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Abstract— This paper investigates qualitative and quantitative 

analogies between biochemical reactions and memristive devices. 

It shows that memristors can mimic biochemical reactions and 

gene networks efficiently, and capture both deterministic and 

stochastic dynamics at the nanoscale level. We present different 

abstraction models and memristor-based circuits that inherently 

model the activity of genetic circuits with low signal-to-noise ratio 

(SNR). These findings constitute a promising step towards noise-

tolerant and energy-efficient electronic circuit design, which can 

provide a fast and simple emulative framework for large-scale 

synthetic molecular system design in cell biology.  
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I.  INTRODUCTION  

    Cytomorphic electronics is a novel field of designing noise- 

tolerant ultra-low power cell-inspired circuits [1]. The main 

goals of this field are to simulate cells, organs, and tissues while 

considering the stochastic behavior of a single cell and cell-to-

cell variation, distortion, and cross-talk using mixed-signal 

integrated electronics. Such simulations are computationally 

intensive and can take weeks using modern digital hardware. 

Additionally, cytomorphic electronics is used to design novel 

large-scale synthetic biological systems [2] by providing a fast 

and simple emulative framework. Furthermore, the field has 

aided in the design of electronic circuits and networks inspired 

by molecular biology, with uniquely emergent characteristics 

and concepts to be adopted for energy-efficient hardware 

realization.  

     Recently, it has been shown that translinear electronics- 

based subthreshold MOS transistors can efficiently represent 

molecular circuits within the cell [3][4]. However, it was 

challenging to capture the random fluctuations of molecular and 

genetic circuits that involve a small number of proteins, such as 

those in DNA-protein binding reactions, using an analog 

transistor. Therefore, standalone artificial noise generation 

circuits for signal-to-noise ratio (SNR) below 10 dB [4] were 

required. Such circuits produce artificial random fluctuations 

that are represented as a Poisson process, and scale as the 

square-root of the current count. Artificial noise generation 

circuits were created by pseudo-random digital noise generation 

[1] or by amplifying the intrinsic thermal noise in analog 

transistors [4]. Such systems often involve many analog and 

digital circuits, such as a current-controlled oscillator and a 

linear shift frequency register, which makes scalable 

cytomorphic integrated electronics more difficult to design. In 

this paper, we propose a different approach that exploits the 

stochastic nature and deterministic dynamics of two terminal 

nanoscale emergent devices, known as memristors [6], 

integrated into an analog MOS transistor to model the dynamic 

fluctuations of biochemical reactions and genetic circuits within 

the cell.  

      The analogy of memristive devices and biochemical 

binding reactions is made at the biophysical dynamic and 

energy level.  Early efforts to construct gene networks in living 

cells have used binding and unbinding reactions to represent 

two logic states, "ON/OFF" or "1/0" [8]. Consequently, the 

dynamics of a binding reaction depend upon the flow of 

proteins toward the active binding site where the new complex 

is formed. By analogy and as illustrated in Fig. 1(a), the 

migration of oxygen vacancies in solid-state memristors (metal-

insulator-metal structure) towards the undoped region forms a 

conductive filament. When programming voltage pulses are 

applied on the memristor, its resistance switches between two 

logic states: high resistance state (HRS) and low resistance state 

(LRS). This similarity is illustrated in Fig. 1(b), where the free 

energy of the binding reaction [1] and ionic species in solid-

state memristors are described by a thermal activated process 

[10]. Protein concentration P controls the energy barrier of a 

biochemical binding reaction, exponentially changing its speed. 

Correspondingly, the programming voltage controls the energy 

barrier of ionic species between OFF and ON states. Then 

protein concentration maps naturally to the number of                          

programming pulses.  

     Recently there has been widespread interest in memristive 

technologies because of their potential to enable a wide range 

of applications, e.g., non-volatile memory, programmable 

logic, analog computations, and neuromorphic computing 

where memristors mimic synapses [7]. In this paper, we show a 

new feature of memristive devices—their ability to mimic 

biochemical binding reactions, demonstrating a novel 

application in the field of cytomorphic electronics.  

II. MODELING 

A. The Linear Model - Motivation 

 In the inset of Fig.2 we see a simple biochemical reaction of 
protein P that binds to a binding site to form a new complex P*. 



 

 

As a first order approximation, the concentration of the formed 
complex can be given as a linear reaction 

𝑑𝑃∗/𝑑𝑡 = 𝛼 ∙ 𝑁𝑇 ∙ 𝑃,                                     (1) 

𝑁 + 𝑃∗ = 𝑁𝑇 .                                        (2) 

The first expression describes the chemical kinetics rate of 
production of a new complex P* with rate α, and (2) can be 
viewed as a molecular balance law, where NT is the 
concentration of the total number of binding sites, N is the 
concentration of the total number of free binding sites, and P is 

the protein concentration.  A simple solution for (1) and (2) 
shows that the concentration of the new complex has two levels 
(zero, and NT), which can be denoted by ON and OFF, 
respectively.  In other words, the biochemical reaction consists 
of a free and occupied binding sites, which can be viewed as 
time-dependent internal state variables whose sum is constant. 
The protein concentration changes this fraction. Figure 1(a) 
shows the physical structure of the memristive device. The 
semiconductor thin film has a certain length L, and consists of a 
doped (𝑤) and undoped region (𝑤𝑢𝑛_𝑑𝑜𝑝) [6]. The internal state 

variable w represents the length of the doped region. The doped 
region has a low resistance while that of the undoped region is 
much higher. As an external current bias, 𝐼(𝑡), is applied across 
the device, the length of 𝑤 will change. As a first order 
approximation, the length of the memristor can be described by 
a linear model as 

𝑑𝑤/𝑑𝑡 = (𝜇/𝐿) ∙ 𝑅𝑂𝑁 ∙ 𝐼(𝑡) ,                              (3) 

 𝐿 = 𝑤 + 𝑤𝑢𝑛𝑑𝑜𝑝  ,                                              (4) 

where μ is the mobility of ionic species in the solid-state device.            
If the doped region extends to the full-length L, the total 
resistivity of the device will be dominated by a low resistivity 
region, with a value measured to be RON. Likewise, when the 
undoped region extends to the full-length L, the total resistance 
is denoted as ROFF. The set of equations (1) and (2) is equivalent 

to the set of equations (3) and (4), because both involve the 
motion of charged atomic or molecular species, including state 
variable dependency on time. Therefore, the similarity between 
memristors and biochemical reactions has been observed at the 
physical nano-scale level.  

B. The Non-Linear Model 

 Biochemical reactions often include two reactions that occur 
simultaneously [8]: a forward reaction with rate 𝑘𝑓 that enhances 

the reaction, and a reverse reaction with rate 𝑘𝑟  that inhibits the 
reaction, as illustrated in the inset of Fig. 2. This process is 
described by modifying (1) to 

𝑑𝑃∗/𝑑𝑡 = 𝑘𝑓 ∙ 𝑁𝑇 ∙ 𝑃 − (𝑘𝑟 + 𝑘𝑓 ∙ 𝑃) ∙ 𝑃∗ .                (5) 

Assuming that 𝑃 ≫ 𝑁𝑇 , a simple solution for (5) and (2) in 

steady state is 

𝑃∗ = 𝑁𝑇 ∙
𝑃

𝑃 + 𝛾
 ,                                      (6) 

where 𝛾 = 𝑘𝑟/𝑘𝑓. 𝛾 has units of concentration and is known as 

the dissociation constant of the biochemical reaction. This 

solution is known as Michaelis-Menten kinetics, and it can be 

modeled by Kirchhoff’s current law (KCL) and a resistive 

current divider between resistors with values P and γ 

respectively, where NT is the current source and P* is the 

current that is passed through the 𝑅𝛾 resistor. The circuits 

shown in Fig. 3 model the non-linear behavior of biochemical 

reactions. We replace the resistor P with a memristor that is 

controlled by programming voltage pulses with a constant 

width. In this configuration, the memristor operates in the 

analog mode with multiple resistance levels and the 

programming pulses set the memristance. For simplicity, we 

use the linear ion drift mode [9] to express the memristance, 

which is given by  

𝑅𝑀 = (𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁) ∙
𝑤 − 𝑊𝑂𝑁

𝐿 − 𝑊𝑂𝑁

+ 𝑅𝑂𝑁 ,                (7) 

𝑑𝑤/𝑑𝑡 = 𝐾𝑜𝑓𝑓 ∙
(𝑉(𝑡) − 𝑉𝑜𝑓𝑓)

𝑉𝑜𝑓𝑓

,                               (8) 

where WON is the width of the doped region in the ON state, 
𝐾𝑜𝑓𝑓  is a velocity constant with units of nm/sec, and 𝑉𝑜𝑓𝑓 is an 

internal voltage that is proportional to 𝑅𝑂𝑁. For NP 

programming pulses with pulse period TP, and amplitude AV , 
the memristance is approximately 

𝑅𝑀 = 𝑅𝑂𝑁 + 𝑅0 ∙ 𝑁𝑝,                                      (9) 

 

 
 

Fig. 1. (a) Analogies between biochemical binding reactions and memristive 
devices. The SET process results in LRS ('1'), and the RESET in HRS ('0'). 

(b) Analogies between molecular flux in chemical reactions and ionic species 

flow in memristive devices. 

𝛾 = 𝑅𝑂𝑁/𝑅0 + 𝑅𝛾/𝑅0 

(a) 

(b) 

 
Fig. 2. A simplified overview of the process of binding reaction, transcription 
and translation in a bacterial genetic circuit. Inset Figure 2 shows the 

biochemical reaction between protein P (Activator/Repressor) and its 

binding site to form a new complex P* or R*. 

 



 

 

where 𝑅0 = (𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁) ∙ 𝐾𝑜𝑓𝑓𝑇𝑃 ∙ (𝐴𝑉 −  𝑉𝑜𝑓𝑓)/(𝐿 ∙ 𝑉𝑜𝑓𝑓). 

By substituting (9) into the KCL, the current passed through the 

γ resistor is expressed as 

 𝐼𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 = 𝐼𝑇
𝑁𝑃

𝑁𝑃+𝑅𝑂𝑁/𝑅0+𝑅𝛾/𝑅0
+ 𝐼𝑇

𝑅𝑂𝑁/𝑅0

𝑁𝑃+𝑅𝑂𝑁/𝑅0+𝑅𝛾/𝑅0
 . (10) 

Equation (10) has two terms. The left term fits the model of the 

biochemical binding reaction (6), where the dissociation 

constant 𝛾 = 𝑅𝑂𝑁/𝑅0 + 𝑅𝛾/𝑅0 denotes that the increase in the 

number of programming pulses will increase the current until 

saturation with value of IT, where 𝑁𝑃 ≫ 𝑅𝑂𝑁/𝑅0 + 𝑅𝛾/𝑅0. The 

right term is a leakage current; when 𝑁𝑝 = 0, then 𝐼𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 ≠

0. This is known as the basal level that is often present in 

biochemical binding reactions [8]. 

C.  Memristor Models of Promoter Activity in Genetic Circuits 

Fig. 2 shows two types of proteins that bind to DNA binding 

sites within the promoter [8] in genetic circuits: activators, 

which enhance the binding of RNA polymerase (RNAP) 

responsible for the transcription process (production of RNA), 

and repressors, which inhibit the promoter activity by 

preventing the RNAP from binding to the promoter. In 

activation, transcription is often followed by a translation 

process and the production of proteins. Activation is often 

modeled by (6) (simulation results are shown in Fig. 4(a)), 

while repression is modeled by the concentration of the free 

binding sites N and is expressed as 

 𝑁 = 𝑁𝑇 − 𝑃∗ = 𝑁𝑇 ∙
𝛾

𝑃+𝛾
 .                            (11) 

Expression (11) can be viewed as the difference between the 

total current and the current that is passed through the γ resistor, 

which is equal to the current that is passed through the 

memristor:     

 𝐼𝑅𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝐼𝑇
𝑅𝛾/𝑅0

𝑁𝑝+𝑅𝑂𝑁/𝑅0+𝑅𝛾/𝑅0
,                          (12)  

where 𝛾 = 𝑅𝛾/𝑅0 is the dissociation constant, and 𝑅𝑂𝑁/𝑅0 is 

the basal level in repression (𝑁𝑃 = 0). Simulation results are 

shown in Fig. 4(b) 

D. The Stochastic Model  

Signals often originate from the transport of discrete random 
carriers. In subthreshold transistors, such signals arise from the 
diffusion of electrons, and in biology from the diffusion of 
biochemical molecules and proteins. These signals prorogate 
with random fluctuations. These fluctuations are known as 

intrinsic noise through networks and can be described as a 
Poisson process, generating shot noise which scales as the 

square-root of the molecular count [5]. The rate coefficients of 
chemical reactions are often described by Boltzmann 
statistic 𝐾 = 𝐴 ∙ exp(−𝐸𝑔/𝐾𝐵 ∙ 𝑇), are exponential in free 

energy difference in chemical reactions, and an increase in 
enzyme concentration decreases energy barriers, as shown in 
Fig. 1 (b). Recently it has been shown that the rate of switching 
in memristor devices is determined by bias-dependent activation 
energy [10], follows Boltzmann statistics Г = 𝐴 ∙ exp (−𝐸𝑉/
𝐾𝐵 ∙ 𝑇), and an increase in voltage decreases energy barriers, as 
also shown in Fig. 1(b). This simple analysis shows that the 
effective binding time of proteins and the delay time of 
switching memristors both follow a Poisson distribution. 
Therefore, the stochastic noise in biochemical reactions is 
analogous to the stochastic noise in memristor switching. These 
analogies suggest that one can mimic and model large-scale 
genetic-processing systems in biological networks efficiently on 
a hybrid memristor-analog-digital electronic chip. Equation (9) 
shows that the memristor acts as an analog counter of the arrival 
pulses during programming. The stochastic kinetics of a pulse 
counter often follow Poisson shot noise statistics when the 
variance is equal to the mean (e.g., photon counting). Simplified 
analog transistor models are useful in the design and analysis of 
practical electronic systems since they quantitatively represent 
their behavior. Fig. 5 shows a circuit that receives programming 
pulses and measures the output voltage of a common drain (CD) 
amplifier (buffer). In steady state, the voltage is 

𝑉𝑜𝑢𝑡𝐶𝐷
= 𝐼𝑀 ∙ (𝑅0 ∙ 𝑁𝑃 + 𝑅𝑂𝑁 + 𝑅𝑎).              (13) 

           
       (a)                        (b) 

Fig. 3. Memristor based electronic circuits using VTEAM memristor model 

and 0.18um CMOS to model the behavior of the non-linear model of 

biochemical reactions. (a) Standalone ideal circuit and (b) within a network 

circuit.  

 

 
Fig. 4. SPICE simulations for different values of 𝜸 for the circuits from Fig. 

3(b). The value of 𝜸 is controlled by changing 𝑹𝜸. (a) Activator 

concentration versus number of pulses. (b) Repressor concentration versus 

number of pulses. The ideal (dashed line) curves represent the current 𝑰𝑨𝑰𝒅𝒆𝒂𝒍
 

and 𝑰𝑹𝑰𝒅𝒆𝒂𝒍
in the standalone circuit from Fig. 3(a) for each activator and 

repressor accordingly, and the solid curves represent the current IActivator and 

IRepressor in Fig. 3(b). 

(b) 

(a) 

𝛾 = 𝑅𝑂𝑁/𝑅0 + 𝑅𝛾/𝑅0 

𝑅𝛾 = 40𝑘𝛺, 𝛾 = 23 

𝑅𝛾 = 20𝑘𝛺, 𝛾 = 12 

𝑅𝛾 = 9𝑘𝛺, 𝛾 = 5.5 

 

 

𝛾 = 𝑅𝛾/𝑅0 

𝑅𝛾 = 40𝑘𝛺, 𝛾 = 23 

𝑅𝛾 = 20𝑘𝛺, 𝛾 = 12 

𝑅𝛾 = 9𝑘𝛺, 𝛾 = 5.5 

 

 



 

 

We define the output 𝑣𝑚𝑅𝑁𝐴 as the difference between the 
voltage for any number of programming pulses NP, and the 
voltage for NP=0: 

𝑣𝑚𝑅𝑁𝐴 = 𝑉𝑜𝑢𝑡𝐶𝐷
− 𝑉𝑜𝑢𝑡𝐶𝐷0

= 𝐼𝑀 ∙ 𝑅0 ∙ 𝑁𝑃  .      (14)  

If NP is controlled by a “random clock", the SNR of the output 

is proportional to the SNR of the random clock. Then, the 

process of counting of these pulses or events by the proposed 

circuit in Fig. 5 exhibits pure Poisson characteristics with 

variance of NP that is equal to the mean. Then the SNR in the 

output is 

𝑆𝑁𝑅𝑣𝑚𝑅𝑁𝐴
= 𝑣𝑚𝑅𝑁𝐴̅̅ ̅̅ ̅̅ ̅̅ /√∆𝑣𝑚𝑅𝑁𝐴

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = √𝑁𝑃
̅̅̅̅  .                (15) 

In our configuration, the number of programming pulses is 

analogous to the promoter activity, which is set by the binding 

of RNAP to DNA [8], and the output 𝑣𝑚𝑅𝑁𝐴 is analogous to 

mRNA concentration. Approximately, the expression of 

mRNA can be viewed as the counting process of arrival RNAP 

to the promoter with variance that is equal to the mean 

(∆𝑚𝑅𝑁𝐴2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑚𝑅𝑁𝐴̅̅ ̅̅ ̅̅ ̅̅  ) [5]. Correspondingly, the common drain 

output voltage is the counting process of programming pulses 

on the memristor. Translation is the process of converting RNA 

to amino acids and protein production [8]. This process can be 

viewed as a first order approximation, as a process of counting 

the arrival of ribosomes to mRNA; therefore, this is a stochastic 

process that follows Poisson statistics.  However, biological 

experiments and biophysical models show that the variance of 

protein is larger than the Poisson statistic (∆𝑃𝑟𝑜𝑡𝑒𝑖𝑛2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (1 +
𝑏) ∙ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ) [5]. The parameter b in biology is known as the 

burst size and is equivalent to the number of proteins 

synthesized from a single mRNA transcript [5]. If b is large, a 

single mRNA molecule is recycled several times before it 

degrades. Therefore, the burst size is the molecular gain from 

mRNA to protein, which amplifies the mRNA noise content in 

the protein signal. Figure 5 shows a circuit that can amplify the 

noise through a common source (CS) amplifier and capture the 

burst size. Simulation results are shown in Fig. 6. Similarly, we 

define the output of the CS amplifier as the difference between 

the voltage for any number of programming pulses NP and the 

voltage for NP=0. The output 𝑣𝑝𝑟𝑜𝑡𝑒𝑖𝑛  represents the protein 

concentration with statics 

𝑣𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = −(𝑔𝑚1/𝑔𝑚2) ∙ 𝐼𝑀 ∙ 𝑅0 ∙ 𝑁𝑃 .                (16) 

Simulation results are shown in Figure 6. 

III. CONCLUSIONS 

     We demonstrate the analogies between memristor devices 

and biochemical reactions at the nanoscale physical level and 

propose different models that capture the deterministic and 

stochastic dynamics of biochemical reactions and gene 

networks by memristor-based electronic circuits, while 

achieving low signal-to-noise ratio. These circuits are the first 

step towards the design of novel, cell-inspired, energy-efficient 

electronic circuits that provide a fast and simple conceptual 

framework for emulation of large-scale stochastic synthetic 

biological systems. In our ongoing research, we are comparing 

the memristor based electronic circuits with biological 

experimental data.  
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Fig. 6. SPICE simulations of SNR versus molecule concentration (𝒗𝒎𝑹𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅ ,
𝒗𝑷𝒓𝒐𝒕𝒆𝒊𝒏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) accordingly, for different gains (1.7, 3.5 and 4.5) of the circuit from 
Fig. 5. The CS stage amplifies the noise and results in lower SNR in contrast 

to the CD stage.  𝒈𝒎𝟏/𝒈𝒎𝟐 represents the (𝟏 + 𝒃) factor. Second-order 

effects start to have significant impact as the gain becomes higher. 

 
Fig.5. Memristor based electronic circuit to capture the deterministic and 

stochastic behavior of biochemical reactions. The first stage, the common 
drain, represents the transcription process, whereas the second stage, the 

common source, amplifies the noise and captures the burst size; this stage 

represents the translation process. The gain value is controlled by the 

transistor width 𝑾∗. 


