic with memristors?

• Integrating memristor with standard logic

• Memristor-based logic inside the memory:

– IMPLY logic Gate

– Memristor Aided LoGIC (MAGIC)

• Design methodology

• Conclusions

14

Logic Inside the Memory

• Based on memristor-based crossbar memory

15

RON

ROFF

Voltage [V]
C

u
rr

e
n

t
[m

A
]

Logical State as Resistance

• RON → logical ‘1’, ROFF → logical ‘0’

• The input of the logic gate is the

memristor-based cells value

• The result is stored into the

memory

16

IMPLY Function

17

p IMP q q p

1 0 0

1 1 0

0 0 1

1 1 1

If p then q

p → q

IMPLY + FALSE Complete logic

• One of the elementary 2 input Boolean functions

Truth Table

IMPLY Logic with Memristors

18

p IMP q q p

1 0 0

1 1 0

0 0 1

1 1 1

Logic 0 → ROFF

Logic 1 → RON

ON G OFFR R R 

| | | |COND SETV V

J. Borghetti et al, “Memristive Switches Enable „Stateful‟ Logic Operation via Material Implication,” Nature, 2010

IN IN OUT

Behavior for Different Cases

20

p IMP q → q q p Case

1 0 0 1

1 1 0 2

0 0 1 3

1 1 1 4

IN OUT
Decrease resistance

~1 V

0.5 V 1 V

1 kΩ

RON = 100 Ω

ROFF = 10 kΩ

10 kΩ
~0 V

100 Ω 100 Ω
~0.5 V

~0.5 V

10 kΩ

State Drift
S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011

Performance and Robustness
Tradeoff

21

p IMP q → q q p Case

1 0 0 1

1 1 0 2

0 0 1 3

1 1 1 4

Write time

State drift

TRADEOFF

IN OUT
Refreshing the gate

S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011

General Functions with IMPLY

• Sequential operation of IMPLY and FALSE

• NAND:

– Step 1 – FALSE(S)

– Step 2 – P IMPLY S

– Step 3 – Q IMPLY S

• 1- bit Full Adder

– Naive approach: 89 computation steps

– Parallel approach: 5 computation steps

22

1-bit
Full

Adder

A B

Cin Cout

S
Wald and Satat B.Sc. Project, Technion 2012

IMPLY Summary

• Performance and robustness tradeoff

• Need for refresh because of state drift

• For general Boolean function needs many

computation stages:

– Slow

– Complex controller

– Power consumption

23
S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011

Outline

• Motivation / Why logic with memristors?

• Integrating memristor with standard logic

• Memristor-based logic inside the memory:

– IMPLY logic Gate

– Memristor Aided LoGIC (MAGIC)

• Design methodology

• Conclusions

24

MAGIC – Memristor Aided LoGIC

25

AND

OR

NAND

S. Kvatinsky et al, “MAGIC: Memristor Aided LoGIC,” unpublished 2012

NOR

• One applied voltage VG

• Separate input and output memristors
IN1 IN2 OUT

IN1

IN2

OUT

VG

VG

IN1 IN2 OUT
VG

IN1

IN2

VG

OUT

MAGIC NOR

26

NOR IN2 IN1

1 0 0

0 1 0

0 0 1

0 1 1

RON

S. Kvatinsky et al, “MAGIC: Memristor Aided LoGIC,” unpublished 2012

ROFF >> RON

ROFF

ROFF <<VG

Increase resistance

>VG/2

ROFF

RON

RON

State drift

Initialize OUT to RON

MAGIC NOR in Crossbar

27

S. Kvatinsky et al, “MAGIC: Memristor Aided LoGIC,” unpublished 2012

MAGIC - Summary

• Good for logic inside the memory

• Separate input and output memristors

• Easy and intuitive

• State drift phenomenon - noise margin issues

28
S. Kvatinsky et al, “MAGIC: Memristor Aided LoGIC,” unpublished 2012

Outline

• Motivation / Why logic with memristors?

• Integrating memristor with standard logic

• Memristor-based logic inside the memory:

– IMPLY logic Gate

– Memristor Aided LoGIC (MAGIC)

• Design methodology

• Conclusions

29

Need Design Methodology

• Decide which family to use

• Determine proper circuit parameters

– RG?

– Voltage levels? VCOND? VSET?

– Logic gate delay?

30
S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011

Developing Design Methodology

• IMPLY logic gate design methodology (ICCD 2011)

• Developing a complete design methodology

• General design constraints:

– Power

– Area

– Performance

• Specific design constraints

31
S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011

Outline

• Motivation / Why logic with memristors?

• Integrating memristor with standard logic

• Memristor-based logic inside the memory:

– IMPLY logic Gate

– Memristor Aided LoGIC (MAGIC)

• Design methodology

• Conclusions

32

Logic with Memristors

Many issues – huge opportunities!

33

MAGIC IMPLY Hybrid

Reduce die area

More computation on die

Beyond Von-Neumann architecture

Thanks!
http://memristor.shorturl.com

34

http://memristor.shorturl.com/

BACKUP

35

Conventional FPGA

• FPGA power consumption:

– 90% - SRAM (routing)

– 10% - computing

 LB – logic blocks

 CB – connection blocks

 SB – switching blocks
38

Cong and Xiao, “mrFPGA: A Novel FPGA Architecture with Memristor-Based Reconfiguration,” NANOARCH 2011

Switching and Connection Blocks

• Memristor as configurable switch

• 1.6X better power consumption

• 2.28X better critical path delay

39
Xia et al, “Memristor-CMOS Hybrid Integrated Circuits for Reconfigurable Logic,” Nano Letters 2009

Logic Block

• LUT with 1T1M instead of SRAM

40
Liu and Wang, “rFPGA: Exploring RRAM Application in FPGA,” NANOARCH 2008

Linear Ion Drift Model

41

Write time

State variable - w

Memristance MQ

Time [nsec]

Case 3

Case 1

p IMP q q p Case

1 0 0 1

0 0 1 3

State drift

S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011 Time [nsec]

Design Flow

42

Understand
circuit behavior
and determine

state at beginning
of operation

Simplified
memristor

switching model

Roughly determine
circuit parameters

Detailed
memristor

model

Estimate the
final

parameters

S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011

8-bit Full Adder Example

43

C_out S C_in B A

0 0 0 0 0

0 1 1 0 0

0 1 0 1 0

1 0 1 1 0

0 1 0 0 1

1 0 1 0 1

1 0 0 1 1

1 1 1 1 1

1-bit Full
Adder

A B

C_in C_out

S

 
in

out in

S A B C

C A B C A B

  

    

General Design Constraints

• Power consumption

• Performance – gate delay time

• Area – number of memristors (and transistors)

44

IMPLY Design Constraints

• Power – determine VSET and VCOND

• Performance - minimize computation steps

• Area - minimize number of memristors

• Solution – parallel computing

45

8-bit IMPLY Full Adder

• Naive approach:

– 89 computation steps per bit

– 3 memristors per bit + 5 memristors

• Improved approach:

– Parallel computing, scheduling

– 5 computation steps per bit (+18)

– 9 memristors per bit (72 total)
46

Wald and Satat B.Sc. Project, Technion 2012

Hybrid CMOS-Memristor
Design Constraints

• Minimize number of CMOS-memristor

transitions (number of vias)

• Solution: use inverter (or buffers) only when

necessary

47

8-bit Hybrid CMOS-Memristor
Full Adder

• 144 memristors

• Area and vias is depended on memristor behavior:

– Linear memristor – 160 transistors, 80 vias

– Nonlinear memristor- 256 memristors, 96 vias

48
Wald and Satat B.Sc. Project, Technion 2012

Design Summary

49

Hybrid CMOS-
Memristor

IMPLY

6X faster
1 step

Sequential
58 steps

Performance

144 memristors 72 memristors
2X smaller

Area –
memristor layer

Memristor behavior
80-96 transistors

Controller Area – CMOS
layer

Static and dynamic
More power

Dynamic
power

Power

