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Memristors are Useful for Logic 

• Two terminal resistive device 

• Not only memory 

• This talk is about       

memristor-based logic circuits 
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Logic with Memristors 

• Memristors as a building block 

• Memristor can: 

– Store an input value 

– Store an output value 

– Perform logic operation 

– Act as a state register          
(latch, Flip-Flop) 

– Act as a configurable switch 
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Why Use Memristors in Logic? 

Integrating memristors 
with standard logic 
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Logic inside the 
memory 

Memristor layer 

CMOS 

layer 

Save die area 

More logic on die Beyond Von-Neumann 

Flexible 
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Outline 

• Motivation / Why logic with memristors? 

• Integrating memristor with standard logic 

• Memristor-based logic inside the memory: 

– IMPLY logic Gate 

– Memristor Aided LoGIC (MAGIC) 

• Design methodology 

• Conclusions 
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AND and OR (Eshraghian 2011) 

• Voltage as logic state 

• Memristors only as computational elements 
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K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011 
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AND Operation 
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K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011 
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AND to OR 

9 

K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011 

AND IN2 IN1 

0 0 0 

0 1 0 

0 0 1 

1 1 1 

IN1 

IN2 

OUT 

OR IN2 IN1 

0 0 0 

1 1 0 

1 0 1 

1 1 1 

AND OR 



OR Operation 
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Need for Amplification 

• Chain of memristor-based logic gates 
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CMOS Compatibility 

• Memristors can be fabricated with CMOS 

• Input/output are voltages – as in standard 
CMOS logic 

• Amplify signal – signal restoration 

12 
K. Eshraghian, course notes on “Memristive Circuits and Systems,” Technion, June 2011 
J. Borghetti etl al, “A Hybrid Nanomemristor/Transistor Logic Circuit Capable of Self-Programming,” PNAS 2008 
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Integrating Memristor with 
Standard Logic - Summary 

• Good for integration with standard logic 

• Signal restoration through CMOS 

• Save die area: 2 transistor - 2 memristor 

• CMOS - memristor layer transition:               

vias, power and area overhead 
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Outline 

• Motivation / Why logic with memristors? 

• Integrating memristor with standard logic 

• Memristor-based logic inside the memory: 

– IMPLY logic Gate 

– Memristor Aided LoGIC (MAGIC) 

• Design methodology 

• Conclusions 
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Logic Inside the Memory 

• Based on memristor-based crossbar memory 
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Logical State as Resistance 

• RON → logical ‘1’, ROFF → logical ‘0’ 

• The input of the logic gate is the 

memristor-based cells value 

• The result is stored into the 

memory 
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IMPLY Function 
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IMPLY Logic with Memristors 
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Behavior for Different Cases 
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Performance and Robustness 
Tradeoff 
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General Functions with IMPLY 

• Sequential operation of IMPLY and FALSE 

• NAND: 

– Step 1 – FALSE(S) 

– Step 2 – P IMPLY S 

– Step 3 – Q IMPLY S 

 

• 1- bit Full Adder 

– Naive approach: 89 computation steps 

– Parallel approach: 5 computation steps 
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IMPLY Summary 

• Performance and robustness tradeoff 

• Need for refresh because of state drift 

• For general Boolean function needs many 

computation stages: 

– Slow 

– Complex controller 

– Power consumption 

23 
S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011 



Outline 

• Motivation / Why logic with memristors? 

• Integrating memristor with standard logic 

• Memristor-based logic inside the memory: 

– IMPLY logic Gate 

– Memristor Aided LoGIC (MAGIC) 

• Design methodology 

• Conclusions 
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MAGIC – Memristor Aided LoGIC 
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MAGIC NOR 
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MAGIC NOR in Crossbar  
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MAGIC - Summary 

• Good for logic inside the memory 

• Separate input and output memristors 

• Easy and intuitive 

• State drift phenomenon - noise margin issues 

28 
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Outline 

• Motivation / Why logic with memristors? 

• Integrating memristor with standard logic 

• Memristor-based logic inside the memory: 

– IMPLY logic Gate 

– Memristor Aided LoGIC (MAGIC) 

• Design methodology 

• Conclusions 
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Need Design Methodology 

• Decide which family to use 

• Determine proper circuit parameters 

– RG? 

– Voltage levels? VCOND? VSET? 

– Logic gate delay? 

30 
S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011 



Developing Design Methodology 

• IMPLY logic gate design methodology (ICCD 2011) 

• Developing a complete design methodology 

• General design constraints: 

– Power 

– Area 

– Performance 

• Specific design constraints 
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S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011 



Outline 

• Motivation / Why logic with memristors? 

• Integrating memristor with standard logic 

• Memristor-based logic inside the memory: 

– IMPLY logic Gate 

– Memristor Aided LoGIC (MAGIC) 

• Design methodology 

• Conclusions 
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Logic with Memristors 

Many issues – huge opportunities! 
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MAGIC IMPLY Hybrid  

Reduce die area 

More computation on die 

Beyond Von-Neumann architecture 



Thanks! 
http://memristor.shorturl.com 
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BACKUP 
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Conventional FPGA 

• FPGA power consumption: 

– 90% - SRAM (routing) 

– 10% - computing 

 

 LB – logic blocks 

 CB – connection blocks 

 SB – switching blocks 
38 

Cong and Xiao, “mrFPGA: A Novel FPGA Architecture with Memristor-Based Reconfiguration,” NANOARCH 2011 



Switching and Connection Blocks 

• Memristor as configurable switch 

• 1.6X better power consumption 

• 2.28X better critical path delay 

39 
Xia et al, “Memristor-CMOS Hybrid Integrated Circuits for Reconfigurable Logic,” Nano Letters 2009 



Logic Block 

• LUT with 1T1M instead of SRAM 
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Liu and Wang, “rFPGA: Exploring RRAM Application in FPGA,” NANOARCH 2008 



Linear Ion Drift Model 
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Design Flow 
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S. Kvatinsky et al, “Memristor-based IMPLY Logic Design Procedure,” ICCD, 2011 



8-bit Full Adder Example 
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General Design Constraints 

• Power consumption 

• Performance – gate delay time 

• Area – number of memristors (and transistors) 
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IMPLY Design Constraints 

• Power – determine VSET and VCOND 

• Performance - minimize computation steps 

• Area - minimize number of memristors 

 

• Solution – parallel computing 
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8-bit IMPLY Full Adder 

• Naive approach: 

– 89 computation steps per bit 

– 3 memristors per bit + 5 memristors 

• Improved approach: 

– Parallel computing, scheduling 

– 5 computation steps per bit (+18) 

– 9 memristors per bit (72 total) 
46 

Wald and Satat B.Sc. Project, Technion 2012 



Hybrid CMOS-Memristor 
Design Constraints 

• Minimize number of CMOS-memristor 

transitions (number of vias) 

• Solution: use inverter (or buffers) only when 

necessary 
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8-bit Hybrid CMOS-Memristor 
Full Adder 

• 144 memristors 

• Area and vias is depended on memristor behavior: 

– Linear memristor – 160 transistors, 80 vias 

– Nonlinear memristor- 256 memristors, 96 vias 

48 
Wald and Satat B.Sc. Project, Technion 2012 



Design Summary 
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Hybrid CMOS-
Memristor 

IMPLY 

6X faster 
1 step 

Sequential 
58 steps 

Performance 

144 memristors 72 memristors 
2X smaller 

Area – 
memristor layer 

Memristor behavior 
80-96 transistors 

Controller Area – CMOS 
layer 

Static and dynamic 
More power 

Dynamic 
power 

Power 


