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Hebbian Learning Rules with Memristors

Daniel Soudry, Dotan Di Castro, Asaf Gal, Avinoam Kolodny, and Shahar Kvatinsky

Abstract—Machine learning algorithms often rely on contin-
uous updating of large matrices of ‘“‘synaptic weights” by local
“Hebbian” rules. These rules generally involve a multiplica-
tion term, which poses a challenge for implementing large scale
hardware for machine learning. In this paper, a method for per-
forming these multiplications using memristor-based arrays is
proposed, based on the fact that approximately, given a voltage
pulse, the conductivity of a memristor will increment propor-
tionally to the pulse duration multiplied by the pulse magnitude,
if the increment is sufficiently small. The proposed method uses
a synaptic circuit composed of a small number of components
per synapse: one memristor and two CMOS transistors. This
circuit is expected to consume between 2% to 8% of the power
and area of previous CMOS-only hardware alternative. Such
a circuit can be used to implement efficiently scalable machine
learning algorithms based on online gradient descent. The util-
ity and robustness of the proposed memristor-based circuit is
demonstrated in the standard supervised learning task of hand-
written digits recognition.

Index Terms—Memristor, Memristive systems, Machine
learning, Adaptive filter, Perceptron, Synapse.

I. INTRODUCTION

NGINEERING truly intelligent machines is one
of the exciting and challenging frontiers of mod-
ern hardware design. The field of machine learning
(ML) has achieved remarkable progress in the math-
ematical formulation of performance bounds and al-
gorithms to many classes of problems such as pattern
recognition [1H3]], natural language processing [4} 5],
and time series prediction [6]. ML algorithms have
been recently incorporated into numerous commer-
cial products and services such as mobile devices and
cloud computing. For realistic tasks, such algorithms
perform significantly better when massive computa-
tional power is available (e.g., [7H9]], and see [10] for
related press). This computational intensity has lim-
ited their usability in large scale applications, due to
area and power requirements. New ML-oriented hard-
ware design approach must therefore be developed to
overcome these limitations. In fact, it was recently
suggested that such new types of specialized hardware
are essential for real progress towards building intelli-
gent machines [[11]].
Many ML algorithms utilize large matrices of val-
ues termed synaptic weights. These matrices are con-
tinuously updated during the operation of the system,
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and are constantly being used to interpret new data.
The power of ML algorithms mainly stems from the
“learning rules” used for updating the weights. These
rules are usually local, in the sense that they depend
only on information available at the site of the synapse.
Such local learning rules go under the general name
of Hebbian learning rules, named after the physiolo-
gist Donald Hebb, who first suggested the distributed
mechanism underlying neural function [12]. Hebbian
computation was first implemented successfully by
Rosenblatt in the canonical Perceptron algorithm [[13]],
which spawned many other useful algorithms [14].

Implementing ML algorithms such as the Percep-
tron on conventional general-purpose digital hardware
(e.g., von Neumann architecture) is highly inefficient.
A prime reason for this is the physical separation be-
tween the memory arrays used to store the values of
the synaptic weights and the arithmetic module used
to compute the update rules. General-purpose archi-
tecture actually eliminates the advantage of Hebbian
learning rules - their locality, which allows highly ef-
ficient parallel computation. To overcome the ineffi-
ciency of general-purpose hardware, numerous dedi-
cated hardware designs, based on CMOS technology,
have been proposed in the past two decades. These
designs perform online learning tasks, based on algo-
rithms from ML [15, and references therein]. These
designs use massively parallel synaptic arrays, where
each synapse stores a synaptic weight and updates it
locally. However, so far, these designs are not com-
monly used for practical large scale ML applications,
and it is not clear whether they could be scaled up,
since each synapse requires to much power and area
(see section [VII). This issue of scalability possibly
casts doubt on the entire field [16]].

Recently, it has been suggested [17] that scalable
hardware implementations of ML algorithms may be-
come possible if a novel device, the memristor [18-
20], is used. A memristor is a resistor with a vary-
ing, history-dependent resistance. It is a passive ana-
log device with activation-dependent dynamics, which
makes it ideal for registering and updating of synap-
tic weights. Furthermore, its relatively small size en-
ables integration of memory with the computing cir-
cuit [21] and allows a compact and efficient architec-
ture for learning algorithms. To date, no circuit has
been suggested to utilize memristors for implement-
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ing general ML algorithms. Several circuits have been
suggested for specific Spike Time Dependent Plastic-
ity (STDP) like learning rules [22H25]], which require
“spiking neurons” and have a limited use from ML
perspective [26]]. This issue is discussed in detail in
section

The main challenge for general ML algorithm cir-
cuit design arises from the nature of Hebbian rules:
practically all of them contain a multiplicative term
[27]], which is hard to implement in compact and scal-
able hardware. In this paper, a novel and general
scheme to design hardware for Hebbian learning rules
is presented. The proposed scheme uses a memristor
as a memory element to store the weight and temporal
encoding as a mechanism to perform a multiplication
operation. The proposed design uses a single mem-
ristor and two CMOS transistors per synapse, and re-
quires therefore 2% to 8% of the area and power of
previously proposed CMOS-only circuits. The func-
tionality of a circuit utilizing the memristive synapse
array is demonstrated numerically by a handwritten
digits recognition task, where the circuit performs as
well as the software algorithm. Introducing noise lev-
els of about 10% and parameter variability of about
30% did not affect significantly the performance of
the circuit, due to the inherent robustness of ML algo-
rithms. The proposed design may therefore allow the
use of specialized hardware for ML algorithms, rather
than the currently used general-purpose architecture.

The remainder of the paper is organized as follows:
In section [ basic background on memristors and ML
algorithms is given; in section [Tl the proposed circuit
is explained; in section the circuit is evaluated nu-
merically using a specific algorithm; in section [V] it
is described how to implement general ML algorithms
using the circuit; in section a few variations from
the basic synaptic circuit are described; in section [VII]
the novelty of the proposed circuit is discussed and
compared with previous works; and in section[VIII|the
paper is summarized.

II. BACKGROUND

For convenience, basic background information on
memristors and ML algorithms is given in this section.

A. The memristor

A memristor [18| [19]], originally proposed by Chua
in 1971 as “the missing fourth fundamental element”,
is a passive electrical element. Memristors are basi-
cally resistors with varying resistance, where their re-
sistance changes according to time integral of the cur-
rent through the device, or alternatively, the integrated

voltage upon the device. In the “classical” represen-
tation the conductance of a memristor G' depends di-
rectly on the integral over time of the voltage upon the

device, sometimes referred to as “Flux”. Formally, a
memristor obeys the following equations
i(t) = G(s@®)v(t), M
5() = v(t). (2)

A generalization of this model , which is called a mem-
ristive system [28]], was proposed in 1976 by Chua and
Kang. In memristive devices, s is a general state vari-
able, rather than an integral of the voltage. Memristive
devices are discussed in section In the following
sections it is assumed that the variations in the value
of s (t) are restricted to be small, so that G (s (t)) can
be linearized around some point s* and the conductiv-
ity of the memristor is given, to first order, by

G(s()=g+g-s@),

where § = [dG (s) /ds],_

3
sandg=G(s*)—g-s*
B. Machine Learning

Machine Learning (ML), a branch of artificial in-
telligence, is dedicated to the construction and study
of systems that can learn from data. For example,
consider the following ML “supervised learning” task.
Assume a system that operates on K discrete presenta-
tions of inputs (“trials”), indexed by k = 1,2,... , K.
For brevity, the indexing of iteration number is some-
times suppressed, where it is clear from the context.
On each trial k, the system receives empirical data, a
pair of two real column vectors of sizes M and N: a
pattern x(%) € RM and a desired label d®) € RN,
with all pairs sharing the same desired relation d*) =
f (x*)). The objective of the system is to estimate
(“learn”) the function f (-) using the empirical data.

As a simple example, suppose W is a tunable
N x M matrix of parameters, and consider the linear
estimator

r®) = wkx(®) 4)

or
r =3 Wik (5)

m

The result of the estimator, r = Wx, should aim to
predict the right desired labels d = f (x) for new un-
seen patterns x. To solve this problem, W is tuned to
minimize some measure of error between the the es-
timated and desired labels, over a Ky-long subset of
the empirical data, called the “training set” (for which
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k = 1,...,Ky). For example, if we define the error
vector

y(®B) & qk) _ p(k) ©6)

then a common measure is the Mean Square Error
(MSE)

Ko 5
MSE2 Y Hy(k)H . %
k=
The performance of the resulting estimator is then
tested over a different subset, called the “test set”
(k=Ko+1,..,K).

A reasonable iterative algorithm for minimizing ob-
jective (7 (i.e., updating W, where initially W is arbi-
trarily chosen) is the following online gradient descent
(also called stochastic gradient descent) iteration

wWE — wk-1) _ %va Hy(k) H27 (8)
where the 1/2 coefficient is written for mathematical
convenience, 7 is the learning rate, a (usually small)
positive constant, and at each iteration k a single em-
pirical sample is chosen randomly and presented at the
input of the system. The gradient can be calculated by
differentiation using the chain rule, (6) and (). Defin-
ing AW® 2 W# — Wk=1_and ()" to be the
transpose operation, we obtain the outer product

.
AW®) = py®) (Xac)) 9)

or
Wi = WorD 4 naly. (10)

Specifically, this update rule is called the “Adaline” al-
gorithm [29], used in adaptive signal processing and
control [30]. The parameters of more complicated
(non-linear) estimators can also be similarly tuned
(“trained”), using online gradient descent or similar
methods (see section [V)). Online gradient descent is
considered to be very effective in large scale prob-
lems [31], there are guarantees that this optimization
procedure converges to some local minimum, and it
is generally considered the best algorithm for train-
ing artificial neural networks [32]. Importantly, note
that the update rule in (1)) is “local”- i.e., the change in

the synaptic weight W,(Llf% depends only on the related
components of input (ng)) and error (y&k )). This
local update, which appears in many other ML algo-
rithms, enables a massively parallel hardware design,
as explained in section

Such massively parallel designs are needed, since
for large N and M, ML algorithms implementing su-

pervised learning task may be computationally pro-

Synaptic Grid

Circuit
xkB __ [fx

(Input)

0—e
d(k)_.<: ) w1 Y
I (Error)

| Enable

e L
(Result)

Training

Fig. 1 A simple Adaline learning task, with the proposed
“Synaptic Grid” circuit executing @) and (@), which are the
main computational bottlenecks in the algorithm.

hibitive in both time and memory space. For exam-
ple, in the simple Adaline algorithm the main compu-
tational burden, in each iteration, comes from @ and
(10), where the number of operations (addition and
multiplication) is of order O (M - N). Commonly,
these steps have become the main computational bot-
tleneck in executing ML algorithms in software (e.g.,
the Backpropgation algorithm), as we show in section
Other algorithmic steps, such as (6) here, are usu-
ally linear in either M or N, and therefore have a neg-
ligible computational complexity.

III. CIRCUIT DESIGN

In this section, dedicated analog hardware for im-
plementing ML algorithms is proposed. A grid of “ar-
tificial synapses” is constructed, where each synapse
stores to a single synaptic weight W,,,,. The grid is a
large N x M array of synapses, where the synapses
operate simultaneously, each performing a simple lo-
cal operation. This synaptic grid circuit carries the
main computational load in ML algorithms by imple-
menting the two computational bottlenecks, (B) and
(T0), in a massively parallel way. This matrix X vector
product in (3) is done using a resistive grid (of mem-
ristors), implementing multiplication through Ohm’s
law and addition through current summation. The
vector X vector outer product in is done by using
the fact that, given a voltage pulse, the conductivity of
a memristor will increment proportionally to the pulse
duration multiplied by the pulse magnitude. Using this
method, multiplication requires only two transistors
per synapse. Thus, together with a negligible amount
of O (M + N) additional operations, these arrays can
be used to execute ML algorithms efficiently.
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Fig. 2 Synaptic grid (N X M) circuit architecture scheme.
Every (n, m) node in the grid is a memristor-based synapse
that receives voltage input from the shared %, Um, and the
en lines and outputs I, ., current on the oy, lines. These out-
put lines receive total current arriving from all the synapses
on the n-th row, and are grounded.

A. Circuit function

Similarly to the Adaline algorithm described in sec-
tion[Il] the circuit operates on discrete presentations of
inputs (“trials”) - see Fig. On each trial k, the cir-
cuit receives an input vector x(F) € [~ A, A] M and an
error vector y®) € [—A, A]" (where A is a bound on
both the input and error) and produces a result output
vector r*) € RY, which depends on the input by the
relation @), where the matrix W) € RV*XM called
the synaptic weight matrix, is stored in the system.
Additionally, on each step, the circuit updates W (*)
according to (9). This circuit can be used to implement
ML algorithms. For example, as depicted in Fig. [I|the
simple Adaline algorithm can be implemented using
the circuit, with training enabled on k£ = 1,..., Kj.
The implementation of more complicated ML algo-
rithms using this circuit, such as the Backpropgation
algorithm, is shown in section [V]

B. The circuit architecture
B.1 The synaptic grid

The system described in Fig. [I]is implemented by
the circuit shown in [2] where components of all vec-
tors are shown as individual signals. Each gray cell in
Fig. [2]is a synaptic circuit (“artificial synapse”) using
a memristor (described in Fig. [3p). The synapses are
arranged in a two dimensional N x M grid array as
shown in Fig. 2l where each synapse is indexed by
(n,m), with m € {1.M} and n € {1..N}. Each
(n, m) synapse receives two inputs ,, , U,, an enable

signal e,, and output current [,,,. Each column of
synapses in the array (the m-th column) shares two
vertical input lines w,, and ,,, both connected to a
“column input interface”. The voltage signals u,,, and
Uy, (Ym) are generated by the column input interfaces
from the components of the input signal x, upon pre-
sentation. Each row of synapses in the array (the n-th
row) shares the horizontal enable line e,, and output
line o,,, where e,, is connected to a “row input inter-
face” and o,, is connected to a “row output interface”.
The voltage (pulse) signal on the enable line e, (Vn)
is generated by the row input interfaces from the error
signal y, upon presentation. The row output interfaces
keep the o lines grounded (V' = 0) and convert the
total current from all the synapses in the row going to
the ground, > I, into the output signal r.

B.2 The artificial synapse

The proposed memristive synapse is composed of
a single memristor, connected to a shared terminal
of two MOSFET transistors (P-type and N-type), as
shown schematically in in Fig. [Bp (without the n,m
indices). These terminals act as drain or source, in-
terchangeably, depending on the input, similarly to the
CMOS transistors in transmission gates. Recall the
memristor dynamics are given by (1}3), with s (¢) be-
ing the state variable of the memristor and G (s (t)) =
g + gs(t) its conductivity. Also, the current of the
N-type transistor in the linear region is, ideally,

1
I=K ((Vcs —Vr) Vps — 2V55> ;o adn

where Vs is the gate-source voltage, V7 is the volt-
age threshold, Vpg is the drain-source voltage, and K
is the conduction parameter of the transistors. The cur-
rent equation for the P-type transistor is symmetrical
to (T1)), and for simplicity we assume that K and |Vr|
are equal for both transistors. The synapse receives
three voltage input signals: « and & = —u are con-
nected, respectively, to a terminal of the N-type and P-
type transistors and an enable signal e is connected to
the gate of both transistors. The enable signal can have
a value of 0, Vpp, or —Vpp (with Vpp > |Vr|) and
have a pulse shape of varying duration, as explained
below. The output of the synapse is a current [ to the
grounded line o. The magnitude of the input signal
u (t) and the circuit parameters are set so they fulfill
the following assumptions
1. If e = 0 (i.e., the gate is grounded) both tran-
sistors are non-conducting (in the cut-off region),
ie.,

lu(@)] < [Vr| (12)
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2. If e = £Vpp, then, when in the linear region,
both transistors have relatively high conductivity
as compared to the conductivity of the memristor,
ie.,

K (Vop = |lu(®)]=[Vr) > G (s(t)) (13)

To satisfy (12) and (13)), the proper value of u(t) is
chosen. Note (13) is a reasonable assumption, as
shown in [33]]. If not (e.g., if the memristor conduc-
tivity is very low), instead one can use an alternative
design, as described in appendix A [34]. Under these
assumptions, when e = 0 then I = 0 in the output
and the voltage across the memristor is zero. In this
case, the state variable does not change. If e = +Vpp
, from (T3)), the voltage on the memristor is approxi-
mately +u . When e = Vpp the N-type transistor is
conducting in the linear region while the P-type tran-
sistor is cut off. When e = —Vpp the P-type transis-
tor is conducting in the linear region while the N-type
transistor is cut off.

C. Circuit operation

The operation of the circuit in each trial (a single
presentation of a specific input) is composed of two
phases. First, in the computing phase (‘“read”), the
output current from all the synapses is summed and
adjusted to produce an arithmetic operation r = Wx
from (@). Second, in the updating phase (‘“write”), the
synaptic weights are incremented according to the up-
date rule AW = nxy from (I0). In the proposed de-
sign, for each synapse, the synaptic weight, W,,,,,, is
stored using S, the memristor state variable of the
(n,m) synapse. The parallel “read” and “write” op-
erations are achieved by applying simultaneous volt-
age signals on the inputs u,, and enable signals e,
(Vn, m). The signals and their effect on the state vari-
able are shown in Fig. 3p.

C.1 Computation phase (“read”)

During each read phase, a vector x is given, and
encoded in u and U component-wise by the column
input interfaces, for a duration of Ty.q, Vm : u, (t) =
aT;, = —Un (t), where a is a positive constant con-
verting x,,,, a unit-less number, to voltage. Recall that
A is the maximal value of |x.,,|, so we require that
aA < |Vr|, as required in (I2). Additionally, the row
input interfaces produce voltage signal on the e,, lines,
Vn :

,if 0 <t < 05T,
Lif 05T g <t < T

en(t) =1 PP (14)

—~Vbb

(a) “Artificial Synapse”
U

—3 LTS

u

rread write

w.axr

Vpp  sign(y)Vpp

e 0 (for y > 0)
By

s : \t:’I\ As = abzy
0 Tra Tia + bly| 7 (for zy > 0)

Fig. 3 Memristor-based synapse. (a) A schematic of a single
memristive synapse (without the n, m indices). The synapse
receives input voltages u and & = —u, an enable signal e,
and output current /. (b) The “read” and “write” protocols -
incoming signals in a single synapse and the increments in the
synaptic weight s as determined by . T = Twr + Tra-

From 2] the total change in the internal state variable
is therefore, Vn, m :

0.5Trqa Tra
ASpm = / (azm) dt—l—/ (—azy,)dt =0,
0 0.5Ta
(15)
The zero net change in the value of s,,, between
the times of 0 and 7;4 implements a non-destructive
“read”. To minimize inaccuracies due to changes in
the conductance of the memristor during the “read”
phase, the row output interface samples the output cur-
rent at time zero. The output current of the synapse to
the o,, line at the time is thus
Lym = a(g + gsnm)xm- (16)
Therefore, the total current in each output line o,
equals to the sum the individual currents produced by
the synapses driving that line, i.e.,

Op = Zlnm = GZ (g +g5nm) Tm a7

The row output interface measures the output current
oy, and outputs

'n =C (On - Orcf) (18)
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where c is a constant converting the current units of o,,
to a unit-less number r,,, and

Oref = 1157 Z Tm - (19)
Defining
Whm = acqsnm , (20)
we obtain
r=Wx, 21)
as desired.

C.2 Update phase (“write”)

During each write phase, of duration of Ty,, u,u
maintain their values from the “read” phase, while the
signal e changes. In this phase the row input interfaces
encode e component-wise, Vn : w

i n V afOSt*Tr Sb mn
e”(t):{mgn(y) bp i a < blynl

0 aifb|yn‘<t_Trd<Twr

(22)
The interpretation of (22)) is that e,, is a pulse with
magnitude Vpp, the same sign as y,,, and a duration
b|yn| (where b is a constant converting y,,, a unit-less
number, to time units). Recall that A is the maximal
value of |y, |, so we require that Ty, > bA. The total
change in the internal state is therefore

Trd"l‘b‘yn‘
Bsum = | (asign (yn) 7m) dt - (23)

Tra

= abTpmYn (24)

Using (20), the desired update rule for the synaptic
weights is therefore obtained

AW = nyxT , (25)

where = a?bcg.

IV. CIRCUIT EVALUATION

In this section, the proposed circuit is implemented
(section [A), an online gradient descent learning algo-
rithm (Adaline) is used to demonstrated the implemen-
tation of ML algorithms with the proposed circuit (sec-
tion B]), and the robustness of the circuit to noise and
variation is evaluated (section [C).

A. Circuit implementation

The proposed circuit has been implemented us-
ing Matlab in Simulink environment [35] using the
SimElectronics toolbox [36] which includes standard
MOSFET devices. The Matlab code generates a

Simulink implementation of the proposed circuit for
variable size (M and N), using the equations de-
scribed in section [IT} As depicted in Fig. 2] the im-
plementation consists of a synapse-grid and the inter-
face blocks. The interface units were implemented
using standard Simulink components. For example,
the input and output row interface units where imple-
mented together: the pulse width modulation was im-
plemented using a thresholded sawtooth control sig-
nal, and the voltage values of e,, and the current val-
ues of o, are both are multiplied by sign (y,,), during
the “read” phase. Also, the input and output to the cir-
cuit were kept constant in each trial using “sample and
hold” units.

The memristor model is implemented using
with s (0) = 0, and parameters § = 107Q~! and
G =18-1075[Q-V -sec] " taken roughly from ex-
perimental data ([37]], Fig. 2). The parameters of
the (ideal) transistors are kept at their defaults: K =
5AV~2 and Vy = 1.7V for the N-type transistor,
K =5AV~2and Vp = —1.4V for the P-type transis-
tor. The rest of the circuit parameters are setas Vpp =
10V,a = 1mV,b = Ty, c = 100471, Ty, = 0.6T
and T;q = 0.2T with T' = 0.1 sec being the duration
of each trial (a period of 0.27" was used for signal sam-
pling in the “sample and hold” units).

These specific parameters, however, are not strictly
necessary for proper execution of the proposed design,
and are only used to demonstrate its applicability. In
fact, it is straightforward to show that K,V and g
have little effect (as long as hold), and dif-
ferent values of ¢ can be adjusted for by rescaling c.
This is important since the feasible range of parame-
ters for the memristive devices is still not well charac-
terized, and it seems to be quite broad. For example,
the values of the memristive timescales range from pi-
coseconds [38]] to milliseconds [37]. The duration of
each trial T" should approximately decrease together
with the timescale of the memristor (here we used pa-
rameters from millisecond-timescale memristor [37]).
The circuit operation is demonstrated in Fig. 4} where
a 2 x 2 synaptic grid circuit is simulated for time
10T with simple inputs ;7 = 10sign (t — 5T),z2 =
—20sign (t — 5T),y; = 0.5, and yo = —0.25.

B. Evaluating circuit performance

To evaluate circuit performance, a standard hand-
written digits recognition task is used. The aim of
this task is to train an artificial neural network to
correctly identify handwritten digits based on labeled
(0,1,...,9) examples from the MNIST database, (a
classical ML test [39]], available at [40]]) of 28 x 28
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Fig. 4 Synaptic 2 x 2 grid circuit simulation, during ten operation cycles. Top: Circuit Inputs (21, z2) and result outputs (71, 7r2).
Middle and bottom: voltage (solid black) and conductance (dashed red) change for each memristor in the grid (error input: (y1,y2) =

(0.5, —0.25)).

grayscale pictures, (Fig. [Bh). Each picture is converted
to a 784-long vector x, and each label is converted to
a 10-long vector d. Following the standard procedure
in neural networks training [32], the pictures are un-
correlated using principal component analysis (which
is, incidentally, another algorithm that can be imple-
mented by Hebbian learning [41]). To train the net-
work, 9000 labeled examples (900 for each label) are
presented repeatedly (six times) at random order. To
test the network a different set of 1000 labeled exam-
ples is presented (100 for each label).

The task is to find, based on the training data, a
weight matrix W so that, for any picture from the test
set, the predictor r*) = Wx(*) will approximate d(*)
and allow to estimate the correct label with minimal
probability of error. In this task, if W € R1OX785,
i.e., it is fully connected to all components of the in-
put x, the classifier (a single layer neural network)
can achieve a minimal error of 12% [39]]. To reduce
simulation run time of the circuit, a smaller version
of the basic, fully connected, single layer classifier is
implemented. Instead of using all of the 784 compo-
nents of x, only the first 29 principal components are
used as input, together with a constant input of value
1 (“bias”). This gives a 30 x 10 network with 300
free parameters, instead of 7850 free parameters in the
original fully connected layer.

The network has been trained using the Adaline al-

gorithm (see section [[I] and Fig. [T). At each trial k:
(1) x®) is given as input to the circuit, (2) the result
r®) = W x(K) s read from the output of the cir-
cuit, (3) y® = t®) — r(*) is given as input to the
circuit, and (4) the weight matrix is incremented ac-
cording to AW *) = gy (%) (x("r))—r with n = 31.5.
The proposed circuit has been compared to a direct
implementation of the software algorithm using Mat-
lab. The performances of the circuit and the software
algorithm improve similarly during the training phase,
as shown in Fig. [5p. The performance is maintained
in the test phase, i.e., when the training is stopped,
W is no longer updated and new (unseen) examples
are presented. Both perform with approximately 17%
chance of error, sufficiently close to 12%, the mini-
mum achievable error of the fully connected (approxi-
mately 26 times larger) single layer classifier.

C. Evaluating robustness to noise and variability

Usually, analog computation suffers from reduced
robustness to noise as compared to digital computation
[42]]. ML algorithms are, however, inherently robust
to noise, which is a key element in the set of prob-
lems they are designed to solve (e.g., the hand written
digits in the example above are noisy). This suggests
that the effects of intrinsic noise on the performance
of the analog circuit are relatively small. These ef-
fects largely depend on the specific circuit implemen-
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Fig. 5 Handwritten digits recognition task. (a) A sample of
handwritten digits used to test the circuit. The pictures and la-
bels are respectively converted into x(®) and d(*®) | which are
used to train the proposed circuit as in Fig. [T} with M = 30
and N = 10. (b) Performance of circuit simulation is simi-
lar to the same algorithm run directly in software. For com-
parison, error probability is given for random classification
(“chance”), and full single layer (M = 785, N = 10). Train-
ing stops at vertical line.

tation (e.g., the CMOS process). Particularly, memris-
tor technology is not mature yet and memristors have
not been fully characterized. To check the robustness
of the circuit, crude estimation of the magnitude of
noise and variability has been used. This estimation
is based on known sources of noise and variability,
which are less dependent on specific implementation.
The alleged robustness of the circuit is evaluated by
simulating the circuit in the presence of these noise
and variation sources.

C.1 Noise

When one of the transistors is enabled (e (t) =
+Vpp), then the current is affected by intrinsic ther-
mal noise sources in the transistors and memristor of
each synapse. Current fluctuations on a device due to
thermal origin can be approximated by a white noise
signal I (t) with zero mean ((I (t)) =0) and auto-
correlation (I (t)I(t')) = o026 (t —t') where ¢ (:)
is Dirac’s delta function and 0> = 2kTg (where k
is Boltzmann constant, 7" is the temperature, and g
is the conductance of the device). For 65nm tran-
sistors (parameters taken from IBM’s 10LPe/10RFe

process [43]]) the characteristic conductivity is g; ~
1074 Q~1, and therefore for I (t), the thermal cur-
rent source of the transistors are o7 ~ 10724A%sec.
Assume that the memristor characteristic conductiv-
ity go = €g1, so for the thermal current source of the
memristor, 03 = eo?. Note that from (T3) we have
€ < 1, the resistance of the transistor is much smaller
than that of the memristor. The total voltage on the
memristor is thus

g1

g1+ 92
1

— B+

where ¢ (t) = gy * (I () — Iy (t))and (& (t) £ (1)) ~
026 (t —t') with 0 ~ 2kTg; ' ~ 1071V2sec. The
equivalent circuit, including sources of noise, is shown
in Fig. (6). Assuming the circuit minimal trial dura-
tion is 7' = 10nsec, the maximum root mean square
error due to thermal noise would be about Ep ~
T2 ~ 1074V,

Noise in the inputs u,  and e also exists. According
to [44], the relative noise in the power supply of the
u/@ inputs is approximately 10% in the worst case.
Applying u = az, effectively gives an input of ax +
Er + E,, where |E,| < 0.1a|z|. The absolute noise
level in duration of e should be smaller than T25}" ~ 2
10~ *%sec, assuming a digital implementation of pulse-
width modulation with Tcr{‘kin being the shortest clock
cycle currently available. On every write cycle e =
+Vpp is therefore applied for a duration of b |y| + E.
(instead of b |y|), where |E,| < Tek.

When running the learning algorithm in software,
these noise sources can be simulated by similar
changes in the input. Based on both estimations,
the algorithm and the circuit, with additional noise
sources, according to the analysis above, has been exe-
cuted and evaluated. The performance of the software
algorithm or the circuit has is identical to the perfor-
mance without noise, as shown in Fig. E])

Vi (t) = w(t)+ (g1 +g2) (I () — Iz (1))

C.2 Parameter variability

A common estimation of the variability in mem-
ristor parameters is a Coefficient of Variation (CV =
(standard deviation)/mean) of a few percent [45]. In
this paper, the circuit is simulated with considerably
larger variability (C'V' ~ 30%), in addition to the noise
sources as described in section This is done by
assuming that the variability in the parameters of the
memristors are random variables independently sam-
pled from a uniform distribution g ~ U [0.5g, 1.5g].
The rate of change of the memristors state is similarly
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Fig. 6 Noise model for artificial synapse. (a) During opera-
tion, only one transistor is conducting (assume it is the N-type
transistor). (b) Thermal noise in a small signal model, the
transistor is converted to a resistor (g1) in parallel to current
source ([1), the memristor is converted to a resistor (g2) in
parallel to current source (I2), and the effects of the sources
are summed linearly.
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Fig. 7 The robustness of the ML algorithm - handwritten dig-
its recognition task (Fig. with added ~ 10% noise and
~ 30% variability, resulting in a mild decrease in perfor-
mance.

randomized, by rescaling the units of ¢ in Z) (s = av
with « = U [0.5,1.5]) independently in each mem-
ristor. When running the algorithm in software, these
variations are equivalent to corresponding changes in
the synaptic weights W and the learning rate 7 in the
algorithm. As shown in Fig. [7p, in both cases, these
variations had only a mild effect on the circuit perfor-
mance. Note that variability in the transistor parame-
ters is not considered, since these can affect the circuit
operation only if (12) or (I3) are invalidated. This can
happen, however, only if the values of K or V vary
in orders of magnitude, which is unlikely.

V. IMPLEMENTING MACHINE LEARNING
ALGORITHMS

So far, the circuit operation was exemplified using
the simple Adaline algorithm. In this section it is ex-

plained how, with a few adjustments, the proposed cir-
cuit can be used to implement various ML algorithms,
besides Adaline. Recall the context of the “supervised
learning” setup detailed in section

A. The Perceptron algorithm

The classical Perceptron algorithm [13]], is not de-
rived from online gradient descent (§). Its form is,
however, very similar to the simple Adaline presented
in the paper. In this algorithm the estimator function
isr = 0 (Wx) with a parameter matrix W and some
sigmoidal function o (+) that operates component-wise
on the its vector input. Every iteration, the algorithm
updates the output r = ¢ (Wx) and AW = nyx',
with y = o (d —r). The only additional operation,
in comparison to the Adaline algorithm, is the O (N)
application of the o(-) function on its y error vector
input. This is negligible in comparison to O (M - N).
Therefore, no modification is required to the circuit it-
self.

B. The Backpropagation algorithm

Consider a estimator of the form r = Wy (W;x),
with W7 and W3, being the two parameter matrices.
This double layer neural network can approximate any
target function with arbitrary precision [46]. Denote
by r; = Wix and ro = Wo (r1) the output of each
layer. In the Backpropagation algorithm, each update
of the parameter matrices is given by an online gradi-
ent decent step, from (g,

AW, = ny1x{ ; AW, = nyax, |

where x3 = 0 (r1),y2 =d —r3,x3 = xandy; =
(W;yg) ©o' (r1), witha®b 2 (a1by,...,anby),
a component-wise product. Implementing such an al-
gorithm requires a minor modification of the proposed
circuit - it should have an additional “inverted” out-
put & & W'y, Once this modification is made to
the circuit, by cascading such circuits, it is straightfor-
ward to implement the Backpropagation algorithm for
two layers or more, as shown in Fig. [§] Such “deep”
multilayer neural networks are becoming increasingly
useful [47], producing competitive solutions in many
fields, such as pattern recognition [1} 3]], natural lan-
guage processing [4} 5] and predictions [[6] (see [10]
for related press). When the Backpropgation algo-
rithm is executed with massive computational power
it achieves state-of-the-art-results (e.g., [9} |48]) using
deep multilayer networks.

The additional output § = W "y can be generated
by the circuit in an additional “read” phase with du-
ration 74, between the original “read” and “write”
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O d)

Enable
Training

Fig. 8 Implementing the Backpropgation for a multilayer neu-
ral network, using a modified version of the original circuit.
The triangles denote an operation of the function on the input
(either o () or o’ (+)), and the © circle denotes a component-
wise product.

phases, in which the original role of the input and out-
put lines are inverted. In this phase the NMOS transis-
tor is on, i.e., Vn, e,, = Vpp, and the former “output”
oy, lines are given the following voltage signal (used
for a non-destructive read)

) lf Trd S t < 1~5Trd
CAf 15T q <t <2Thq

aYn

—aYn

Op —

The I, current now exits through the (original “in-
put’) u,, terminal, and the sum of all the currents is
measured at time 7;.q by the column interface (before
it goes into ground)

Um = Z Inm =a Z (g + gsnm) Yn - (26)

The the total current on u,, at time 7.4 is the output

5m =cC (um - uref) 5 (27)

where Uret = ag ) ., Yn . Thus, from

6m = Zanyvu

as required.

C. Other Algorithms

The use of the proposed circuit for additional al-
gorithms can be easily extended if the input pattern
x is replaced with ¢ (x), where ¢ is a “kernel func-
tion”, operating component-wise. This simple exten-
sion covers many useful ML algorithms [49]. The pro-
posed circuit may be used also for other algorithms
which implement outer-products in their update rules,
even outside of the “supervised learning” setting. For
example, more advanced versions of the Perceptron or
the Backpropgation algorithm, where the learning rate
71 is modified in an adaptive manner using a negligi-
ble amount of operations (e.g., O (M) in [50])). This
is possible because 7 can become a tunable param-
eter in the proposed circuit by adjusting the tunable

circuit parameters a, b or c¢. Additionally, “unsuper-
vised learning” algorithms often include outer prod-
ucts, and may be implemented using the proposed cir-
cuit. For example, consider the the Oja rule [41] - an
important online implementation of the principal com-
ponents analysis.

VI. CIRCUIT MODIFICATIONS

In this section, a few additional important modifica-
tions of the proposed circuit are examined in more de-
tail. In section [A]it is explained how to modify the cir-
cuit so it would work with more realistic “memristive
devices” [20, 28]], instead of the classical memristor
model [18]], given a few conditions. In section@ it is
shown that it is possible to reduce the transistor count
from two to one, at the price of doubling the duration
of the “write” phase. Note that various other useful
modifications of circuit are also possible. For exam-
ple, the input x may be allowed to receive different
values during the “read” and “write” operations. Also,
it is straightforward to replace the simple outer prod-
uct update rule in (I0) by more general update rules of
the form

Wﬁ@ii”ﬁﬁd”+n§:ﬁ(%P>%<$$U,
i

where f;, g; are some functions.

A. Generalization from “memristor” to “memristive
devices”

In this paper, the memristor device is assumed to be-
have according to its classical model [18]. Though the
first fabricated memristor device [[19] has been mod-
eled according to the classical model, this model is
inaccurate and real devices can be modeled by the
more general “memristive device” model. Further-
more, emerging memory technologies, e.g., Resistive
RAM and Spin-Torque Transfer MRAM, can be repre-
sented as memristive systems [20L 51]]. A Memristive
device [28] is a generalization of the original memris-
tor [18]. For such devices the state variable can be a
vector s € R”, and (assuming stationary dynamics)

s = f(s,u)
y=g(s,uu,

(28)
(29)

where w is the input (voltage/current) and y is the out-
put (current/voltage). In [20], for example, s is a scalar
as in the original memristor, but its dynamics affected
by some “window” function © (s)

$=f(u)-O(s). (30)
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Assume that © (s) > 0 for all s and define z (s) =
Jy (1/© (x)) dx. Observe that

5= (1/0(s)5 = f (u) -

Additionally, since z (s) is defined by an integral over
a positive function, it is strictly monotone and there-
fore reversible to s = h(z). Hence, it can be repre-
sented as

€29

z = [f(u)
y:

(32)
(33)

Now this system is mathematically similar to the origi-
nal system (T}j2) . This allows to implement a Hebbian
network in a similar method as for memristors, with z
replacing s as the synaptic weight.

If u is the voltage and y current, A similar method
as in the original memristor case is used. Assume a
sufficiently small input range in which f is reversible,
the following definitions are made, in order to have
similar method as for the original memristor. Dur-
ing the write cycle replace the signals u (¢t) = ax and
@ (t) = —ax, respectively, with u (t) = f~! (ax)and
w(t) = f~'(—awx). During the read cycle keep
u (t) = ax and replace the signal @ (t) = —az with
u(t) = f~1(—f (ax)). Additionally, if for a suffi-
ciently small range of state space , g (h (z),u) is lin-
earized and obtain g (h (2) ,u) = g+ §z +~yu. The yu
correction that does not appear in the memristor case,
but may be corrected for by adjusting the reference
signal of. If w is current and y is voltage, a different
design for the synapse should be used, as explained in
appendix B [34].

B. Compact synapses

It is possible to reduce the number of transistors in
each synapse from two to one. The schematic of such a
synapse is shown in Fig. [Qp. In this compact synapse
the write time is double as compared to the original
proposed synapse.. For simplicity, assume a classical
memristor as in [I}2

As depicted in Fig. Op, the read cycle is performed
by applying, for a T4 duration,

0=,

and e (t) = Vpp, so §(t) = u (t) and As = 0 over
the read cycle. Sampling the current at the beginning
of the read cycle gives

,if 0<t < 05T

. ;o (34
s if 0~5Trd S t S Trd

I=a(g+gs)z =Wz, (35)

(b)

read

iwrite

14z ax

(for z > 0)

Vbp

l_l 0 %(fory>0)

' Vop |

s 3 K\T As = abxy
0 Tra 0.5Tr + Tra T (for zy > 0)

0.5Ty + Tra + by

Fig. 9 Compact synapse design. (a) Schematic of the artificial
synapse with input voltages « control signal e and output cur-
rent I. (b) Writing and reading protocol - incoming signals in
a single synapse and the increments in the synaptic weight s

as required.
In the write cycle

o= {2

and e (t) = VDD if

) if Trd S t S Trd + 0~5Twr
Cif Tog + 05T <t <T

)

(36)

min (by, 0) <t — Trq — 0.5T4, < max (by,0) (37)

and zero otherwise. Therefore, $ (t) = ax if e (t) =
Vbp , and zero otherwise.

Integrating over both the write and read cycles, we
obtain again

As = abxy . (38)

as required.

VII. DISCUSSION

As explained in section [l and [V} two major compu-
tational bottlenecks of many Machine Learning (ML)
algorithms are given by “matrix x vector” product op-
eration (@) and a “vectorxvector” outer product op-
eration (9). Both are of order O (M - N), where M
and NNV are the sizes of the input and output vectors.
In this paper, the proposed circuit is designed specif-
ically to deal with these bottlenecks using memristor
arrays. This design has a relatively small number of
components in each array element - one memristor
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TABLE I Hardware designs of artificial synapses implement-
ing scalable online learning algorithms

Design #Transistors Comments ‘
Proposed design | 2 (+1 memristor)
Also requires UV light +
[154] 2 . )
Weights decay ~ minutes
Weights onl,
551 6 £ Y
increase (unusable)
15611571 39 Must keep training
1581 52 Must keep training
1591 92 Weights decay ~ hours
[60] 83 Also requires a “weight unit”
61l 150

and two transistors. The physical grid-like structure
of the arrays implements the “matrix x vector” prod-
uct operation (#) using analog summation of currents,
while the memristor dynamics enable us to perform
the “vectorx vector” outer product operation (I0), us-
ing “time X voltage” encoding paradigm.

The idea to use a resistive grid to perform
“matrix X vector” product operation is not new (e.g.,
[52]]). The main novelty of this paper is the use of
memristors together with “timexvoltage” encoding,
which allows us to perform a mathematically accurate
“vector x vector” outer product operation in the learn-
ing rule using a small number of components. Previ-
ous implementations of learning rules using memristor
arrays [22H25]] have been limited to spike-like inputs
and focused on Synaptic Time Dependent Plasticity
(STDP). Applications of STDP are usually aimed to
explain biological neuroscience results. At this point,
however, it is not clear how useful is STDP algo-
rithmically. For example, the convergence of STDP-
based learning is not guaranteed for general inputs (as
it is guaranteed for the algorithms used in this work)
[53]. Furthermore, to the best of the authors’ knowl-
edge, STDP-based algorithms are not yet competitive
and have not been used yet for massive large scale
problems - in contrast to the standard gradient-decent
(Hebbian) learning rules discussed in this paper (see
section [V)).

A. Previous CMOS-based designs

As mentioned in the introduction, CMOS hardware
designs that specifically implement Hebbian learning
algorithms remain an unfulfilled promise at this point.

The main incentive for existing hardware solutions
is the inherent inefficiency in implementing these al-
gorithms in software running on general purpose hard-

ware (e.g., CPU’s, DSP’s and GPU’s). However,
squeezing the required circuit for both the computation
and the update phases (two configurable multipliers
and a memory element) into an array cell has proven to
be a hard task, using currently available CMOS tech-
nology. Off-chip or chip-in-the-loop design architec-
tures (e.g., [62], Table 1) have been suggested in many
cases as a way around this design barrier. These de-
signs, however, generally deal with the computational
bottleneck of the “matrix xvector” product operation
in the computation phase, rather than the computa-
tional bottleneck of the “vector x vector” outer product
operation in the update phase. Additionally, these so-
lutions are only useful in cases where the training is
not continuous and is done in a pre-deployment phase
or on special reconfiguration phases during the oper-
ation. Other designs implement non-standard (e.g.,
perturbation algorithms [63]) or specifically tailored
learning algorithms (e.g., modified Backpropagation
for spiking neurons [64]). However, it remains to be
seen whether such algorithms are indeed scalable.

Hardware designs of artificial synaptic arrays that
are capable of implementing common (scalable) learn-
ing algorithms (basically, online gradient-descent
based learning, as explained in sections [[I] and [V)
are listed in Table [I The effective transistor count
per synapse (where resistors and capacitors were also
counted as transistors) is approximately proportional
to the required area and average power usage.

The smallest synaptic circuit [54], includes two
transistors, similarly to our design, but requires the
(rather unusual) use of UV illumination during its op-
eration, and has the disadvantage of having volatile
weights, decaying within minutes. The next device
[S5] includes six transistors per synapse, but the up-
date rule can only increase the synaptic weights, which
makes the device unusable for practical purposes. The
next device [57, 165]] suggested a grid design using
CMOS Gilbert multipliers, resulting in 39 transistors
per synapse. In a similar design, [58]], 52 transistors
are used. Both these devices use capacitive elements
for analog memory and suffer from the limitation of
having volatile weights, vanishing after training has
stopped. They require therefore constant re-training
(practically acting as “refresh”). Such retraining is re-
quired also on each start-up, or, alternatively, reading
out the weights into an auxiliary memory - a solu-
tion which requires a mechanism for reading out the
synaptic weights. The larger design in [59] (92 tran-
sistors) also has weight decay, but with a slow hours-
long timescale. The device in [60] (83 transistors +
an unspecified “weight unit” which stores the weights)



SOUDRY ET AL: HEBBIAN LEARNING RULES WITH MEMRISTORS

does not report to have weight decay, apparently since
digital storage is used. This is also true for [61] (150
transistors).

The proposed memristor-based design should re-
solve these obstacles, and provide a compact, non-
volatile circuit. Area and power consumption are ex-
pected to be reduced by a factor between 13 to 50, in
comparison to standard CMOS technology, if a mem-
ristor is counted as an additional transistor (although
it is actually more compact). Maybe the most con-
vincing evidence for the limitations of these designs
is the fact that, although most of these designs are
two decades old, they have not been incorporated into
commercial products. It is only fair to mention at
this point, that while our design is purely theoretical
and based on speculative technology, the above re-
viewed designs are based on mature technology, and
have overcome obstacles all the way to manufacturing.

VIII. CONCLUSIONS

A novel method to implement scalable machine
learning algorithms through Hebbian rules is pro-
posed, based on the emerging memristor technol-
ogy. The proposed method is based on an “artifi-
cial synapse” composed of one memristor, to store
the “synaptic weight”, and two CMOS transistors, to
control the circuit. The circuit is estimated to be sig-
nificantly smaller than existing CMOS-only designs,
opening the opportunity for massive parallelism with
millions of adaptive synapses on a single integrated
circuit

The correctness of the proposed synapse structure
exhibits similar accuracy to its equivalent software im-
plementation, while the proposed structure shows ex-
tremely high robustness and immunity to noise and pa-
rameter variability. Building larger networks to exe-
cute similar algorithms can further increase accuracy
to near-human performance[48]].

Using the proposed memristive synapse design to
execute machine learning algorithms, can give a sig-
nificant boost to artificial intelligence with massive
parallelism, high accuracy, low power, and good ro-
bustness.
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