
A Systematic Approach to
Blocking Convolutional Neural Networks

Xuan Yang*, Jing Pu*, Blaine Burton Rister*, Nikhil Bhagdikar*, Stephen Richardson*, Shahar Kvatinsky†,
Jonathan Ragan-Kelley*, Ardavan Pedram* and Mark Horowitz*

*Stanford University
†Technion – Israel Institute of Technology

Abstract
Convolutional Neural Networks (CNNs) are the state of the

art solution for many computer vision problems, and many
researchers have explored optimized implementations. Most
implementations heuristically block the computation to deal
with the large data sizes and high data reuse of CNNs. This
paper explores how to block CNN computations for memory
locality by creating an analytical model for CNN-like loop
nests. Using this model we automatically derive optimized
blockings for common networks that improve the energy effi-
ciency of custom hardware implementations by up to an order
of magnitude. Compared to traditional CNN CPU implemen-
tations based on highly-tuned, hand-optimized BLAS libraries,
our x86 programs implementing the optimal blocking reduce
the number of memory accesses by up to 90%.

1. Introduction
Convolutional Neural Networks (CNNs) [22, 19, 39, 36] have
shown an ability to solve a number of challenging problems,
giving rise to a strong interest in their implementation, in-
cluding customized hardware [25, 9, 21, 29, 28]. Customized
hardware makes sense because CNN applications have high lo-
cality and high compute intensity, traits that custom hardware
leverages. Unfortunately, the working set of these applications
is large: model parameters can be tens of megabytes, and
the input data to a layer often consists of tens to hundreds of
images. Thus, the design of the memory hierarchy and how
the data is choreographed has a dramatic effect on the energy
required for the computation.

To achieve the desired locality, the problems must be parti-
tioned into a number of smaller pieces, to allow these pieces
to be stored in smaller memories close to the compute units.
The partitioning of the problem into the optimal set of smaller
sub-blocks, or optimal blocking, has been well studied for
matrix multiplication [16, 15] and is the problem we address
in this paper for CPU and custom hardware implementations
of CNNs.

Early attempts [20, 1, 24, 2] to optimize CPU and GPU
CNN implementations treated the convolutional layers as
matrix multiplication and used an optimized BLAS matrix-
matrix-multiplication (GEMM) routine [10]. While GEMM
implementations often perform optimal blocking for matrix
multiplication, we show that encoding convolution as matrix

multiplication loses some of the locality of the original prob-
lem, results in replicated values, and significantly increases
required memory accesses.

GPUs don’t really have a memory hierarchy to speak of;
their combined register file is nearly as large as their last
level cache. Thus blocking for a GPU is not about fitting
data into the last level cache, but mainly about improving the
concurrency, which is not the focus of this work, so we don’t
evaluate GPU results in this paper. However, near the end of
Section 5.2 we discuss implications of our work for future
GPU design.

Special purpose hardware solutions, both ASIC and
FPGA [29, 12, 28, 42], block the CNN algorithm directly
across multiple levels of compatible memory hierarchy and
feed the data to a custom compute datapath. Given the large
possible parameter space—the computation is a 4 level loop
nest (x, y, input channel, kernel) around a 2-D convolution—
blocking needs to consider all possible loop splits and loop
orders for each split. As a result, previous designers tend to
consider a limited part of the solution space. For example,
given the limited on-chip memory resources on many FPGA
systems, prior research in this area has built models to explore
blocking for a single level of on-chip memory [28, 42].

This paper makes three main contributions, all designed to
improve CNN blocking:
• We create an analytical model for, and optimizer of, memory

energy and traffic within a multi-level memory hierarchy for
CNN-like loop nests, designed to find the optimal blocking
for any arbitrary memory hierarchy.

• We use this optimizer to jointly find the memory hierarchy
and blocking that yields the most energy efficient solution
for a CNN problem, or a set of CNN applications.

• Our results show that directly blocking CNNs yields bet-
ter locality than the standard method of convolution using
GEMM.

2. Overview of the CNN problem

Advances in training deep, multi-layer networks have led to
a resurgence of their use in many problem domains [17]. In
computer vision, convolutional neural networks (CNNs) have
recently displaced classical image processing and machine
learning methods for state-of-the-art performance on many
tasks, particularly in recognition.

ar
X

iv
:1

60
6.

04
20

9v
1

 [
cs

.D
C

]
 1

4
Ju

n
20

16

Counter to the classical, freely-connected model commonly
associated with the neural network metaphor, convolutional
neural networks are characterized by a highly restricted struc-
ture in which the network is organized into a pipeline or DAG
of “layers,” and most layers are defined to perform a convo-
lution on their inputs. In vision problems, these layers can
be thought of as producing and consuming images, with their
neurons organized into a regular 3D grid of pixels (with im-
age dimensions x and y, and c for color channels). From this
perspective, a CNN is more clearly thought of as a specialized
class of image processing pipelines, rather than as a biological
neural model. The operations in this pipeline—convolution,
local response normalization, pooling, and fully connected
layers—correspond to the different “layers" used in the net-
work.
• A convolutional layer (Conv) corresponds to a filter bank.

In the standard case of 3D input and output, a convolutional
layer maps a C×X×Y input to a K×X×Y output using
K shift-invariant 3D stencils, where each stencil is of the
size Fw×Fh×C (i.e., a set of K 3-dimensional convolutions).
These K Fw×Fh×C stencil coefficients are the “weights” of
the convolutional layer. Here, (X ,Y) and (Fw,Fh) are the
image and kernel width and height dimensions and both
image and kernels have the same depth dimension, which
we define as C, or the number of channels. Typically the
dimensions of the kernels are much smaller than the image
dimensions.

• A local response normalization (LRN) layer normalizes
(scales) the value of each input by the sum of squared values
in its neighborhood.

• A pooling layer performs a windowed reduction using some
aggregation function (most commonly, max), decimating
the input. This maps a C×X×Y input to a C×X ′×Y ′ output,
using a 2D stencil window of some size over the input
within which the aggregation function is applied to produce
a single output. Pooling and LRN layers have no learned
parameters (weights).

• Finally, a fully connected layer (FC) is what is most com-
monly thought of within the neural network metaphor: an
M to N mapping where all M inputs drive all N outputs,
with unique weights for every input/output pair. This corre-
sponds to an M×N matrix-vector multiplication, and with
M×N unique weights has far more weight data relative to
the size of the layer inputs and outputs (O(input×output))
than a convolutional layer.
Most of the computational work in real CNNs, and most

of the intermediate data bandwidth, is in the convolutional
layers. Meanwhile, the fully-connected layers (Sec. 2.1) per-
form more work and load more parameters per input or output,
but they are most commonly used at the end of a network
pipeline, by which point the input has been heavily decimated.
The output of each layer may also be fed through a nonlinear
activation function. Since these are typically local point-wise
arithmetic operations which can be easily computed, they only

have a small influence on computation cost and do not affect
blocking (communication or locality) at all.

2.1. CNN Characteristics

Current state-of-the-art networks for object recognition ap-
plications range from the order of ten layers to dozens. The
AlexNet architecture [23] has five convolutional layers with
window sizes of 11×11, 5×5 and 3×3 interleaved with sev-
eral local response normalization layers, pooling layers, and
followed by two fully-connected layers. The VGGNet archi-
tecture [35] comprises several different network substructures,
each composed of many convolutional layers with 3×3 filter
windows, interleaved with pooling layers, and followed by
two FC layers. We focus our evaluation on these networks,
as well as the suite of applications demonstrated on recently
published CNN hardware [8, 9]. Table 1 shows the compu-
tation and memory breakdown for AlexNet and two types of
VGGNet architecture. From the table we can see that Conv
layers are the most computationally intensive layer while FC
layers consume the most memory.

MACs×109 Mem (MB)
AlexNet Convs 1.9 2
VGGNet-B Convs 11.2 19
VGGNet-D Convs 15.3 29
AlexNet FCs 0.065 130
VGGNet-B FCs 0.124 247
VGGNet-D FCs 0.124 247

Table 1: Computation (measured in number of multiply and
accumulate operations) and memory consumption breakdown
of state-of-the-art networks (each pixel and coefficient is 16
bits).

2.2. Related Work

To achieve extremely high energy efficiency, a number of
recent efforts have proposed specialized architectures for CNN
workloads. The DianNao family of architectures was built
around a customized inner-product unit designed for CNNs
and other machine learning algorithms. In its first instantiation,
computation was minimally tiled to fit into a single level of
small buffers [8]. In a later iteration, the original unit was
surrounded by eDRAM large enough to store the complete
coefficient and data sets (assuming all network coefficients
can fit), but no further blocking was performed [9].

The NeuFlow architecture builds CNNs in a systolic array
such that each processing element communicates only with its
neighbors, with results streaming to and from DRAM [29, 12].
NeuFlow designs have only been implemented as FPGAs,
not ASICs, where the flexibility to customize the memory
hierarchy for energy efficiency is limited. Its successor, the
TeraDeep architecture, uses a fixed blocking strategy for con-
volutional layers [14, 11, 21]. Both Peemen et al. [28] and

2

Zhang et al. [42] explored blocking in an FPGA CNN acceler-
ator, but considered only two levels of memory and blocking,
and sought only to minimize off-chip bandwidth, not total
memory energy. Section 5.2 shows how using a better block-
ing improves the energy of these custom systems.

Most CPU and GPU implementations for CNN have used
some combination of hand-tuned GPU kernels [27, 23], op-
timized Basic Linear Algebra Subprogram routines (BLAS)
[20], and metaprogramming [2]. These implementations gen-
erally rely on coarse-grained blocking across images to expose
opportunities for locality, and to improve arithmetic intensity,
which is exploited by using optimized GEMM kernels and sim-
ilar code. However, in order to utilize the optimized GEMM
kernels, these implementations have to first remap 3D input
tensors to 2D matrices, a process called lowering.

An early attempt called Caffe [20] used these implementa-
tions and achieved good results, but was found to be subopti-
mal, since lowering duplicates much of the data and wastes
memory, and, specifically in Caffe, lowering happens distant
from the computational core. Caffe con Troll [1] is an improve-
ment that tiles the original image before applying the lowering
process, thereby reducing the memory resource waste. It also
does better batching, with each core working independently
on a different group of images.

While at first sight the high level looping for convolution
and GEMM seem similar, there are some fundamental differ-
ences. First and foremost, the nature of low-level computations
in convolution and GEMM are different because of the extra
axes of reduction, and because of the overlaps in the sliding
convolution windows that provide another level of temporal
locality GEMM does not have. Second, the blocking of convo-
lution affects the amount of refetches to overlapping regions of
blocked tiles, which does not exist in GEMM blocking. Third,
the 3D composition of the data stream implies a larger space
of possible blocking than 2D matrix, and therefore the search
for optimal blocking is more complex. By taking advantage of
the temporal locality the overlapped windows provided, and
reducing recomputes or refetches at the boundary region, di-
rectly blocking convolution should achieve better performance
and memory usage. These differences are explained in more
detail in the next section.

Based on the nature of Conv and FC layers, we propose a
general way of analyzing and optimizing the blocking of a
CNN onto a memory hierarchy, which can be applied to any
convolutional neural network on existing and custom archi-
tectures with a memory hierarchy. We further generalize this
to co-optimize the blocking with the design of the memory
hierarchy, creating more energy-efficient solutions.

Existing approaches to this problem include polyhedral al-
gorithms [30, 5, 4, 42, 3] and cache oblivious algorithms [13,
37]. Polyhedral algorithms are powerful for optimizing both
well-aligned and irregular complex loop nests, but because of
its more complicated data structure, it usually requires signifi-
cant computation. Cache oblivious algorithms are designed to

1 for k0 = 0 : K do

2 for c0 = 0 : C do

3 for y0 = 0 : Y do

4 for x0 = 0 : X do

5 for f h =− Fh−1
2 : Fh−1

2 do

6 for f w =− Fw−1
2 : Fw−1

2 do
out put[x0,y0,k0]+ =

input[x0 + f w,y0 + f h,c0]×
kernel[f w, f h,c0,k0] ;

end
end

end
end

end
end

Algorithm 1: The 6 nested loops of the convolutional layer.
In this simple example, the loop order is represented by
FwFhXYCK

use cache optimally in an asymptotic sense, and the optimiza-
tion is independent of specific machines or cache sizes. Our
framework leverages the advantages of both approaches. Like
Polyhedral algorithms, we can optimize to specific memory
hierarchies, avoiding poor fitting to specific cache sizes that
cache oblivious algorithms have. Like cache oblivious algo-
rithms our evaluation procedure is low complexity, allowing us
to consider a large number of memory configurations rapidly.

3. Convolutional layer analysis

Each CNN layer processes two grids—the 3-D input image
(X ,Y,C) and the 4-D kernel weights (Fw,Fh,C, K) —to pro-
duce a single 3-D output grid (X ,Y,K). This computation is
depicted in Figure 1. Convolution layers have high compute
intensity, but, like GEMM, the large data sizes require the
computation to be properly blocked for efficient execution.
What makes the blocking hard is the fact that all the data
fetched—input, kernel, and output—is reused multiple times.
In a convolutional layer, output pixels at different input im-
age positions share the same kernels; different kernels share
the same input image; and overlapping windows share input
pixels. So any blocking scheme will cause some data to be
refetched.

Since the energy cost of a fetch depends on memory size,
a good blocking minimizes memory energy by serving most
of the data from small memories and minimizing the amount
of data that these memories need to fetch from larger, higher
energy memories in the memory hierarchy.

3

+

+

X2

X1

X0
Y2

Y1
Y0

C2
C1

C0

X2

X1

X0

Y2K0

K1

Y1
Y0

X2

X1

X0

Y2K0

C2

Y1
Y0 C1

K1

C1

C0

C2

K1

K0
Input

Kernels Partial Output

 Output

Fw

Fh

Figure 1: Hierarchical blocking of a single convolutional layer. The six-dimensional overall problem domain (X ,Y,C,Fw,Fh,K)
depicted in Figure 1 is blocked to three levels in the input domain ({X ,Y,C}{0,1,2}), and two levels in the set of kernels (K)
which correspond to the third dimension of the output domain ({X ,Y}{0,1,2},{K}{0,1}). Partial results for each output pixel are
accumulated hierarchically across the three levels of blocking in C.

3.1. Basic Blocking Notation

The computation being performed by a convolutional layer
can be easily expressed as a 6 layer loop nest1 as shown in
Algorithm 1. Since there are no dependencies in this compu-
tation, the loops in the algorithm can be done in any order.
We will represent a particular implementation order by cre-
ating a string that indicates the loop order from innermost to
outer. Thus FwFhXYCK presents the computation shown in
Algorithm 1. The value of each of the variables in our string
represents the number of iterations done at this loop level.

Given this initial loop nest, blocking can be thought of as
simply splitting a number of loops, and then exchanging the
order in which these split loops are executed. In our notation,
when the X loop is split, X0 represents the inner part of the
X loop and the value of X0 represents the range of the data
computed in this loop. For X0, the loop variable x0 increments
by one, and the value of X0 remains equal to the number of
iterations in the inner loop. X1 represents the outer loop and
its value again represents the range of data computed in this
loop. In this case, the loop variable x1 increments by X0, so
the number of iterations is X1/X0. Multi-level blocking occurs
when a single loop is split multiple times, and is easy repre-
sented in our notation extending X1 to Xn; the loop variable
for Xn, xn, increments by Xn−1 on each iteration.

Using this representation of nested loops, the blocking prob-
lem is easy to state: Find the loop order string, and the size
of each loop, which minimizes the memory energy. This for-
mulation also makes it easy to see the large space of possible

1Actually one can consider this problem to be a 7 level loop nest, since
this computation is repeated over a number of images, and you sometimes
want to block over images as well, especially for the FC layers.

blocking – the number of possible loop orders is quite large,
and for each loop order, we need to compute the loop sizes
that minimize the memory energy.

3.2. Memory Hierarchy

To solve this optimization problem, we need to compute the
memory energy for a given blocking “string” which will de-
pend on the memory hierarchy present in the design. While
in the final design the input, kernel, and output data at each
level of the memory hierarchy may be stored together, for this
analysis it is convenient to think of them as separate memory
structures. Thus we will consider a memory for kernel coef-
ficients KB (kernel buffer), input image data IB, and output
data OB. Since these memories exist at multiple levels in the
memory hierarchy, we use KB0, IB0, OB0, to indicate the ker-
nel, input, and output memory that is closest to the compute
unit, and each buffer at level i, (e.g. IBi) fetches its data from
the buffer at level i+1 (IBi+1).

To minimize the memory energy, we would like to fetch
data from the smallest possible memory. This leads to a simple
rule about where in the computation (at which loop nest) we
should add a buffer: a buffer must be added anytime the added
loop reuses the same data in its loop iteration. Thus adding
buffers can be thought of as a recursive process. Assuming
that we have already added buffers optimally up to level i−1:

1) When a new X or Y loop Xi,Yi is added to the inner loops,
a series of image blocks are streaming through the same set
of kernels producing output images with dimension of Xi,Yi.
Therefore one can save those kernels that are being used

4

XiYi/(Xi−1Yi−1) times in a new kernel buffer.2 For maximum
reuse of kernel coefficients with Xi,Yi image window size, the
kernel buffer contains all elements that are used by the in-
ner loops:3 KBi[Fw,FhKi−1,Ci−1], assuming loops Fw, Fh have
been added before the current level.

2) When a new C loop Ci is added, a series of images and
kernels are streamed and Ci channels reductions are being
performed on the same set of outputs. Therefore those partial
outputs are being reduced Ci/Ci−1 times, and should be stored
in a new output buffer to prevent these fetches from going to a
larger memory at a higher level in the memory hierarchy. For
maximum reuse of kernel partial outputs, the output buffer
contains all elements that are computed by the inner loops:
OBi[Xi−1,Yi−1,Ki−1].

3) Finally, when a new K loop Ki is added to the existing inner
loops, each iteration will load a new kernel, but each of these
kernels will operate on the same set of input data producing
Ki channels of the output. Therefore one can save those input
data that are being used Ki/Ki−1 times in a new input buffer.
To achieve the maximum reuse of data with Ki kernels, the
input buffer must contain all the input elements that are used
by the inner loops: IBi[Xi−1,Yi−1,Ci−1].

For level 0, the loop variables are the same as in Algorithm 1,
but with loop sizes being Fw, Fh, X0, Y0, C0, K0 from inner to
outer loop. The way to compute the buffer sizes and buffer
reuse still apply, with X−1, Y−1, C−1, K−1 = 1.

Note that loops Fw, Fh are not required to be the innermost
loops. With buffers optimally up to level i− 1, when a new
Fw or Fh is added to the existing inner loops, each iteration
will load a new coefficient from the next position inside the
window. Those coefficients will operate on the same set of
input data and reduce to the same set of output data. Therefore,
one can save those input images and output images, as input
images are being used Fw or Fh times and output images are
being used 2Fw or 2Fh times. The set of input and output data
should be stored in a new input and output buffer respectively
to prevent these fetches from going to a larger memory at a
higher level in the memory hierarchy.

Figure 1 demonstrates two levels of nested blocking for
each dimension, and the associated buffers. The inner loop
takes a small amount of input data with block size X0Y0C0 and
convolves it with K0 kernels to create some partial outputs with
block size X0Y0K0. A complete output cannot be generated
until all the channels of the input are processed for that kernel
and the output pixel is generated, which will happen only
when all of the channels (C2 loop) finish.

2Note that the outputs produced from each input are distinct, so the partial
outputs are not reused for a given set of kernels. They will be buffered at the
level where their reuse occurs.

3Note that this buffer size does not depend on the ordering of the inner
loops.

Shared IB

0

1

S-1

Broadcast

Broadcast

Xi

Yi

Ci

Ci

Ki

Ki
Yi

Xi

Xi-1

Ci

Ki

Yi-1
Ci

Yi-1

Xi-1
Ki

Yi Yi

Partitioned KB Partitioned OB

Partitioned IB Partitioned OB
Shared KB

1

2

S-1

1

2

1

2

S-1 S-1

1
2

S-1

Figure 2: Multicore partitioning. Top: kernel partitioning
broadcasts a shared input to separate cores, each of which
processes a disjoint subset of the kernels to produce a dis-
joint slab of the output (in the K dimension). Bottom: input
partitioning broadcasts all kernels across cores which each
process a different subset of the input to produce a disjoint
subset of the output, shown here in the Y dimension.

3.3. Coarse-grain Parallelism

Multi-core parallelism can improve throughput and area ef-
ficiency by sharing the large, higher levels of the memory
hierarchy. Fortunately, this type of parallelism is easily inte-
grated into our blocking framework as a physical unrolling of
an outer loop in the blocking string. This section describes the
ramifications of this unrolling which, like memory hierarchy,
depends on which loop (X, Y, C, K) is unrolled.

Suppose we apply parallelism for S cores at a given level
p by unrolling that loop p across the processors. The first
constraint is that we need to block the application such that
the dimension being unrolled, e.g. Cp, is S times that of the
previous level, Cp−1. The parallelism can be performed by
partitioning the problem across the input XY, the kernels K, or
the channels C. It turns out that partitioning across C requires
extra communication between the processors to reduce the
partial products of output (see Figure 1) and hence it is not
considered further.

Like the analysis for the memory hierarchy, the critical issue
to consider is which memory buffer is being refetched in this
loop, since, by unrolling, this sharing becomes effectively a
parallel broadcast. The parallel broadcast obviates the need to

5

add a buffer at this level, but this fetched data must be sent to
all the computing units. The other buffers can be partitioned
onto the different processor units. We consider two options:

K partitioning, unrolling a K outer loop: This unrolling
effectively partitions the KBs and distributes them among the
S cores. Now the “refetched” input is broadcast to all the
cores in the system, and each core is applying the same image
to its own dedicated set of kernels and is producing its own
dedicated output set of channels. Thus in this architecture the
current KB and OB should be partitioned into each core, and
IB should remain global to send data to all the cores. This is
shown in the top of Figure 2.

XY partitioning, unrolling an X or Y loop: Since the kernel
data is being reused, IB and OB are distributed among S cores
(partitioned across X or Y) and KB is globally available to all
cores. This is shown in the bottom of Figure 2.

A multi-layer CNN problem has additional communication
costs that need to be considered. If the K loop is unrolled, at
the end of a layer, different processors will hold output images
for different kernels. Since these outputs are the input channels
for the next stage, we will need to eventually broadcast all of
this data to all the processors. For XY unrolling, if the next
level uses the same XY unrolling, then this output data can
remain “local” across the levels. Therefore, XY partitioning
is the most symmetric solution, where cores can successfully
process data without large communication between layers as
the computations are mostly independent.

3.4. Memory Energy

We use a simple model to estimate memory energy: we sum
the cost of all the memory fetches needed to complete the
application. Since the fetch order is set by the blocking, we
can easily compute the number of references to each level in
the memory hierarchy. Once the number of references are
known, we use estimates of the memory access energy as a
function of memory size using Cacti [26], as described in
Section 4.2 and as summarized in Table 3.

We compute the number of accesses to each memory by
introducing refetch rate RRi, the number of times a piece of
data is fetched from a certain buffer after initially being loaded
into that buffer (Table 2). The number of fetches of data at
memory hierarchy level i is RRi times the fetches at level
i+ 1. With this definition, the total accesses of a buffer at
memory level i after running through the entire problem is the
product of the refetch rates at higher levels in the hierarchy,
which indicates the total number of times each data is fetched,
multiplied by the number of elements in the top level memory,
α:

total access of buffer at level i = α×Π
n
j=iRR j (1)

The final issue we need to address is to account for the
energy cost of a memory fetch which broadcasts to multiple
processors in a solution that uses coarse gain parallelism. In
order to estimate this cost in a manner that could scale with
technology, we use an indirect method to estimate the energy

Size(KB) 64 bits 128 bits 256 bits 512 bits
1 1.20 0.93 0.69 0.57
2 1.54 1.37 0.91 0.68
4 2.11 1.68 1.34 0.90
8 3.19 2.71 2.21 1.33

16 4.36 3.57 2.66 2.19
32 5.82 4.80 3.52 2.64
64 8.10 7.51 5.79 4.67

128 11.66 11.50 8.46 6.15
256 15.60 15.51 13.09 8.99
512 23.37 23.24 17.93 15.76

1024 36.32 32.81 28.88 25.22
>16384 320

Table 3: Memory access energy per 16 bits (pJ/16b) for vari-
ous memory sizes and word lengths. For memory size in the
range of 0.25KB to 16MB, we use SRAM. When the memory
size exceeds 16MB, we use DRAM.

of the broadcast bus: we find a memory block of a size such
that it has comparable energy to this broadcast.

How do we find the right size for this memory block? We
leverage the fact that large SRAMs are built from smaller
memory arrays, so the energy increase as the memory gets
larger is mostly from the energy to communicate the data
to the output port from the array where it was stored. This
communication cost is similar to the broadcast cost we are
trying to estimate. To find the size of this equivalent memory,
we assume that the area of the cores will be dominated by
the area of the last level memory. Thus the area that the
data needs to be broadcast is the same as the size of the total
embedded memory of the design. As a result, we can estimate
the broadcast cost by the fetch energy of a single memory of
this size.

While this method can be tuned by allocating some area
for the processor, since the energy of a memory reference is
a weak function of the cache size, this simple approximation
seems to work well for the examples we have explored.

3.5. Optimization Framework

With our analysis of the optimal memory hierarchy and our
memory model, we can compute the memory energy for any
given blocking string. From the string we first compute the
size and number of levels of memory in the design, determine
the number of accesses each memory will need to serve, and
then estimate the total energy required. Unfortunately this
problem is not convex, so finding a true optimum requires
exhaustive search. With six dimensions and multiple levels
to block for each layer, the design space becomes large but
not computationally intractable. Knowledge about blocking
CNNs allows us to trim this space, further reducing its size.
For 2-level blocking there are approximately 3000 strings that
need their parameters optimized; for four levels, the number

6

New Loop Buffer Name Buffer Size Buffer Refetch Rate
Ki IBi (Yi−1 +Fh−1)(Xi−1 +Fw−1)Ci−1 (Ki(Yi−1 +Fh−1)(Xi−1 +Fw−1))/(Ki−1Yi−1Xi−1)
Ci OBi Yi−1Xi−1Ki−1 2Ci/Ci−1

Xi or Yi KBi Ci−1Ki−1FhFw (XiYi)/(Xi−1Yi−1)

Table 2: Buffer sizes and refetch rates for kernel, output, and input buffers at level i of the blocking hierarchy, assuming that we
have already added buffers optimally up to level i−1. Both the required buffer size and the refetch rate are determined from the
domain required by all enclosing loops below the level at which the given buffer is allocated.

of strings are in the order of a million. While four levels of
memory hierarchy might seem excessive, it is important to
remember this blocking scheme can block for registers as well
as memories, and includes the DRAM as the final level in the
hierarchy, which increases the number of levels in the memory
hierarchy.

Our initial optimizer simply enumerated all consistent pa-
rameter values in all possible strings and chose those with
minimum energy. While this was computationally expensive,
it was still feasible to optimize a single 4-level layer (the op-
timization took around 24 hours on a Xeon E5645 processor
using a single thread).

To optimize a CNN layer for a fixed memory hierarchy, for
each string we continue to pack the lower level buffers into the
lowest available level of memory hierarchy, always adding the
unpacked buffer with the highest number of accesses. When
the current memory level does not have enough remaining
space to fit the added buffer, we place that and all subsequent
buffers into the next level of the memory hierarchy until it
becomes full.

We use two characteristics to speed up the optimization
procedure enough to allow work on multi-layer optimization.
First, we notice that the computation time grows exponentially
with the number of memory levels (string length), so short
strings are much easier to optimize than long strings. Second,
we notice that while the blocking of level i strongly depends on
the blocking of level i+1, the effects of blocking levels i+2
and i+3 are much smaller. The blocking at level i is trying to
minimize the energy cost of doing all the fetches it needs from
the local memory plus the memory fetches needed to load
this memory, so it needs to know the energy costs of the load
accesses (to level i+1). If this memory has reasonable refetch
rates, which it should, then the component of the load cost that
depends on the higher level decisions should be small.

We speed up the optimization by iteratively optimizing the
blocking from lower memory levels to higher ones, corre-
sponding to optimizing from inner to outer loops. Conceptu-
ally we start by optimizing a two level hierarchy, and then in
each iteration, we add blocking into the higher memory hierar-
chy, and reoptimize the lower blocking levels. Since adding
a new level of blocking may affect the inner loops and cause
them to become suboptimal, we introduce some randomness
to the inner loops before beginning each new iteration. First,
rather than choosing the lowest energy design, the best 128
loops are used as seeds for the next level. Next, additional seed
strings are created for the optimized inner loops by randomly

Layer X Y C K Fw Fh

Conv1 [23] 256 256 256 384 11 11
Conv2 [12] 500 375 32 48 9 9
Conv3 [34] 32 32 108 200 4 4
Conv4 [35] 56 56 128 256 3 3
Conv5 [35] 28 28 256 512 3 3
FC1 [34] - - 200 100 - -
FC2 [35] - - 4096 4096 - -
Pool [35] 56 56 128 - 2 2
LRN [23] 55 55 96 - - -

Table 4: Problem dimensions of the benchmark network layers
we used in our evaluation.

perturbing the loop sizes and exchanging some adjacent loops.
Each of these seeds are then used to search for the optimal
i+1 level blocking. The resulting procedure can complete a
4-5 level optimization in a few minutes, and the energy per
operation for the first five benchmarks in Table 4 is higher than
those found by full enumeration, but only by 8% or less.

3.6. Flexible memory design

In most applications, multiple layers, or even multiple prob-
lems, often need to run on the same system. Thus, while the
optimization procedure described in the previous section is in-
formative, it does not directly solve the problem of optimizing
the blocking of a complete multi-layer CNN.

With the objective of minimizing energy per op of each layer
and total energy consumption of all the layers, we perform
the optimization in two steps. First, we explore the energy
and area design space for each layer separately, leveraging the
single layer optimizer working on a given memory hierarchy.
After the first step, each layer will record a set that contains
its 10 most energy efficient design points still under the area
budget. The second step is to find common design points
among those sets to optimize total energy consumption.

This optimization runs with a fixed number of memory
levels. If one wants to optimize the number of memory levels,
multiple runs are required.

4. Methodology

To evaluate the effectiveness of our approach to blocking,
we apply it to both software CNN implementations running
on processors with conventional memory hierarchies, and
custom hardware implementations where we can create an

7

optimized memory hierarchy. Table 4 lists the benchmarks we
use. The majority of benchmarks are chosen from state-of-the-
art convolutional neural networks such as AlexNet [23] and
VGGNet [35]. Others are chosen from networks that have been
mapped to custom hardware by other researchers. Conv1, 2, 3,
4 and 5 serve to evaluate the energy of custom hardware, since
they have a variety of input image sizes, channels, kernels,
and convolution window sizes, and have results generated by
others that we can use as reference points.

4.1. General processor memory usage evaluation

We evaluated both Westmere and Haswell processors. Since
the results are similar we will use the Xeon E5645 (Westmere)
CPU as our base platform for evaluating memory statistics
on a general processor. The system has 32KB L1 data cache,
256K L2 cache, 12MB L3 cache, and runs at 2.4GHz. The
memory usage is extracted by embedding PAPI, an x86 perfor-
mance counter [6], into the CNN code. To sanity check these
numbers we compared the PAPI results with the application
running on Zsim [33], a cycle-accurate x86 architecture simu-
lator, and the results were well correlated, within 10% of each
other.

Our blocked CNN algorithm uses Halide [32, 31], a do-
main-specific language for image processing, where blocking,
vectorization, and multi-threading can be done using high level
primitives. We compare our blocked CNN implementation
against two different versions of Caffe [20], one using MKL
linear algebra libraries [40] and one using ATLAS [41].

4.2. Customized solution evaluation

As mentioned in Section 3.4, we estimated access energy
for memories of different sizes. The largest memories at the
higher levels of the memory hierarchy are built from SRAM
or DRAM depending on their size. For these memories we try
to use wide bit widths and multi-banked memory to minimize
energy cost. SRAMs become inefficient at small sizes, so
the smallest buffers are created using a standard-cell register
file generator. We also take advantage of the shifting window
nature of many of the computations by building register files
that can shift their data as well. This ability to shift data
can be useful in stencil computations (i.e., convolution) when
iterating in the x dimension, since it allows us to load only the
new column of data that is needed to update the image window
rather than reloading the entire image patch.

We use the register file generator in the Cadence Xtensa
Processor Generator [7] to extract register file energy and
area numbers. First we synthesize the design using Synopsys
Design Compiler and a TSMC 45nm GS SVT library, and
then place-and-route with the Synopsys IC Compiler [38].
We estimate the power of the post-routed designs using IC
Compiler with activity factors extracted from Synopsys VCS
simulations.

The energy and area of the computation datapath was gener-
ated in a similar way. We built an arithmetic unit including 256

Conv1 Conv2 Conv3 Conv4 Conv5
105

106

107

108

109

1010

L2
 C

a
ch

e
 A

cc
e
ss

Caffe + ATLAS

Caffe + MKL

Ours

Figure 3: L2 cache access counts (log scale) for two tradi-
tional BLAS-based implementations of Conv layers, versus
our proposed blocking.

16-bit truncated multipliers, 16 reduction trees of adders, and
16 piece-wise linear approximation units for activation func-
tions, similar to the core structure in DianNao [8]. The arith-
metic unit is pipelined and has a throughput of 256 MAC/cycle
at 500MHz, reducing 16 inputs and 256 kernel values to 16
partial outputs. We implement the design in RTL, and then syn-
thesize and place-and-route using Synopsys Design Compiler
and IC Compiler.

To evaluate SRAM area and energy, we derive parameters
from CACTI [26] with multiple configurations targeting op-
timum energy/byte for various SRAM block sizes. The raw
CACTI data was calibrated with results from a commercial
45nm memory compiler. The DRAM energy was estimated
using information in a Micron tech note [18].

We conservatively estimate the energy of communicating
data, or doing scatter-gather operations, to be the access energy
of a memory of the same size as the communicating hardware.
The details are discussed in Section 3.4.

5. Experimental Results
To validate the effectiveness of our blocking strategy, we first
evaluate cache access behavior on a general processor. While
our optimization aims to minimize memory energy, it also
minimizes cache accesses if the cache sizes are fixed.

Next, to emphasize its potential energy impact, we look
at what effect our scheme could have in the highly energy-
efficient custom architecture space. We first look at energy
considerations on single-core custom solutions, and then ex-
tend to multi-core.

5.1. General processor memory statistics

To get a sense of how well our blocking optimization is work-
ing, we first look at the cache statistics of the five Conv layers
in our benchmarks. Figures 3 and 4 respectively show the
number of L2 and L3 cache accesses for various CNN im-

8

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l0

10

20

30

40

50

60

E
n
e
rg

y
/M

A
C

 [
p
J]

Conv1 Conv2 Conv3 Conv4 Conv5

Onchip Buffers

DRAM

Total

Figure 5: IB, KB, OB and total energy, respectively, for benchmarks running on DianNao, using the baseline schedule (left) and
the optimal schedule (right). DRAM energy dominates the total memory energy, and the memory energy dwarfs the computation
energy (about 1 pJ/MAC).

Conv1 Conv2 Conv3 Conv4 Conv5
105

106

107

108

109

L3
 C

a
ch

e
 A

cc
e
ss

Caffe + ATLAS

Caffe + MKL

Ours

Figure 4: L3 cache access counts (log scale) for two tradi-
tional BLAS-based implementations of Conv layers, versus
our proposed blocking.

plementations. In Figure 3, our blocking achieves the fewest
L2 cache accesses on each of the five layers: accesses for the
implementation using ATLAS are always greater than 2x and
can be as high as 5x of our cache access. And the L2 cache
access counts of the implementation using MKL are greater
than 4x of ours, to a maximum of 8x.

In Figure 4, our blocking significantly reduces the L3 cache
accesses for all benchmarks as well. For the five Conv layers,
L3 cache accesses for the implementation using ATLAS are
greater than 5x worse and can be as high as 11x of our cache
access, with MKL ranging from 2x-7x worse.

Note that, for both L2 and L3, our blocking’s advantage
decreases as it goes from Conv1 to Conv5. The reason is that
the convolution window width and height gradually decreases
from 1 to 5. This indicates that the later layers (Conv5) have
a structure which better fits GEMM implementation than the

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l

IB K
B

O
B

T
o
ta

l0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
st

Conv1 Conv2 Conv3 Conv4 Conv5

Reg file

Level 1

Level 2

Level 3

Level 4

DRAM

Total

Figure 6: IB, KB, OB and total energy, respectively, on the opti-
mal architecture (core+memory) for five benchmarks, normal-
ized by the total energy of each benchmark on DianNao’s ar-
chitecture with the optimal scheduling (Figure 5).

earlier layers (Conv1).
Overall, the results illustrate that our blocking optimiza-

tion is extremely effective in improving memory locality for
fixed size memory. In addition, directly blocking the convo-
lution layer achieves better memory usage than converting it
to GEMM, and this difference gets larger as the computation
structures become more distinctive from GEMM.

5.2. Custom core energy result

Having shown the benefits of blocking CNNs on a conven-
tional CPU memory hierarchy, we next look at custom acceler-
ators. To create a comparison point, we explore the effects of
blocking on energy consumption in the DianNao CNN accel-
erator [8]. DianNao has separate on-chip SRAMs for IB, KB

9

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
n
e
rg

y
/M

A
C

 [
p
J]

Sched1 Sched2 Sched3 Sched4

Share KB Share IB Share KB Share IB Share KB Share IB Share KB Share IB

DRAM Private Buffers LL IB LL KB LL OB Shuffle

Figure 9: Multi-core scaling of on-chip memory energy using shared KB and IB schemes for Conv1 and its various sub-optimal
schedules (sched1-4). 1, 2, 4, 8 represent the numbers of cores. Private buffers represents the total memory energy spent inside
a core, while LL IB, LL KB and LL OB are the last-level buffers for the multiple core system. DRAM is the main memory energy
cost. Shuffle represents energy spent restoring the memory layout after computation.

0 10 20 30 40 50

Normalized Area Cost

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
st 0.5MB

1MB
2MB

4MB

8MB

Figure 7: Total energy and area for the optimal architecture,
under various SRAM size constraints, normalized by the total
energy and area of DianNao’s baseline architecture, and using
our optimal scheduling. The architecture with 1MB on-chip
memory achieves about 10x energy reduction at the cost of 6x
area.

and OB (2KB, 32KB, 2KB respectively) and a 256-MAC core
datapath. For the baseline blocking scheme, we first used Di-
anNao’s own pseudo-code, but even the smallest IB (K0×Cn)
cannot fit in 2KB, so all accesses to inputs go to DRAM. So
we ended up blocking in the x dimension once more to shrink
the IB to 2KB, reducing DRAM accesses by 4x.

Figure 5 compares this improved baseline schedule to the
optimal scheduling found by our framework. With the base-
line schedule, the KB in DRAM consumes the most energy,
especially for Conv3, 4 and 5, whose kernel sizes are large
relative to the image size. The optimized schedule improves
kernel reuse by interchanging the loop order and reduces KB

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 Pool LRN

To
ta

l E
ne

rg
y

[p
J]

Computation
Memory

Figure 8: Energy breakdown (log scale) of computation and
memory for all benchmarks. Memory energy is less than 80%
of MAC energy for all convolutional and fully-connected layers.

energy by 2x to 15x. In addition, IB and OB DRAM energy
dominates in the optimal schedule, and thus further energy
reduction could be achieved by allocating more SRAM to IB
and OB or even re-designing the memory hierarchy.

To further reduce the energy we add this additional mem-
ory and co-design it with the blocking schedule. We assume
the SRAM size is limited to 8MB to fit in a normal silicon
die, while keeping the same core datapath design. Figure 6
demonstrates the energy reduction of optimal memory systems
normalized to DianNao’s one-level-buffer architecture. Even
for the largest image sizes (Conv1 and Conv2), previous expen-
sive IB and OB DRAM accesses can be saved by exploiting
the extra on-chip SRAM buffers. IB and OB in Conv2 still
consume large DRAM energy because the input and output

10

images are large compared to kernels. The optimal design
using an 8MB memory hierarchy improves energy efficiency
by at least 13x, but it also requires 45mm2 which increases the
required area by 45x vs. baseline DianNao.

If area is an issue, one can generate a curve showing how
the minimum energy changes versus area as in Figure 7. For
example, with a total memory of 1MB the energy efficiency
now improves by 10x, and only requires 6x more chip area
than DianNao. This large energy savings comes from a com-
bination of a large reduction in DRAM references, and being
able to satisfy most references from small register-files. Ac-
complishing both requires deep memory hierarchies.

Figure 8 depicts the energy consumption of memory ac-
cesses versus computation for different layers on our optimal
8MB system. Our blocking scheme, along with a co-designed
memory hierarchy, drops the memory-access energy to com-
putation energy ratio, originally 20x in the DianNao system,
to less than 1x in our optimal system.

These results point out one limitation in using GPUs for
these applications. Since they were designed to keep their
floating point functional units busy, they use large register-files
to hold multiple runnable threads, and very high bandwidth
memory systems with modest on-chip caching. This increases
the cost of operand fetch, both when the data is local in the
register-file, and when it needs to be fetched from memory.
To gain efficiency, especially for the low precision needed for
CNNs, GPUs will need to create deeper memory hierarchies,
with smaller register-files near the compute units.

5.3. Multi-custom cores

The large memory required for optimal blocking cannot be
used with a single core, since the resulting compute density
would be too small. Instead, systems with large memory will
use multiple computing units. As discussed in Section 3.3,
there are two different schemes for parallelizing a problem
on a multiple-core chip. Figure 9 demonstrates how the two
parallelization schemes, with different schedules and memory
hierarchies, affect the energy efficiency of a system with up to
eight cores. We chose the top four blocking schedules from
the single core problem discussed in the previous section and
we evaluated the two parallelization methods for each of the
four schedules as applied to layer Conv1.

In all four schedules, the last level KB dominates the chip
area. If this large KB buffer is split between cores, then its
energy will be reduced, but it means that the smaller IB must
now be broadcast to all of the units. Since this signal must
travel a distance related to the total size of this memory, its
energy now becomes as large as the large KB was. This means
we still have a very large access energy (now the IB) for the
partitioned KB buffer. The takeaway is that one should paral-
lelize the hardware such that the large buffer is shared since it
has the side effect of making the needed broadcast essentially
free. With this unrolling, increasing the core count always
gets better average energy since the other SRAM structures

are partitioned and their energy/access reduces. Also since the
“shuffle" energy required to restore memory layout after com-
putation seems to be small, it doesn’t affect this decision. The
net result is that when the right loop is unrolled in hardware,
the performance can be increased with a small decrease in the
energy per op.

6. Conclusion
Modern computing systems are power limited, meaning that
performance can only improve by reducing energy per oper-
ation. For convolutional neural networks, we show the large
potential energy savings available from directly blocking the
computation and provide a method for finding efficient sched-
ules. When the memory system and loop schedule are co-
optimized, the resulting machine can have energy/op domi-
nated by the functional operations and not the memory system.
To generate these optimized schedules, we build an analytical
model and use it to either exhaustively or heuristically search
possible schedules. This optimization procedure can be modi-
fied to find blocking schedules that optimize memory locality
on a fixed memory hierarchy. Using this optimization mode
we were able to improve the memory usage of software CNN
implementations.

We are now working to improve this framework to perform
better register blocking for general processors, and to extend
the framework for other computer vision applications. Once
this is done we hope to integrate this work into Halide, to help
programmers better block their code.

11

References
[1] F. Abuzaid, S. Hadjis, C. Zhang, and C. Ré, “Caffe con Troll: Shallow

ideas to speed up deep learning,” arXiv preprint arXiv:1504.04343,
2015.

[2] J. Bergstra, F. Bastien, J. Turian, R. Pascanu, O. Delalleau, O. Breuleux,
P. Lamblin, G. Desjardins, D. Erhan, Y. Bengio et al., “Deep learning
on GPUs with Theano,” in The Learning Workshop-Research Abstract-
Oral preferred (Feb. 18, 2010), 2010.

[3] U. Bondhugula, A. Acharya, and A. Cohen, “The pluto+ algorithm: A
practical approach for parallelization and locality optimization of affine
loop nests,” ACM Trans. On Programming Languages and Systems
(TOPLAS), 2016.

[4] U. Bondhugula, V. Bandishti, A. Cohen, G. Potron, and N. Vasilache,
“Tiling and optimizing time-iterated computations on periodic domains,”
in Proceedings of the 23rd international conference on Parallel archi-
tectures and compilation. ACM, 2014, pp. 39–50.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’08. New York, NY,
USA: ACM, 2008, pp. 101–113.

[6] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, pp. 189–204, 2000.

[7] Cadence Design Systems, Inc., “Tensilica customizable processor IP,”
http://ip.cadence.com/ipportfolio/tensilica-ip.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: a small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proc. 19th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems. ACM, 2014,
pp. 269–284.

[9] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “DaDianNao: a machine-learning supercomputer,”
in 47th Annual IEEE/ACM Int’l Symp. on Microarchitecture (MICRO).
IEEE, 2014, pp. 609–622.

[10] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set
of level 3 basic linear algebra subprograms,” ACM Transactions on
Mathematical Software (TOMS), vol. 16, no. 1, pp. 1–17, 1990.

[11] A. Dundar, J. Jin, V. Gokhale, B. Martini, and E. Culurciello, “Mem-
ory access optimized routing scheme for deep networks on a mobile
coprocessor,” Algorithms, vol. 12, p. 15, 2014.

[12] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “NeuFlow: a runtime reconfigurable dataflow processor
for vision,” in IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition Workshops (CVPRW). IEEE, 2011, pp. 109–116.

[13] M. Frigo and V. Strumpen, “Cache oblivious stencil computations,” in
Proceedings of the 19th annual international conference on Supercom-
puting. ACM, 2005, pp. 361–366.

[14] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240
G-ops/s mobile coprocessor for deep neural networks,” in IEEE Conf.
on Computer Vision and Pattern Recognition Workshops (CVPRW).
IEEE, 2014, pp. 696–701.

[15] K. Goto and R. A. van de Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, pp. 12:1–
12:25, May 2008.

[16] J. A. Gunnels, G. M. Henry, and R. A. van de Geijn, “A family of
high-performance matrix multiplication algorithms,” in Proceedings
of the International Conference on Computational Sciences-Part I, ser.
ICCS ’01. London, UK, UK: Springer-Verlag, 2001, pp. 51–60.

[17] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[18] M. T. Inc., “TN-41-01: Calculating Memory System Power for DDR3,”
http://www.micron.com/support/power-calc, 2007.

[19] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recognition?” in 12th Int’l Conf.
on Computer Vision. IEEE, 2009, pp. 2146–2153.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the ACM International
Conference on Multimedia. ACM, 2014, pp. 675–678.

[21] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Martini, and
E. Culurciello, “An efficient implementation of deep convolutional
neural networks on a mobile coprocessor,” in IEEE 57th Int’l Midwest
Symp. on Circuits and Systems (MWSCAS). IEEE, 2014, pp. 133–136.

[22] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on
CIFAR-10,” Unpublished manuscript, 2010.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.

[24] A. Lavin, “maxDNN: An efficient convolution kernel for deep learning
with maxwell GPUs,” CoRR, vol. abs/1501.06633, 2015.

[25] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “PuDianNao: a polyvalent machine learning accelerator,”
in Proc. 20th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems. ACM, 2015, pp. 369–381.

[26] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0,” in Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO 40. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 3–14.

[27] NVIDIA, “cuDNN,” https://developer.nvidia.com/cuDNN, 2014.
[28] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-

centric accelerator design for convolutional neural networks,” in 31st
Int’l Conf. on Computer Design (ICCD). IEEE, 2013, pp. 13–19.

[29] P.-H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun, and E. Cu-
lurciello, “NeuFlow: dataflow vision processing system-on-a-chip,” in
55th Int’l Midwest Symp. on Circuits and Systems (MWSCAS). IEEE,
2012, pp. 1044–1047.

[30] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-
based data reuse optimization for configurable computing,” in Pro-
ceedings of the ACM/SIGDA international symposium on Field pro-
grammable gate arrays. ACM, 2013, pp. 29–38.

[31] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. P. Amarasinghe,
and F. Durand, “Decoupling algorithms from schedules for easy opti-
mization of image processing pipelines.” ACM Trans. Graph., vol. 31,
no. 4, p. 32, 2012.

[32] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” ACM SIG-
PLAN Notices, vol. 48, no. 6, pp. 519–530, 2013.

[33] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13. New York, NY, USA: ACM, 2013, pp. 475–486.

[34] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
convolutional networks,” in Neural Networks (IJCNN), The 2011 Inter-
national Joint Conference on. IEEE, 2011, pp. 2809–2813.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[36] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability of
GPU-based convolutional neural networks,” in Parallel, Distributed
and Network-Based Processing (PDP), 2010 18th Euromicro Interna-
tional Conference on, Feb 2010, pp. 317–324.

[37] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel, “Cache oblivious
parallelograms in iterative stencil computations,” in Proceedings of the
24th ACM International Conference on Supercomputing. ACM, 2010,
pp. 49–59.

[38] Synopsys, Inc., “Synopsys,” http://www.synopsys.com.
[39] S. C. Turaga, J. F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Brig-

gman, W. Denk, and H. S. Seung, “Convolutional networks can learn to
generate affinity graphs for image segmentation,” Neural Computation,
vol. 22, no. 2, pp. 511–538, 2010.

[40] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel math kernel library,” in High-Performance Computing on the
Intel Xeon Phi. Springer, 2014, pp. 167–188.

[41] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the atlas project,” Parallel Computing,
vol. 27, no. 1, pp. 3–35, 2001.

[42] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural net-
works,” in Proceedings of the 2015 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

12

http://ip.cadence.com/ipportfolio/tensilica-ip
http://www.micron.com/support/power-calc
https://developer.nvidia.com/cuDNN
http://www.synopsys.com

	1 Introduction
	2 Overview of the CNN problem
	2.1 CNN Characteristics
	2.2 Related Work

	3 Convolutional layer analysis
	3.1 Basic Blocking Notation
	3.2 Memory Hierarchy
	3.3 Coarse-grain Parallelism
	3.4 Memory Energy
	3.5 Optimization Framework
	3.6 Flexible memory design

	4 Methodology
	4.1 General processor memory usage evaluation
	4.2 Customized solution evaluation

	5 Experimental Results
	5.1 General processor memory statistics
	5.2 Custom core energy result
	5.3 Multi-custom cores

	6 Conclusion

