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 Even though dennard in 1974 showed how 
to scale CMOS devices for constant power density 

as the feature size scaled down by a factor ​α =​ 
(newSize/prevSize) [1], the power density of CMOS  
processor chips grew exponentially from the mid-
1980s to the late 1990s. This power growth resulted 

both from scaling clock frequency faster than 1/​α​ 
and voltages slower than ​α​ [2]. By the mid-2000s, this 
growing power meant that all computing systems, 
even high-end servers, had become power limited.

Unfortunately, during this period, voltage scaling 
essentially stopped. Now, when moving to a technol-
ogy with feature size scaled by ​α​ with respect to the 
previous generation, gate energy scales by at best ​α​ 
(not ​​α​​ 3​​ as before). So even when we do not scale clock 
frequency at all and just try to build ​​α​​ −2​​ processors  

(to use all transistors avail-
able in the same area), 
the power will increase 
by ​​α​​ −1​​ which will exceed 
the power budget. This 
inability to use, or at least 
use concurrently, all the 
gates you can create on a 
silicon die gave rise to the 
term “dark silicon” [3].

Today the key challenge in improving perfor-
mance is how to leverage transistors when they 
cannot all be used at the same time. Taylor, in 
his “Four horsemen of dark silicon” paper, char-
acterized the work in this field into four different 
approaches: shrink, dim, specialize, and technology  
magic [4].

The simplest approach is to simply not build 
transistors that cannot be used continuously: only 
build the number of gates that you can operate con-
currently under a given power constraint. Since this 
number is growing slowly, the resulting die area will 
shrink with technology scaling. This is the shrink 
horseman. While the power density of the silicon 
die does go up as area shrinks, getting power out 
of the die is not the main problem, e.g., heat pipes 
work well for this. The main problem is getting the 
power out of the complete system, whose form fac-
tor does not change when the die shrinks. The shrink 
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approach makes the computing device cheaper to 
manufacture, but significantly limits the perfor-
mance improvement.

Dim tries to leverage all the possible gates/tran-
sistors by making some or all of them dissipate less 
power than before. This dimming generally reduces 
the performance per unit area, so it must be done in 
a way that results in better overall performance than 
simple die shrinking. Two common dimming tech-
niques are lowering the supply voltage to reduce 
gate energy, and increasing the numbers of gates in 
a clock cycle to decrease the clock energy and the 
number of gate evaluations per second.1 Dimming 
techniques have been widely used to create today’s 
multicore processors, and have grown quite sophis-
ticated. For example, many processors dynamically 
adapt their supply voltage so aggressively that they 
have to lower their clock frequency when they 
detect small power supply glitches [5]. We show 
in the “Metrics for energy constrained computing” 
section that these techniques create Pareto curves 
in the energy efficiency and compute density metric 
space. These curves together with the design power, 
performance, and area constraints can be used to 
determine the optimal amount of dimming.

The next horseman, specialization, uses the extra 
transistors to create compute engines highly opti-
mized to specific applications. This specialization 
can dramatically improve energy efficiency which, 
in a power-limited world, enables higher perfor-
mance. Since they run only specific applications, 
these engines are idle, or dark, most of the time, a 
perfect fit for dark silicon constraints. Specialized 
accelerators are widely used in modern proces-
sor systems-on-chip (SoCs) and many of these are 
orders of magnitude more energy efficient than a 
CPU or a GPU. This dramatic improvement in energy 
efficiency has led many people to think that this 
approach is the key to designing a dark silicon chip.

Yet when you look at power dissipation in a CPU 
chip, around half is in the on-chip memory system [6]. 
Remembering that most power limitations are really 
system and not chip-level power limitations, this 
actually understates the memory problem, since 
we should really include external DRAM power as 
well. Thus, the memory system contributes well over 
50% of the total system power. So, given Amdahl’s 

law, changing the compute engine without improv-
ing the memory can only have a modest (less than 
two times) change in energy efficiency. The next 
section explores this issue in more detail, explain-
ing why memory fetches are expensive, how their 
energy costs grow with memory size, and how 
to compute the lower bound on an application’s 
energy consumption from the locality of the running 
application. The unavoidable conclusion is that 
high performance requires the DRAM and most of 
the lower levels of memory hierarchy (e.g., last level 
cache) to be dark almost all of the time. We call this 
idle memory “dark memory.” Given this insight, the 
“Algorithmic optimization” section describes the 
critical task for dark silicon systems: optimizing algo-
rithms to maximize their exploitable locality.

Finally, the Deus Ex Machina horseman deals 
with dark silicon by hoping for a dramatic change in 
the underlying device technology. While it would be 
great if a new and better technology/approach was 
found, we have at least two reasons not to count on it. 
First, all new technologies take time to reach the man-
ufacturing scale needed to affect computing; even 
if a new technology is created, it is a decade away 
from affecting volume computing devices. Given 
that there is no serious competitor today, computing 
will use CMOS for at least another decade. Second, 
waiting for a new “magic” technology abdicates our 
role in helping to continuously improve computing 
performance. So the rest of the article focuses on 
existing mainstream silicon computing, though we 
will also look briefly at the effect of potential new 
technologies.

The “Metrics for energy constrained computing” 
section ties everything together by describing two 
simple metrics, energy/op and mm2/(op/s) which 
enable us to bring all these techniques into a sin-
gle framework, and thus determine what amount 
of shrink, dim, and specialization is best for a given 
design, as well as quantifying the importance of 
keeping the memory dark and finding optimal cache 
hierarchy sizes for a given workload. One can use 
this framework to trade off memory and specialized 
processors, as well as comparing two applications 
with different compute and locality patterns.

Why dark memory is essential
The lesson that one quickly learns doing chip 

design today is that most of the energy is consumed 
not in computation but in moving data to and from 

1Lowering the clock speed decreases the number of gate evaluations per  
second, but, of course, also lowers the performance. The performance loss is often 
less than the change in clock frequency since the shorter pipeline generally has 
higher architectural efficiency and thus better energy efficiency.
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memory, as can be seen in Table 1.2 In ASIC-style 
design, given, e.g., the computational graph shown in 
Figure 1, links between functional blocks are imple-
mented as wires. As the communication complexity 
grows, the hardware block gets bigger, making the 
wires longer, increasing the communication energy. 
Computers avoid this wire problem by serializing 
the computation, computing a few operations each 
cycle. However, it now needs to store the intermedi-
ate results, which used to flow in wires from one logic 
unit to the next, so it can access them when needed. 
Thus, the size of the memory needed is related to 
the complexity of the communication in the algo-
rithm, so the energy increases with communication 
complexity.

Memory energy
While the access energy of a memory depends on 

many factors, to first order it grows as the square root 
of its size, which roughly corresponds to the length 
of the wires that need to transport the address and 
data values across the memory array. This was noted 
long ago by Amrutur and Horowitz [8], citing even 
earlier work by Evans and Franzon [9]. The mem-
ory energy also depends on the fetch width, but that 
dependence is much weaker than you might expect. 
For example, moving from 16- to 64-b fetches only 
changes the energy by 1.5x, so wider fetches are 
generally more efficient in terms of energy per byte.3 
This means that for a 16-b machine, a fetch from even 

a 4K-entry memory block costs over ten times the 
energy of a multiply operation, as we saw in Table 1.

To minimize memory energy costs and improve 
performance, we create memory hierarchies, so that 
most of the accesses can be satisfied by small local 
memories. Given that a normal operation requires 
three data fetches—two operands and one result—it 
is essential that the register file energy be as small as 
possible. The register energy is significant: for 16-b 
arithmetic, the cost of these three fetches, 36 pJ, 
exceeds the cost of a simple add operation, 18 pJ, 
even when using a small 16-entry register file.

The situation is actually worse than this since 
the actual cost of the operand fetch is higher than 
just the register file energy. It also took energy to 
load the value into, and store the result from, the 
register file. This additional energy is set by the 

2 Energy for memory and integer ops come from Verilog, placed and routed 
using commercial tools. Energy for floating-point ops come from the Galal thesis [7],  
which also used data from placed and routed designs.

Figure 1. Example data flow graph showing why wire 
length grows as communication become more  
complex. When this algorithm executes sequentially, the 
values on the wires that are still live in the execution 
trace are named and stored in a memory so they can 
be accessed when needed. The size of this live set 
sets the size of the required memory. When new  
dependences are added from nodes 1 to 9 and nodes  
2 to 7 (dashed lines), this adds two new registers  
1 and 2 to the required memory at each indicated cut.

3 Internally, most SRAMs fetch 64–256 b on each access, so returning a small number 
of bits increases the effective energy cost per bit. To address this issue, you could create 
a SIMD machine and fetch the 16-b data for four lanes from a single SRAM. While this is 
more efficient, it also makes the memory four times larger, since it now needs to hold 
four lanes’ worth of working set, so the benefit is modest.

 
Table 1  Energy per op, in pJ, for various ops in 45 
nm. The second column in each group shows energy 
multiple versus a single add operation.
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number of ops performed per register file load 
instruction, and grows as the register file gets 
smaller. This additional energy cost from needing 
to “load/store” values from/to a lower (slower) 
level in the memory hierarchy exists until you get 
to DRAM, and can be significant: since the energy 
of a DRAM access is often two orders of magnitude 
larger than a local memory access, the overall hit 
rate of the on-chip memory system needs to be 
better than 99% for the DRAM not to dominate the 
overall memory energy.

While this seems to argue that larger memory 
hierarchies are better, both die cost and leakage 
constrain memory size. The problem is that while 
idle SRAM may be dim, it is never completely dark. 
Each memory cell has a small leakage current such 
that SRAM dissipates static power, which can be 
a large issue for a battery-operated device. If the 
average activity of the device is low, minimizing 
this leakage moves the optimal point to smaller 
memory sizes, which increases DRAM activity 
and results in a higher energy cost for each mem-
ory access.4 Leakage energy and access energy 
both increase as the memory gets larger, and this 
leads to a minimum memory cost, which is set by 
the application’s locality. The “Algorithmic opti-
mization” section shows methods to improve the 
locality of the algorithm we use, and the “Metrics 
for energy-constrained computing” section shows 

how to find an optimal memory hierarchy for this 
improved algorithm.

Another way to view memory’s energy con-
straint is shown in Figure 2, derived from the 
energy numbers of Table 1. Figure 2 plots the 
maximum number of operations per second for a 
watt of power, assuming that one of the operands 
needs to be fetched from the memory indicated. 
Fetching one operand essentially assumes that the 
operations perfectly cascade, so the output of the 
operation is stored into the register file and then 
read out as the other operand for the next opera-
tion. For simple 16-b operations, accesses to even 
a small memory are very costly (10x GOPS/W when 
going from Mult to 4K SRAM in the table), while for 
more expensive 64-b operations, first level cache 
accesses only triple the energy cost (from about  
45 GOPS/W Mult to 15 GOPS/W 4K SRAM). For 64-b 
FP, it is the last level cache and DRAM accesses that 
have a dramatic effect. It is important to remember 
that this limitation is independent of the degree of 
parallelism of the application or the hardware. For 
memory, parallelism does not change the energy/
access, and thus does not change the peak band-
width in a power-limited system.

Emerging memory technologies
Recently there has been an increasing interest in 

new memory technologies fueled by the possibility 
that more radical developments in memory or inter-
connect technology will emerge. Examples of these 
technological changes include increasing on-die 
memory using existing or emerging technologies 
such as eDRAM [10], STT-MRAM [11], RRAM [12], 
PCM [13] or 3-D Xpoint [14], to using RRAM, PCM, 
or Xpoint to replace DRAM or adding an additional 
level after DRAM in the memory hierarchy. Most of 
these technologies are nonvolatile so have a low 
leakage state, and can be stacked to yield very high 
densities. These new technologies are proposed for 
creating large memories, and these large memories 
will need long wires to distribute the address and 
data. Thus, while the length of these wires might be 
shorter than in DRAM, they will still be long enough 
to require significant energy compared to computa-
tion, and must be used infrequently. Hence, the need 
for dark memory is an inherent issue in the design of 
the system for any reasonable memory solution in 
the foreseeable future.

4 Another option is to power down the on-chip memory during idle periods, but 
this too increases overall memory energy since now the dirty cache data need to be 
written to DRAM on power-down, and additional DRAM fetches are needed to bring 
the data back into the cache when it is powered back on.

Figure 2. Effective number of ops/s/W (ops/J) if one 
operand for that operation is fetched from the indicat-
ed memory, and the others come from the register file. 
For 16-b ops even a small 4K word memory throttles 
the performance per watt.
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Given the criticality of keep-
ing the memory hierarchy—
especially the DRAM—dark, 
the first part of accelerator 
design, is not about the hard-
ware: it is to find a way to 
execute the application using 
an algorithm that minimizes 
DRAM accesses and has 
high chip-level locality, espe-
cially when parallelized, as 
described in the next section.

Algorithmic  
optimization

Given the high cost of 
memory accesses, algorithm 
optimization primarily focuses 
on minimizing DRAM and low-
level cache accesses, and sec-
ondarily creating parallelism 
that can be exploited on chip. 
The simplest optimizations 
involve blocking, which splits 
and reorders loops to increase 
locality. In this context, it is possible to unroll a loop 
in hardware, creating parallelism for the hardware to 
exploit. Often these methods are not enough, how-
ever, and a new lower communication approach to 
the problem is needed. That approach can have a 
higher computation cost, but if the energy is commu-
nication dominated, it is still more energy efficient.

Exploiting locality and blocking
We will use GEneral Matrix Multiplication 

(GEMM) ​A × B+  =  C​ as an example to see how block-
ing can reduce DRAM accesses and consequently 
save energy.5 At first GEMM looks like it should be 
computation dominated, since for ​n​ by ​n​ matrices it 
accesses ​3 ​n​​ 2​​ memory locations (read two and write 
one matrix) and performs ​2 ​n​​ 3​​ operations. The prob-
lem arises with the required working set of a naive 
implementation, since to create one row of the out-
put requires reading the entire ​B​ matrix, which can 
be very large. As a result, this matrix must be reread ​
n​ times, leading to ​​n​​ 3​​ memory operations and low 
FLOPS per DRAM access as depicted in Figure 3  
(as “naive dense linear algebra”).

However, by reordering the computation, we can 
greatly increase the locality. If we view each matrix 
as composed of a number of smaller ​b × b​ matri-
ces, each entire submatrix can be stored in a ​b × b​ 
block of memory on-chip. Now if we iterate over 
these submatrices, we need to refetch the ​B​ matrix 
only ​n / b​ times, reducing the DRAM accesses down to  
​2 ​n​​ 3​ / b + 2 ​n​​ 2​​ accesses [15]. This technique can be 
applied recursively, blocking each submatrix into a 
higher level of the memory hierarchy, with the highest 
level blocked into the register file. Adding this on-chip 
memory increases the area and power dissipated by the 
chip, but causes the system power to greatly decrease 
by keeping the DRAM dark. As Figure 3 demonstrates, 
blocking can improve many computations, including 
algorithms for dense linear algebra [15], [16], [17], con-
volutional neural networks [18], the four-step fast Fourier 
transform (FFT) [19], [20], [21], and many others.

Sequential to parallel
Locality is also critical when mapping an applica-

tion to parallel hardware, since it is best if the parallel 
executions use mostly local data. Both data and task 
parallelism can be exploited in hardware design, 
which often requires small algorithmic changes to 

5 As part of the BLAS scientific computing library, GEMM is essential to innumer-
able applications, including data parallel applications.

Figure 3. Complexity versus computation/memory-access ratio for  
several algorithms. Dashed algorithms increase algorithm complexity 
for efficient implementation.
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remove minor dependencies in the sequential code. 
Data parallelism is often exploited by taking one of 
the blocked loops and unrolling it so each loop iter-
ation is done by a different piece of hardware, while 
task parallelism is exploited by building a hardware 
block for each task, and using wires to handle the 
producer/consumer communication.

Parallel execution generally decreases the 
energy required for memory that is strictly local to 
the unit, since in this case the original memory is 
partitioned into many smaller memories with one 
memory embedded into each parallel unit. The 
energy required for memory storing shared data 
generally goes up, since now these data must be 
communicated to all the cores, which are large in 
size due to their private memory. We will again use 
GEMM to demonstrate this issue. To create a paral-
lel GEMM execution, we distribute the rows of A to 
different cores and broadcast the columns of B to 
all the cores so each core produces unique rows 
of C. Since the A and C matrices are partitioned 
among the cores, the working set in each core is 
smaller, since it only needs to hold a fraction of the 
total matrix. The memory required for the B matrix 
remains the same size, but now its output needs 
to be broadcast to all the cores [22]. The energy 
required to distribute this information is propor-
tional to the square root of the area that all the cores 
occupy, which is related to the total memory used 
in all the cores (plus the overhead of the hardware), 
and is often larger than the energy needed to fetch 
B from its memory. This overhead makes it critical 
for parallel algorithms to limit the total communica-
tion between parallel units, or restrict them to phys-
ically adjacent units.

Changing the nature of the algorithm
While it may be possible to get the required local-

ity and parallelism through blocking, sometimes 
a very different approach is needed to reach the 
desired performance. Here the application devel-
oper needs to take broader look at the problem, to 
see if there are problem symmetries or simplifica-
tions that can be exploited, different approaches to 
try, or constraints that can be relaxed. For example, 
in linear algebra, different variants of algorithms 
show different behaviors in various levels of the 
memory hierarchy so the specific choice of variant 
affects locality and performance [23], [24]. Another 
example is the FFT, which exploits symmetries in the 

DFT to dramatically reduce the complexity of com-
puting a Fourier transform [25].

A classical example depicted in Figure 3 is the 
solution of sparse systems. The most straightforward 
method is to use expensive O(​​N​​ 3​​) dense direct 
methods that do not take advantage of sparsity in 
the data structure. Sparse direct solvers use tech-
niques such as reordering the data, graph coloring 
[26], and constructing dependence trees to preserve 
nonzero patterns in the matrix and so avoid per-
forming computations with zeros, all while improv-
ing parallelism [27]. This drops the computations6 
down to at most O(​​N​​ 2​​) in spite of various overheads 
for extra complexity. In contrast, iterative solvers 
reduce computations by performing a sequence 
of improving approximate solutions that are much 
cheaper in complexity [e.g., O(​​N​​ 2​​)] and (for well-con-
ditioned matrices) converge after a few iterations [28]. 
However, each iteration consists of low-performance 
memory-bound kernels such as (sparse) matrix–vector 
multiplication. Communication-avoiding algorithms 
can replace these memory-bound kernels with 
GEMM-like kernels to improve the locality and per-
formance at the cost of slightly slower convergence 
rate and more computations [29], [30].

Other approaches relax some constraints in the 
original problem. For example, iterative refinement 
techniques use high precision arithmetic for lower 
order residual computation and then use lower pre-
cision arithmetic for high-order less sensitive linear 
solve kernels [31]. This method can speed the com-
putation by up to two orders of magnitude and can 
be generalized for solving linear least square prob-
lems, eigenvalue/singular value computations, and 
sparse solutions such as conjugate gradient [32]. Or 
parallel applications can allow cores that update 
shared state to be stochastic with respect to other 
processors. Both of these methods sacrifice con-
vergence rate to decrease communication for each 
computation round.

This reduction of constraints is widely used in 
applications that use randomized algorithms, which 
are becoming popular especially in domains such as 
machine learning and principal components anal-
ysis (PCA) where approximate but fast results are 
desired. Such methods select a random subset of the 
initial input data and reduce substantial parts of the 
computation while still managing to converge on a 
desired result [33]–[35].

6 For matrices whose graphs can be embedded in at most three dimensions.
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Metrics for energy- 
constrained computing

To formalize the tradeoffs 
discussed in the previous sec-
tions we will assume that we 
are building a system on chip 
(SoC) with specialized hard-
ware designed to solve a data 
parallel problem, and that we 
have constraints on, or want 
to optimize combinations of 
performance, power, and chip 
area.7 To solve this optimiza-
tion problem, we can place 
every possible design combina-
tion in a 3-D space, where the 
x-axis is chip area, the y-axis 
is power, and the z-axis is per-
formance. In this space, it is 
easy to remove designs that 
can never be optimal: designs 
with the same area and power 
as another design but lower 
performance, designs with 
the same performance and 
area but higher energy, or designs with the same 
performance and energy by larger area. Removing 
these suboptimal designs will leave a 2-D surface of 
designs that might be optimal.

Fortunately, we can simplify this space further 
by recognizing that we are solving a data parallel 
problem. In this type of problem, we assume you can 
double the throughput (the performance) by dou-
bling the hardware (the power and area). What this 
means is that each design is not a point in the 3-D 
performance space, but a line. To convert a design 
back to a point, we divide the area and power axes 
by the performance of the design (since both of these 
parameters are proportional to performance) and 
end up with a 2-D metric space: power/performance, 
or energy/op; versus area/performance, or mm2/op/s.

Joules/op and mm2 /(ops/s) metrics
As in the 3-D case, it is easy to find nonoptimal 

designs. Any design that has a higher energy/op with 
the same compute density as another design can 
never be the best design. Similarly, if two designs 

have the same energy/op, the one with a higher 
mm2/(ops/s) cost cannot be optimal. Figure 4 shows 
the result of evaluating the design space for an FP 
fused mult-add unit, and exploring different microar-
chitecture, pipeline depth, gate sizing, cell libraries, 
and Vdd settings. From an energy-efficient design 
perspective, we can completely characterize this 
design space, which includes the effect of dimming, 
by the shape of its Pareto curve (the left-hand edge 
of the feasible space), which is shown in Figure 5a.

These two metrics nicely capture many of the 
tradeoffs we have discussed previously. As we dim 
the silicon, we create designs with lower energy/op, 
but they will also operate slower, which moves along 
the Pareto curve. Similarly, adding a level in the 
memory hierarchy may decrease the energy of an 
access, but will also increase the area required, con-
tributing another design point to the Pareto curve.

To show why Figure 5a is so powerful, Figure 5b 
plots the power and area of an accelerator, and 
shows some possible design constraints. Note that 
the lines of constant performance shown in this 
plot are simply the Figure 5a curve scaled by differ-
ent throughput numbers. So finding the maximum 
performance point for ​P  <  ​P​ max​​​ and ​A  <  ​A​ max​​​ is the 

7 Talk of free transistors aside, die area is still important to consider. It strongly 
affects cost when you sell parts in large (​​10​​ 

6
​​) volumes, and low volume parts still 

have area constraints they cannot exceed.

Figure 4. Mapping of a large design space of fused FMADD designs. 
Each dot represents a different variation on the base design; for ex-
ample, all the diamond shapes represent various unpipelined versions, 
squares have a pipe depth of 2 and so on up to a 20-deep pipeline. 
Most of the designs are strictly worse in the sense that they either 
take more area or more energy than one of the other designs. The 
left-hand edge is the edge of the feasible space, and these designs are 
optimal for some design constraints [36].
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same as finding the point (​​ε​ A​​​, ​​ε​ P​​​) in Figure 5a where 
(energy/op)/(mm2/(ops/s)) ​= ​P​ max​​ / ​A​ max​​​, and the 
resulting performance is ​​A​ max​​ / ​ε​ A​​​. Other optimization 
objectives can be mapped to a curve in this space, 
allowing them to be solved as well, including opti-
mizing for total cost of ownership. For more details 
see Galal’s work on energy-efficient FPU design [36].

If the algorithm is fixed, one can use any defini-
tion of an op in these metrics, since this optimiza-
tion does not change the number of ops. However, 
if we need to compare designs across different algo-
rithmic approaches, it is essential to define op to be 
something that is invariant across the different imple-
mentations. For example, using FLOPs to compare 
sparse and dense algorithms would be a bad idea, 
since a dense implementation would have much 
lower energy/FLOP and area/FLOP/s, but would 
require many more FLOPs than a sparse solver, and 
would look worse on the curve. Similarly, when trad-
ing off among different possible implementations, it 

is important that they all use the 
same op definition.

Accelerator  
optimization

Another advantage of using 
Pareto curves rather than a 
specific design point is that 
the curve provides information 
about marginal cost in area or 
energy if you need to change 
the design. While these mar-
ginal costs assume you can 
add fractional compute units 
to get fractional performance, 
which is clearly wrong, they 
do provide the insight needed 
to create efficient solutions. To 
demonstrate how they can be 
used for accelerator evalua-
tion, assume our application is 
running on a scalable machine 
and we want to minimize this 
machine’s power by adding 
some specialized accelerators 
while staying within the chip’s 
current area and performance 
budget. Since we are assum-
ing the base machine and 
accelerator area scale with 

performance, moving computation from the base 
machine to the accelerator will provide area that the 
accelerator can use. The accelerator will improve 
the energy of the machine if it has a lower energy/op 
when operating at the same mm2/(op/s) as the base 
machine. Since the compute density is the same, this 
new solution should require the same area as before.

The previous step verified that the accelerator can 
reduce energy/op versus the original system, but the 
resulting design is not necessarily optimal: to ease the 
comparison we chose points that had the same com-
pute density, and left the base design alone. We need to 
change both to get the optimal power. Fortunately, like 
most constrained optimization problems, the optimal 
area allocation can be found by balancing marginal 
costs: at the optimal point, the change in energy/op per 
change in mm2/(op/s) in the two compute units must 
be the same. Moving an increment of work lowers the 
energy of the unit losing the work by its marginal cost, 
while the unit gaining the work increases its energy 

Figure 5. (a) Determining the optimal design point from a through-
put-energy tradeoff curve and constraints. (b) Contour map of achiev-
able throughputs versus area and power. Constraints of ​​A​ max​​ =​ 2 cm​​​​​ 2​​, ​​
P​ max​​ =​ 60 W, and ​​D​ max​​ =​ 50 W/cm​​​​​ 2​​ are indicated [7].



9March/April 2017

by its marginal cost. If these are not the same, moving 
work from the unit with higher marginal cost to the one 
with lower marginal cost will save energy (or if the work 
cannot move because the accelerator is specialized, 
simply move silicon area in the other direction).

Nonscalable objects
While this method clearly shows how Pareto 

information lets us optimally allocate area between 
two compute engines, its assumption of finely par-
titioned engines is rarely the case. In most designs, 

the area of a block cannot be smoothly changed. 
Processors/accelerators can be scaled by duplica-
tion, but since each unit contains compute/control/
memory they are generally of significant size. The 
result is one cannot really incrementally move area 
from one unit to the other. Instead you can only 
make much coarser grain moves. This quantization 
makes finding the exact answer harder, since now 
we need to solve a mixed integer program; but the 
basic intuition remains the same: If the marginal cost 
of an accelerator ​​A​ 1​​​ is lower than a second unit ​​A​ 2​​​, test 

Figure 6. (a) Effect of multiple layers of on-chip memory on the energy and area 
tradeoffs for GEMM. As the area grows, more memory levels are needed in the optimal 
design. One level memory is registers and DRAM, two levels has registers, local memory 
and DRAM, etc. (b) Pareto curve of 256-GFLOP GEMM accelerator, shown in black. This 
was generated by finding the FMADD design that matched the margin cost of the mem-
ory system. Also drawn are the systems that would result by pairing different FMADD 
tradeoff choices to the optimal memory design points showing other potential designs, 
most of which are highly suboptimal.
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to see if you can reduce the size of ​​A​ 1​​​ enough to give ​​A​ 2​​​  
enough area so it can move to a more energy-effi-
cient design. This might involve lowering the perfor-
mance of each existing ​​A​ 2​​​ compute unit, and then 
adding a new one to maintain aggregate throughput. 
If enough area cannot be created, the best alternative 
is to try to use the area in ​​A​ 1​​​ to reduce its energy cost.

Dealing with the memory system adds a new chal-
lenge. While the register files and first level caches are 
duplicated with the compute units, the levels in the 
memory hierarchy closer to DRAM (last level cache, 
and sometimes even the L2) are shared and so their 
area is not proportional to the computing throughput. 
Fortunately, like a compute unit, one can create a 
Pareto curve for a memory system. The y-axis remains 
energy/op, but now it represents the average memory 
energy used for each processor op. Since area does 
not scale with performance, the x-axis is just area. 
Like compute units, the different memory configura-
tions will collectively generate a single Pareto curve, 
where larger area reduces the average memory cost, 
by filtering out more of the DRAM accesses.

This memory Pareto curve has exactly the form 
we need to find the optimal allocation between 
memory and computation. We just scale the com-
pute curve by the desired aggregate performance so 
its Pareto curves also indicate the tradeoff between 
area and energy/op, and the energy optimal design 
will balance the marginal cost between the two units.

Figure 6 shows how this is done for a GEMM 
accelerator. Using the known access pattern of the 
algorithm, the required memory energy per fused 
multiply/add is found for all possible memory con-
figurations. We explore 1–5 levels of on-chip memory 
hierarchy in addition to the DRAM, and try many dif-
ferent potential memory sizes for each level. Most of 
these configurations are not optimal, but a few form 
the Pareto curve (in turquoise). This curve shows 
how the memory energy changes from 1 nJ/FMADD 
to around 20 pJ/FMADD as the area changes from 0 to 
100 mm2. Also shown in Figure 6a is the Pareto curve 
of an FMADD running at 256 GFLOPS. To generate the 
power and area curve for the entire system, we add 
the energy and area cost of the FMADD design at each 
point in the memory Pareto curve. This results in the 
many curves shown in Figure 6b. Overlaid on these 
curves is the overall Pareto curve, which is shown in 
black which uses the FMADD design which matches 
the marginal cost of the memory system. Not surpris-
ingly, the small area solutions chose high compute 

density FMADD solutions, since the memory system 
dominates the energy, while large memory area solu-
tions use low energy, and area-inefficient FMADD. 
The result is that even though the total power ranges 
by nearly 10x, in most of these designs, the compute 
energy and memory energy are roughly 50/50.
The large energy cost of memory fetches limits the 
overall efficiency of applications no matter how effi-
cient the accelerators are on the chip. As a result, 
the most important optimization must be done 
at the algorithm level, to reduce off-chip memory 
accesses, to create dark memory. The algorithms 
must first be (re)written for both locality and paral-
lelism before one tailors the hardware to accelerate 
them.

Using pareto curves in the energy/op and  
mm2/(op/s) space allows one to quickly evaluate 
different accelerators, memory systems, and even 
algorithms to understand the tradeoffs between perfor-
mance, power, and die area. This analysis is a powerful 
way to optimize chips in the dark silicon era.� 
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