
12168-2356/16 © 2016 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2017

Dark Memory and
Accelerator-Rich System
Optimization in the Dark
Silicon Era

Digital Object Identifier 10.1109/MDAT.2016.2573586

Date of publication: XX XXXX XXXX; date of current version:

XX XXXX XXXX.

Ardavan Pedram, Stephen Richardson,
and Mark Horowitz
Stanford University

Sameh Galal
Citadel LLC

 Even though dennard in 1974 showed how
to scale CMOS devices for constant power density

as the feature size scaled down by a factor ​α =​
(newSize/prevSize) [1], the power density of CMOS
processor chips grew exponentially from the mid-
1980s to the late 1990s. This power growth resulted

both from scaling clock frequency faster than 1/​α​
and voltages slower than ​α​ [2]. By the mid-2000s, this
growing power meant that all computing systems,
even high-end servers, had become power limited.

Unfortunately, during this period, voltage scaling
essentially stopped. Now, when moving to a technol-
ogy with feature size scaled by ​α​ with respect to the
previous generation, gate energy scales by at best ​α​
(not ​​α​​ 3​​ as before). So even when we do not scale clock
frequency at all and just try to build ​​α​​ −2​​ processors

(to use all transistors avail-
able in the same area),
the power will increase
by ​​α​​ −1​​ which will exceed
the power budget. This
inability to use, or at least
use concurrently, all the
gates you can create on a
silicon die gave rise to the
term “dark silicon” [3].

Today the key challenge in improving perfor-
mance is how to leverage transistors when they
cannot all be used at the same time. Taylor, in
his “Four horsemen of dark silicon” paper, char-
acterized the work in this field into four different
approaches: shrink, dim, specialize, and technology
magic [4].

The simplest approach is to simply not build
transistors that cannot be used continuously: only
build the number of gates that you can operate con-
currently under a given power constraint. Since this
number is growing slowly, the resulting die area will
shrink with technology scaling. This is the shrink
horseman. While the power density of the silicon
die does go up as area shrinks, getting power out
of the die is not the main problem, e.g., heat pipes
work well for this. The main problem is getting the
power out of the complete system, whose form fac-
tor does not change when the die shrinks. The shrink

Shahar Kvatinsky
Technion

Editor’s note:
Unlike traditional dark silicon works that attack the computing logic, this article
puts a focus on the memory part, which dissipates most of the energy for
memory-bound CPU applications. This article discusses the dark memory state
and present Pareto curves for compute units, accelerators, and on-chip mem-
ory, and motivates the need for HW/SW codesign for parallelism and locality.

—Muhammad Shafique, Vienna University of Technology

2 IEEE Design&Test

Computing in the Dark Silicon Era

approach makes the computing device cheaper to
manufacture, but significantly limits the perfor-
mance improvement.

Dim tries to leverage all the possible gates/tran-
sistors by making some or all of them dissipate less
power than before. This dimming generally reduces
the performance per unit area, so it must be done in
a way that results in better overall performance than
simple die shrinking. Two common dimming tech-
niques are lowering the supply voltage to reduce
gate energy, and increasing the numbers of gates in
a clock cycle to decrease the clock energy and the
number of gate evaluations per second.1 Dimming
techniques have been widely used to create today’s
multicore processors, and have grown quite sophis-
ticated. For example, many processors dynamically
adapt their supply voltage so aggressively that they
have to lower their clock frequency when they
detect small power supply glitches [5]. We show
in the “Metrics for energy constrained computing”
section that these techniques create Pareto curves
in the energy efficiency and compute density metric
space. These curves together with the design power,
performance, and area constraints can be used to
determine the optimal amount of dimming.

The next horseman, specialization, uses the extra
transistors to create compute engines highly opti-
mized to specific applications. This specialization
can dramatically improve energy efficiency which,
in a power-limited world, enables higher perfor-
mance. Since they run only specific applications,
these engines are idle, or dark, most of the time, a
perfect fit for dark silicon constraints. Specialized
accelerators are widely used in modern proces-
sor systems-on-chip (SoCs) and many of these are
orders of magnitude more energy efficient than a
CPU or a GPU. This dramatic improvement in energy
efficiency has led many people to think that this
approach is the key to designing a dark silicon chip.

Yet when you look at power dissipation in a CPU
chip, around half is in the on-chip memory system [6].
Remembering that most power limitations are really
system and not chip-level power limitations, this
actually understates the memory problem, since
we should really include external DRAM power as
well. Thus, the memory system contributes well over
50% of the total system power. So, given Amdahl’s

law, changing the compute engine without improv-
ing the memory can only have a modest (less than
two times) change in energy efficiency. The next
section explores this issue in more detail, explain-
ing why memory fetches are expensive, how their
energy costs grow with memory size, and how
to compute the lower bound on an application’s
energy consumption from the locality of the running
application. The unavoidable conclusion is that
high performance requires the DRAM and most of
the lower levels of memory hierarchy (e.g., last level
cache) to be dark almost all of the time. We call this
idle memory “dark memory.” Given this insight, the
“Algorithmic optimization” section describes the
critical task for dark silicon systems: optimizing algo-
rithms to maximize their exploitable locality.

Finally, the Deus Ex Machina horseman deals
with dark silicon by hoping for a dramatic change in
the underlying device technology. While it would be
great if a new and better technology/approach was
found, we have at least two reasons not to count on it.
First, all new technologies take time to reach the man-
ufacturing scale needed to affect computing; even
if a new technology is created, it is a decade away
from affecting volume computing devices. Given
that there is no serious competitor today, computing
will use CMOS for at least another decade. Second,
waiting for a new “magic” technology abdicates our
role in helping to continuously improve computing
performance. So the rest of the article focuses on
existing mainstream silicon computing, though we
will also look briefly at the effect of potential new
technologies.

The “Metrics for energy constrained computing”
section ties everything together by describing two
simple metrics, energy/op and mm2/(op/s) which
enable us to bring all these techniques into a sin-
gle framework, and thus determine what amount
of shrink, dim, and specialization is best for a given
design, as well as quantifying the importance of
keeping the memory dark and finding optimal cache
hierarchy sizes for a given workload. One can use
this framework to trade off memory and specialized
processors, as well as comparing two applications
with different compute and locality patterns.

Why dark memory is essential
The lesson that one quickly learns doing chip

design today is that most of the energy is consumed
not in computation but in moving data to and from

1Lowering the clock speed decreases the number of gate evaluations per
second, but, of course, also lowers the performance. The performance loss is often
less than the change in clock frequency since the shorter pipeline generally has
higher architectural efficiency and thus better energy efficiency.

3March/April 2017

memory, as can be seen in Table 1.2 In ASIC-style
design, given, e.g., the computational graph shown in
Figure 1, links between functional blocks are imple-
mented as wires. As the communication complexity
grows, the hardware block gets bigger, making the
wires longer, increasing the communication energy.
Computers avoid this wire problem by serializing
the computation, computing a few operations each
cycle. However, it now needs to store the intermedi-
ate results, which used to flow in wires from one logic
unit to the next, so it can access them when needed.
Thus, the size of the memory needed is related to
the complexity of the communication in the algo-
rithm, so the energy increases with communication
complexity.

Memory energy
While the access energy of a memory depends on

many factors, to first order it grows as the square root
of its size, which roughly corresponds to the length
of the wires that need to transport the address and
data values across the memory array. This was noted
long ago by Amrutur and Horowitz [8], citing even
earlier work by Evans and Franzon [9]. The mem-
ory energy also depends on the fetch width, but that
dependence is much weaker than you might expect.
For example, moving from 16- to 64-b fetches only
changes the energy by 1.5x, so wider fetches are
generally more efficient in terms of energy per byte.3
This means that for a 16-b machine, a fetch from even

a 4K-entry memory block costs over ten times the
energy of a multiply operation, as we saw in Table 1.

To minimize memory energy costs and improve
performance, we create memory hierarchies, so that
most of the accesses can be satisfied by small local
memories. Given that a normal operation requires
three data fetches—two operands and one result—it
is essential that the register file energy be as small as
possible. The register energy is significant: for 16-b
arithmetic, the cost of these three fetches, 36 pJ,
exceeds the cost of a simple add operation, 18 pJ,
even when using a small 16-entry register file.

The situation is actually worse than this since
the actual cost of the operand fetch is higher than
just the register file energy. It also took energy to
load the value into, and store the result from, the
register file. This additional energy is set by the

2 Energy for memory and integer ops come from Verilog, placed and routed
using commercial tools. Energy for floating-point ops come from the Galal thesis [7],
which also used data from placed and routed designs.

Figure 1. Example data flow graph showing why wire
length grows as communication become more
complex. When this algorithm executes sequentially, the
values on the wires that are still live in the execution
trace are named and stored in a memory so they can
be accessed when needed. The size of this live set
sets the size of the required memory. When new
dependences are added from nodes 1 to 9 and nodes
2 to 7 (dashed lines), this adds two new registers
1 and 2 to the required memory at each indicated cut.

3 Internally, most SRAMs fetch 64–256 b on each access, so returning a small number
of bits increases the effective energy cost per bit. To address this issue, you could create
a SIMD machine and fetch the 16-b data for four lanes from a single SRAM. While this is
more efficient, it also makes the memory four times larger, since it now needs to hold
four lanes’ worth of working set, so the benefit is modest.

 
Table 1  Energy per op, in pJ, for various ops in 45
nm. The second column in each group shows energy
multiple versus a single add operation.

4 IEEE Design&Test

Computing in the Dark Silicon Era

number of ops performed per register file load
instruction, and grows as the register file gets
smaller. This additional energy cost from needing
to “load/store” values from/to a lower (slower)
level in the memory hierarchy exists until you get
to DRAM, and can be significant: since the energy
of a DRAM access is often two orders of magnitude
larger than a local memory access, the overall hit
rate of the on-chip memory system needs to be
better than 99% for the DRAM not to dominate the
overall memory energy.

While this seems to argue that larger memory
hierarchies are better, both die cost and leakage
constrain memory size. The problem is that while
idle SRAM may be dim, it is never completely dark.
Each memory cell has a small leakage current such
that SRAM dissipates static power, which can be
a large issue for a battery-operated device. If the
average activity of the device is low, minimizing
this leakage moves the optimal point to smaller
memory sizes, which increases DRAM activity
and results in a higher energy cost for each mem-
ory access.4 Leakage energy and access energy
both increase as the memory gets larger, and this
leads to a minimum memory cost, which is set by
the application’s locality. The “Algorithmic opti-
mization” section shows methods to improve the
locality of the algorithm we use, and the “Metrics
for energy-constrained computing” section shows

how to find an optimal memory hierarchy for this
improved algorithm.

Another way to view memory’s energy con-
straint is shown in Figure 2, derived from the
energy numbers of Table 1. Figure 2 plots the
maximum number of operations per second for a
watt of power, assuming that one of the operands
needs to be fetched from the memory indicated.
Fetching one operand essentially assumes that the
operations perfectly cascade, so the output of the
operation is stored into the register file and then
read out as the other operand for the next opera-
tion. For simple 16-b operations, accesses to even
a small memory are very costly (10x GOPS/W when
going from Mult to 4K SRAM in the table), while for
more expensive 64-b operations, first level cache
accesses only triple the energy cost (from about
45 GOPS/W Mult to 15 GOPS/W 4K SRAM). For 64-b
FP, it is the last level cache and DRAM accesses that
have a dramatic effect. It is important to remember
that this limitation is independent of the degree of
parallelism of the application or the hardware. For
memory, parallelism does not change the energy/
access, and thus does not change the peak band-
width in a power-limited system.

Emerging memory technologies
Recently there has been an increasing interest in

new memory technologies fueled by the possibility
that more radical developments in memory or inter-
connect technology will emerge. Examples of these
technological changes include increasing on-die
memory using existing or emerging technologies
such as eDRAM [10], STT-MRAM [11], RRAM [12],
PCM [13] or 3-D Xpoint [14], to using RRAM, PCM,
or Xpoint to replace DRAM or adding an additional
level after DRAM in the memory hierarchy. Most of
these technologies are nonvolatile so have a low
leakage state, and can be stacked to yield very high
densities. These new technologies are proposed for
creating large memories, and these large memories
will need long wires to distribute the address and
data. Thus, while the length of these wires might be
shorter than in DRAM, they will still be long enough
to require significant energy compared to computa-
tion, and must be used infrequently. Hence, the need
for dark memory is an inherent issue in the design of
the system for any reasonable memory solution in
the foreseeable future.

4 Another option is to power down the on-chip memory during idle periods, but
this too increases overall memory energy since now the dirty cache data need to be
written to DRAM on power-down, and additional DRAM fetches are needed to bring
the data back into the cache when it is powered back on.

Figure 2. Effective number of ops/s/W (ops/J) if one
operand for that operation is fetched from the indicat-
ed memory, and the others come from the register file.
For 16-b ops even a small 4K word memory throttles
the performance per watt.

5March/April 2017

Given the criticality of keep-
ing the memory hierarchy—
especially the DRAM—dark,
the first part of accelerator
design, is not about the hard-
ware: it is to find a way to
execute the application using
an algorithm that minimizes
DRAM accesses and has
high chip-level locality, espe-
cially when parallelized, as
described in the next section.

Algorithmic
optimization

Given the high cost of
memory accesses, algorithm
optimization primarily focuses
on minimizing DRAM and low-
level cache accesses, and sec-
ondarily creating parallelism
that can be exploited on chip.
The simplest optimizations
involve blocking, which splits
and reorders loops to increase
locality. In this context, it is possible to unroll a loop
in hardware, creating parallelism for the hardware to
exploit. Often these methods are not enough, how-
ever, and a new lower communication approach to
the problem is needed. That approach can have a
higher computation cost, but if the energy is commu-
nication dominated, it is still more energy efficient.

Exploiting locality and blocking
We will use GEneral Matrix Multiplication

(GEMM) ​A × B+  =  C​ as an example to see how block-
ing can reduce DRAM accesses and consequently
save energy.5 At first GEMM looks like it should be
computation dominated, since for ​n​ by ​n​ matrices it
accesses ​3 ​n​​ 2​​ memory locations (read two and write
one matrix) and performs ​2 ​n​​ 3​​ operations. The prob-
lem arises with the required working set of a naive
implementation, since to create one row of the out-
put requires reading the entire ​B​ matrix, which can
be very large. As a result, this matrix must be reread ​
n​ times, leading to ​​n​​ 3​​ memory operations and low
FLOPS per DRAM access as depicted in Figure 3
(as “naive dense linear algebra”).

However, by reordering the computation, we can
greatly increase the locality. If we view each matrix
as composed of a number of smaller ​b × b​ matri-
ces, each entire submatrix can be stored in a ​b × b​
block of memory on-chip. Now if we iterate over
these submatrices, we need to refetch the ​B​ matrix
only ​n / b​ times, reducing the DRAM accesses down to
​2 ​n​​ 3​ / b + 2 ​n​​ 2​​ accesses [15]. This technique can be
applied recursively, blocking each submatrix into a
higher level of the memory hierarchy, with the highest
level blocked into the register file. Adding this on-chip
memory increases the area and power dissipated by the
chip, but causes the system power to greatly decrease
by keeping the DRAM dark. As Figure 3 demonstrates,
blocking can improve many computations, including
algorithms for dense linear algebra [15], [16], [17], con-
volutional neural networks [18], the four-step fast Fourier
transform (FFT) [19], [20], [21], and many others.

Sequential to parallel
Locality is also critical when mapping an applica-

tion to parallel hardware, since it is best if the parallel
executions use mostly local data. Both data and task
parallelism can be exploited in hardware design,
which often requires small algorithmic changes to

5 As part of the BLAS scientific computing library, GEMM is essential to innumer-
able applications, including data parallel applications.

Figure 3. Complexity versus computation/memory-access ratio for
several algorithms. Dashed algorithms increase algorithm complexity
for efficient implementation.

6 IEEE Design&Test

Computing in the Dark Silicon Era

remove minor dependencies in the sequential code.
Data parallelism is often exploited by taking one of
the blocked loops and unrolling it so each loop iter-
ation is done by a different piece of hardware, while
task parallelism is exploited by building a hardware
block for each task, and using wires to handle the
producer/consumer communication.

Parallel execution generally decreases the
energy required for memory that is strictly local to
the unit, since in this case the original memory is
partitioned into many smaller memories with one
memory embedded into each parallel unit. The
energy required for memory storing shared data
generally goes up, since now these data must be
communicated to all the cores, which are large in
size due to their private memory. We will again use
GEMM to demonstrate this issue. To create a paral-
lel GEMM execution, we distribute the rows of A to
different cores and broadcast the columns of B to
all the cores so each core produces unique rows
of C. Since the A and C matrices are partitioned
among the cores, the working set in each core is
smaller, since it only needs to hold a fraction of the
total matrix. The memory required for the B matrix
remains the same size, but now its output needs
to be broadcast to all the cores [22]. The energy
required to distribute this information is propor-
tional to the square root of the area that all the cores
occupy, which is related to the total memory used
in all the cores (plus the overhead of the hardware),
and is often larger than the energy needed to fetch
B from its memory. This overhead makes it critical
for parallel algorithms to limit the total communica-
tion between parallel units, or restrict them to phys-
ically adjacent units.

Changing the nature of the algorithm
While it may be possible to get the required local-

ity and parallelism through blocking, sometimes
a very different approach is needed to reach the
desired performance. Here the application devel-
oper needs to take broader look at the problem, to
see if there are problem symmetries or simplifica-
tions that can be exploited, different approaches to
try, or constraints that can be relaxed. For example,
in linear algebra, different variants of algorithms
show different behaviors in various levels of the
memory hierarchy so the specific choice of variant
affects locality and performance [23], [24]. Another
example is the FFT, which exploits symmetries in the

DFT to dramatically reduce the complexity of com-
puting a Fourier transform [25].

A classical example depicted in Figure 3 is the
solution of sparse systems. The most straightforward
method is to use expensive O(​​N​​ 3​​) dense direct
methods that do not take advantage of sparsity in
the data structure. Sparse direct solvers use tech-
niques such as reordering the data, graph coloring
[26], and constructing dependence trees to preserve
nonzero patterns in the matrix and so avoid per-
forming computations with zeros, all while improv-
ing parallelism [27]. This drops the computations6
down to at most O(​​N​​ 2​​) in spite of various overheads
for extra complexity. In contrast, iterative solvers
reduce computations by performing a sequence
of improving approximate solutions that are much
cheaper in complexity [e.g., O(​​N​​ 2​​)] and (for well-con-
ditioned matrices) converge after a few iterations [28].
However, each iteration consists of low-performance
memory-bound kernels such as (sparse) matrix–vector
multiplication. Communication-avoiding algorithms
can replace these memory-bound kernels with
GEMM-like kernels to improve the locality and per-
formance at the cost of slightly slower convergence
rate and more computations [29], [30].

Other approaches relax some constraints in the
original problem. For example, iterative refinement
techniques use high precision arithmetic for lower
order residual computation and then use lower pre-
cision arithmetic for high-order less sensitive linear
solve kernels [31]. This method can speed the com-
putation by up to two orders of magnitude and can
be generalized for solving linear least square prob-
lems, eigenvalue/singular value computations, and
sparse solutions such as conjugate gradient [32]. Or
parallel applications can allow cores that update
shared state to be stochastic with respect to other
processors. Both of these methods sacrifice con-
vergence rate to decrease communication for each
computation round.

This reduction of constraints is widely used in
applications that use randomized algorithms, which
are becoming popular especially in domains such as
machine learning and principal components anal-
ysis (PCA) where approximate but fast results are
desired. Such methods select a random subset of the
initial input data and reduce substantial parts of the
computation while still managing to converge on a
desired result [33]–[35].

6 For matrices whose graphs can be embedded in at most three dimensions.

7March/April 2017

Metrics for energy-
constrained computing

To formalize the tradeoffs
discussed in the previous sec-
tions we will assume that we
are building a system on chip
(SoC) with specialized hard-
ware designed to solve a data
parallel problem, and that we
have constraints on, or want
to optimize combinations of
performance, power, and chip
area.7 To solve this optimiza-
tion problem, we can place
every possible design combina-
tion in a 3-D space, where the
x-axis is chip area, the y-axis
is power, and the z-axis is per-
formance. In this space, it is
easy to remove designs that
can never be optimal: designs
with the same area and power
as another design but lower
performance, designs with
the same performance and
area but higher energy, or designs with the same
performance and energy by larger area. Removing
these suboptimal designs will leave a 2-D surface of
designs that might be optimal.

Fortunately, we can simplify this space further
by recognizing that we are solving a data parallel
problem. In this type of problem, we assume you can
double the throughput (the performance) by dou-
bling the hardware (the power and area). What this
means is that each design is not a point in the 3-D
performance space, but a line. To convert a design
back to a point, we divide the area and power axes
by the performance of the design (since both of these
parameters are proportional to performance) and
end up with a 2-D metric space: power/performance,
or energy/op; versus area/performance, or mm2/op/s.

Joules/op and mm2 /(ops/s) metrics
As in the 3-D case, it is easy to find nonoptimal

designs. Any design that has a higher energy/op with
the same compute density as another design can
never be the best design. Similarly, if two designs

have the same energy/op, the one with a higher
mm2/(ops/s) cost cannot be optimal. Figure 4 shows
the result of evaluating the design space for an FP
fused mult-add unit, and exploring different microar-
chitecture, pipeline depth, gate sizing, cell libraries,
and Vdd settings. From an energy-efficient design
perspective, we can completely characterize this
design space, which includes the effect of dimming,
by the shape of its Pareto curve (the left-hand edge
of the feasible space), which is shown in Figure 5a.

These two metrics nicely capture many of the
tradeoffs we have discussed previously. As we dim
the silicon, we create designs with lower energy/op,
but they will also operate slower, which moves along
the Pareto curve. Similarly, adding a level in the
memory hierarchy may decrease the energy of an
access, but will also increase the area required, con-
tributing another design point to the Pareto curve.

To show why Figure 5a is so powerful, Figure 5b
plots the power and area of an accelerator, and
shows some possible design constraints. Note that
the lines of constant performance shown in this
plot are simply the Figure 5a curve scaled by differ-
ent throughput numbers. So finding the maximum
performance point for ​P  <  ​P​ max​​​ and ​A  <  ​A​ max​​​ is the

7 Talk of free transistors aside, die area is still important to consider. It strongly
affects cost when you sell parts in large (​​10​​ 

6
​​) volumes, and low volume parts still

have area constraints they cannot exceed.

Figure 4. Mapping of a large design space of fused FMADD designs.
Each dot represents a different variation on the base design; for ex-
ample, all the diamond shapes represent various unpipelined versions,
squares have a pipe depth of 2 and so on up to a 20-deep pipeline.
Most of the designs are strictly worse in the sense that they either
take more area or more energy than one of the other designs. The
left-hand edge is the edge of the feasible space, and these designs are
optimal for some design constraints [36].

8 IEEE Design&Test

Computing in the Dark Silicon Era

same as finding the point (​​ε​ A​​​, ​​ε​ P​​​) in Figure 5a where
(energy/op)/(mm2/(ops/s)) ​= ​P​ max​​ / ​A​ max​​​, and the
resulting performance is ​​A​ max​​ / ​ε​ A​​​. Other optimization
objectives can be mapped to a curve in this space,
allowing them to be solved as well, including opti-
mizing for total cost of ownership. For more details
see Galal’s work on energy-efficient FPU design [36].

If the algorithm is fixed, one can use any defini-
tion of an op in these metrics, since this optimiza-
tion does not change the number of ops. However,
if we need to compare designs across different algo-
rithmic approaches, it is essential to define op to be
something that is invariant across the different imple-
mentations. For example, using FLOPs to compare
sparse and dense algorithms would be a bad idea,
since a dense implementation would have much
lower energy/FLOP and area/FLOP/s, but would
require many more FLOPs than a sparse solver, and
would look worse on the curve. Similarly, when trad-
ing off among different possible implementations, it

is important that they all use the
same op definition.

Accelerator
optimization

Another advantage of using
Pareto curves rather than a
specific design point is that
the curve provides information
about marginal cost in area or
energy if you need to change
the design. While these mar-
ginal costs assume you can
add fractional compute units
to get fractional performance,
which is clearly wrong, they
do provide the insight needed
to create efficient solutions. To
demonstrate how they can be
used for accelerator evalua-
tion, assume our application is
running on a scalable machine
and we want to minimize this
machine’s power by adding
some specialized accelerators
while staying within the chip’s
current area and performance
budget. Since we are assum-
ing the base machine and
accelerator area scale with

performance, moving computation from the base
machine to the accelerator will provide area that the
accelerator can use. The accelerator will improve
the energy of the machine if it has a lower energy/op
when operating at the same mm2/(op/s) as the base
machine. Since the compute density is the same, this
new solution should require the same area as before.

The previous step verified that the accelerator can
reduce energy/op versus the original system, but the
resulting design is not necessarily optimal: to ease the
comparison we chose points that had the same com-
pute density, and left the base design alone. We need to
change both to get the optimal power. Fortunately, like
most constrained optimization problems, the optimal
area allocation can be found by balancing marginal
costs: at the optimal point, the change in energy/op per
change in mm2/(op/s) in the two compute units must
be the same. Moving an increment of work lowers the
energy of the unit losing the work by its marginal cost,
while the unit gaining the work increases its energy

Figure 5. (a) Determining the optimal design point from a through-
put-energy tradeoff curve and constraints. (b) Contour map of achiev-
able throughputs versus area and power. Constraints of ​​A​ max​​ =​ 2 cm​​​​​ 2​​, ​​
P​ max​​ =​ 60 W, and ​​D​ max​​ =​ 50 W/cm​​​​​ 2​​ are indicated [7].

9March/April 2017

by its marginal cost. If these are not the same, moving
work from the unit with higher marginal cost to the one
with lower marginal cost will save energy (or if the work
cannot move because the accelerator is specialized,
simply move silicon area in the other direction).

Nonscalable objects
While this method clearly shows how Pareto

information lets us optimally allocate area between
two compute engines, its assumption of finely par-
titioned engines is rarely the case. In most designs,

the area of a block cannot be smoothly changed.
Processors/accelerators can be scaled by duplica-
tion, but since each unit contains compute/control/
memory they are generally of significant size. The
result is one cannot really incrementally move area
from one unit to the other. Instead you can only
make much coarser grain moves. This quantization
makes finding the exact answer harder, since now
we need to solve a mixed integer program; but the
basic intuition remains the same: If the marginal cost
of an accelerator ​​A​ 1​​​ is lower than a second unit ​​A​ 2​​​, test

Figure 6. (a) Effect of multiple layers of on-chip memory on the energy and area
tradeoffs for GEMM. As the area grows, more memory levels are needed in the optimal
design. One level memory is registers and DRAM, two levels has registers, local memory
and DRAM, etc. (b) Pareto curve of 256-GFLOP GEMM accelerator, shown in black. This
was generated by finding the FMADD design that matched the margin cost of the mem-
ory system. Also drawn are the systems that would result by pairing different FMADD
tradeoff choices to the optimal memory design points showing other potential designs,
most of which are highly suboptimal.

10 IEEE Design&Test

Computing in the Dark Silicon Era

to see if you can reduce the size of ​​A​ 1​​​ enough to give ​​A​ 2​​​
enough area so it can move to a more energy-effi-
cient design. This might involve lowering the perfor-
mance of each existing ​​A​ 2​​​ compute unit, and then
adding a new one to maintain aggregate throughput.
If enough area cannot be created, the best alternative
is to try to use the area in ​​A​ 1​​​ to reduce its energy cost.

Dealing with the memory system adds a new chal-
lenge. While the register files and first level caches are
duplicated with the compute units, the levels in the
memory hierarchy closer to DRAM (last level cache,
and sometimes even the L2) are shared and so their
area is not proportional to the computing throughput.
Fortunately, like a compute unit, one can create a
Pareto curve for a memory system. The y-axis remains
energy/op, but now it represents the average memory
energy used for each processor op. Since area does
not scale with performance, the x-axis is just area.
Like compute units, the different memory configura-
tions will collectively generate a single Pareto curve,
where larger area reduces the average memory cost,
by filtering out more of the DRAM accesses.

This memory Pareto curve has exactly the form
we need to find the optimal allocation between
memory and computation. We just scale the com-
pute curve by the desired aggregate performance so
its Pareto curves also indicate the tradeoff between
area and energy/op, and the energy optimal design
will balance the marginal cost between the two units.

Figure 6 shows how this is done for a GEMM
accelerator. Using the known access pattern of the
algorithm, the required memory energy per fused
multiply/add is found for all possible memory con-
figurations. We explore 1–5 levels of on-chip memory
hierarchy in addition to the DRAM, and try many dif-
ferent potential memory sizes for each level. Most of
these configurations are not optimal, but a few form
the Pareto curve (in turquoise). This curve shows
how the memory energy changes from 1 nJ/FMADD
to around 20 pJ/FMADD as the area changes from 0 to
100 mm2. Also shown in Figure 6a is the Pareto curve
of an FMADD running at 256 GFLOPS. To generate the
power and area curve for the entire system, we add
the energy and area cost of the FMADD design at each
point in the memory Pareto curve. This results in the
many curves shown in Figure 6b. Overlaid on these
curves is the overall Pareto curve, which is shown in
black which uses the FMADD design which matches
the marginal cost of the memory system. Not surpris-
ingly, the small area solutions chose high compute

density FMADD solutions, since the memory system
dominates the energy, while large memory area solu-
tions use low energy, and area-inefficient FMADD.
The result is that even though the total power ranges
by nearly 10x, in most of these designs, the compute
energy and memory energy are roughly 50/50.
The large energy cost of memory fetches limits the
overall efficiency of applications no matter how effi-
cient the accelerators are on the chip. As a result,
the most important optimization must be done
at the algorithm level, to reduce off-chip memory
accesses, to create dark memory. The algorithms
must first be (re)written for both locality and paral-
lelism before one tailors the hardware to accelerate
them.

Using pareto curves in the energy/op and
mm2/(op/s) space allows one to quickly evaluate
different accelerators, memory systems, and even
algorithms to understand the tradeoffs between perfor-
mance, power, and die area. This analysis is a powerful
way to optimize chips in the dark silicon era.� 

 References
	 [1]	 R. H. Dennard, F. H. Gaensslen, H. N. Yu,

V. L. Rideout, E. Bassous, and A. R. LeBlanc,

“Design of ion-implanted MOSFETs with very small

physical dimensions,” IEEE J. Solid-State Circuits,

vol. 9, no. 5, pp. 256 – 268, 1974.

	 [2]	 A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson,

and M. Horowitz, “CPU DB: Recording

microprocessor history,” Commun. ACM, vol. 55,

no. 4, pp. 55–63, 2012.

	 [3]	 H. Esmaeilzadeh, E. Blem, R. S. Amant, K.

Sankaralingam, and D. Burger, “Dark silicon and the

end of multicore scaling,” in Proc. IEEE 38th Annu. Int.

Symp. Comput. Architect., 2011, pp. 365–376.

	 [4]	 M. B. Taylor, “Is dark silicon useful?: Harnessing the

four horsemen of the coming dark silicon apocalypse,”

in Proc. ACM 49th Annu. Design Autom. Conf., 2012,

pp. 1131–1136.

	 [5]	 A. Grenat, S. Pant, R. Rachala, and S. Naffziger,

“Adaptive clocking system for improved power

efficiency in a 28nm x86-64 microprocessor,” in IEEE

Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2014,

pp. 106–107.

	 [6]	 M. Horowitz, “Computing’s energy problem (and what

we can do about it),” in IEEE Int. Solid-State Circuits

Conf. Dig. Tech. Papers, Feb. 2014, pp. 10–14.

11March/April 2017

	 [7]	 S. Galal, “Energy efficient floating-point unit design,” Ph.D.

dissertation, Stanford Univ., Stanford, CA, USA, 2012.

	 [8]	 B. S. Amrutur and M. A. Horowitz, “Speed and power

scaling of SRAM’s,” IEEE J. Solid-State Circuits, vol.

35, no. 2, pp. 175–185, 2000.

	 [9]	 R. J. Evans and P. D. Franzon, “Energy consumption

modeling and optimization for SRAM’s,” IEEE J. Solid-

State Circuits, vol. 30, no. 5, pp. 571–579, 1995.

	[10]	 S. Narasimha et al., “22nm high-performance SOI

technology featuring dual-embedded stressors, epi-

plate high-K deep-trench embedded DRAM and self-

aligned via 15LM BEOL,” in Proc. IEEE Int. Electron

Devices Meeting, Dec. 2012, pp. 3.3.1–3.3.4.

	[11]	 H. Yoda et al., “Progress of STT-MRAM technology

and the effect on normally-off computing systems,” in

Proc. IEEE Int. Electron Devices Meeting, Dec. 2012,

pp. 11.3.1–11.3.4.

	[12]	 H.-S. Wong et al., “Metal oxide RRAM,” Proc. IEEE,

vol. 100, no. 6, pp. 1951–1970, Jun. 2012.

	[13]	 H.-S. Wong et al., “Phase change memory,” Proc.

IEEE, vol. 98, no. 12, pp. 2201–2227, Dec. 2010.

	[14]	 R. Merritt, “3D XPoint steps into the light,” EE Times,

Jan. 14, 2016.

	[15]	 M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache

performance and optimization of blocked algorithms,”

ACM SIGOPS Oper. Syst. Rev., vol. 25, no. Special

Issue, pp. 63–74, 1991.

	[16]	 L. Renganarayana and S. Rajopadhye, “A geometric

programming framework for optimal multi-level tiling,”

in Proc. ACM/IEEE Conf. Supercomput., 2004, p. 18.

	[17]	 J. J. Navarro, T. Juan, and T. Lang, “MOB forms:

A class of multilevel block algorithms for dense

linear algebra operations,” in Proc. 8th Int. Conf.

Supercomput., 1994, pp. 354–363.

	[18]	 Y. Chen et al., “DaDianNao: a machine-learning

supercomputer,” in Proc. IEEE 47th Annu. IEEE/ACM

Int. Symp. Microarchitect., 2014, pp. 609–622.

	[19]	 C. Van Loan, Computational Frameworks for the Fast

Fourier Transform, Philadelphia, PA, USA: SIAM, 1992.

	[20]	 D. H. Bailey, “FFTs in external or hierarchical memory,”

in Proc. ACM/IEEE Conf. Supercomput., 1989, pp.

234–242.

	[21]	 D. Takahashi, “High-performance parallel FFT

algorithms for the Hitachi SR8000,” in Proc. 4th Int.

Conf./Exhibit. High Performance Comput. Asia-Pacific

Region, May 2000, vol. 1, pp. 192–199 vol.1.

	[22]	 A. Pedram, R. Van de Geijn, and A. Gerstlauer,

“Codesign tradeoffs for high-performance, low-power

linear algebra architectures,” IEEE Trans. Comput.,

vol. 61, no. 12, pp. 1724–1736, 2012.

	[23]	 P. Bientinesi, J. A. Gunnels, M. E. Myers,

E. S. Quintana-Ortí, and R. A. van de Geijn,

“The science of deriving dense linear algebra

algorithms,” ACM Trans. Math. Softw., vol. 31, no. 1,

pp. 1–26, 2005.

	[24]	 E. Anderson and J. Dongarra, “Evaluating block

algorithm variants in LAPACK,” Dept. Comput. Sci.,

Univ. Tennessee, 1990.

	[25]	 J. W. Cooley and J. W. Tukey, “An algorithm for the

machine calculation of complex Fourier series,” Math.

Comput., vol. 19, no. 90, p. 297, 1965.

	[26]	 M. Naumov, P. Castonguay, and J. Cohen, “Parallel

graph coloring with applications to the incomplete-LU

factorization on the GPU,” Nvidia Corp., Tech. Rep.

NVR-2015-001, 2015.

	[27]	 M. T. Heath, E. Ng, and B. W. Peyton, “Parallel

algorithms for sparse linear systems,” SIAM Rev., vol.

33, no. 3, pp. 420–460, 1991.

	[28]	 R. Barrett et al., Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods,

Philadelphia, PA, USA: SIAM, 1994, vol. 43.

	[29]	 M. Hoemmen, “Communication-avoiding Krylov

subspace methods,” Ph.D. dissertation, Univ. California

Berkeley, Berkeley, CA, USA, 2010.

	[30]	 J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,

“Communication-optimal parallel and sequential QR

and LU factorizations,” SIAM J. Sci. Comput., vol. 34,

no. 1, pp. A206–A239, 2012.

	[31]	 J. H. Wilkinson, “Rounding errors in algebraic

processes,” Courier Corp., 1994.

	[32]	 J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and

J. Dongarra, “Exploiting the performance of 32 bit

floating point arithmetic in obtaining 64 bit accuracy

(revisiting iterative refinement for linear systems),” in

Proc. ACM/IEEE SC Conf., 2006, pp. 50–50.

	[33]	 B. Scholkopf et al., “Input space versus feature space

in kernel-based methods,” IEEE Trans. Neural Netw.,

vol. 10, no. 5, pp. 1000–1017, Sep. 1999.

	[34]	 B. Moore, “Principal component analysis in linear

systems: Controllability, observability, and model

reduction,” IEEE Trans. Autom. Control, vol. 26, no. 1,

pp. 17–32, Feb. 1981.

	[35]	 P.-G. Martinsson, G. Quintana-Orti, N. Heavner, and R.

van de Geijn, “Householder QR factorization: Adding

randomization for column pivoting,” Dept. Comput. Sci.,

Univ. Texas at Austin, Tech. Rep. FLAME Working Note

#78, Dec. 2015.

	[36]	 S. Galal and M. Horowitz, “Energy-efficient floating-

point unit design,” IEEE Trans. Comput., vol. 60, no. 7,

pp. 913–922, 2011.

12 IEEE Design&Test

Computing in the Dark Silicon Era

Ardavan Pedram is currently a Research
Associate at Stanford University, Stanford, CA, USA.
His research interests include high-performance
computing and computer architecture. He specifically
works on hardware/software codesign (algorithm for
architecture) of special purposed accelerators for high-
performance energy-efficient linear algebra, machine
learning, and signal processing. Pderam has a PhD in
computer engineering from The University of Texas at
Austin, Austin, TX, USA. He is a member of the IEEE.

Stephen Richardson is currently a Research
Associate at the Electrical Engineering Department,
Stanford University, Stanford, CA, USA. He has
worked in industry at Weitek and MIPS, as well as
at Sun Microsystems and Hewlett-Packard research
labs. Richardson has a PhD in electrical engineering
from Stanford University. He is a member of the IEEE.

Mark Horowitz is the Yahoo! Founders Professor
at Stanford University, Stanford, CA, USA and was
Chair of the Electrical Engineering Department from
2008 to 2012. He cofounded Rambus, Inc. in 1990.
His research interests are quite broad and span using
electrical engineering and computer science analysis
methods to problems in molecular biology to creating
new design methodologies for analog and digital VLSI

circuits. He is a Fellow of the IEEE and the Association
for Computing Machinery (ACM) and a member of the
National Academy of Engineering and the American
Academy of Arts and Science.

Sameh Galal currently works at Citadel LLC,
Chicago, IL, USA. His research interests include
energy efficiency and floating-point unit design. Galal
has a PhD in electrical engineering from Stanford
University, Stanford, CA, USA. He is a member of the
IEEE.

Shahar Kvatinsky is an Assistant Professor at
the Electrical Engineering Department, Technion—
Israel Institute of Technology, Haifa, Israel. From
2006 to 2009, he was with Intel as a Circuit Designer
and was a Postdoctoral Fellow at Stanford University,
Stanford, CA, USA, from 2014 to 2015. His current
research is focused on circuits and architectures
with emerging memory technologies and design
of energy-efficient architectures. Kvatinsky has a
PhD in electrical engineering from Technion. He is a
member of the IEEE.

 Direct questions and comments about this article
to Ardavan Pedram, Stanford University, Stanford,
CA 94305 USA; e-mail: perdavan@gmail.com.

