
SIMPLE MAGIC: Synthesis and In-memory MaPping

of Logic Execution for Memristor-Aided loGIC
Rotem Ben Hur*, Nimrod Wald, Nishil Talati, and Shahar Kvatinsky

Andrew and Erna Viterbi Faculty of Electrical Engineering

Technion – Israel Institute of Technology
Haifa 3200003, ISRAEL

*rotembenhur@campus.technion.ac.il

Abstract—This paper presents a novel approach for designing and

implementing in-memory logic operations. The uniqueness of this

work is the development of SIMPLE, a framework that optimizes

the execution of an arbitrary logic function, while considering all

the constraints involved in performing it within a memristive

memory. SIMPLE automatically generates a defined sequence of

atomic memristor-aided logic NOR operations, whose

implementation can be facilitated efficiently within the memory.

Motivated to overcome the memory-CPU bottleneck, this

approach designs an optimal solution in terms of performance by

exploiting the parallelism of the memristor-aided logic NOR gates.

SIMPLE achieves performance speedups of 1.94x compared to a

previous work and 1.48x compared to a naïve optimization based

on standard synthesis tools.

Keywords—Memristor, memristive systems, logic design, MAGIC,

mMPU, von Neumann architecture, logic synthesis.

I. INTRODUCTION

Over the last several decades, the rate of improvement in

processors has exceeded that of memory by several orders of

magnitude. The separation between the memory and CPU in

von Neumann architecture and the need to transfer data

between them have created the primary performance and

energy bottleneck in modern computing systems. This

bottleneck is known as the memory wall. Methods for

alleviating the memory wall have been widely explored by

researchers, using different techniques to reduce data transfer

between the CPU and memory, usually by exploiting data

locality in the memory system. Processing data within the

memory itself seems like the ultimate way to break the von

Neumann separation.

Performing pure in-memory computing is only possible

when the same physical entities are used for both memory (i.e.,

data storage) and logic (i.e., data processing). Conventional

memory architectures, such as SRAM, DRAM and Flash, do

not offer this capability. Emerging nonvolatile memory

technologies, on the other hand, have the capability to perform

logic operations in certain conditions. These technologies

include RRAM, PCM, STT MRAM and others. For simplicity,

we refer to all of them as memristors. The memristor is a

passive element with numerous promising features, such as low

power consumption, CMOS fabrication compatibility, high

density, and good scalability [1], [2]. An attractive approach for

performing logic within a conventional memristive memory

array is stateful logic, where the logical states are represented

by resistance. The memory cells are used to construct logic

gates, where the inputs and outputs are, respectively, the states

of specific memristors before and at the end of the computation.

This paper considers an improved stateful logic family called

Memristor-Aided loGIC (MAGIC) [3] that outperforms

previously proposed stateful logic families [4]. The key idea

behind MAGIC in-memory is to use it to execute NOR

operations, which can be used as the basis for performing any

desired computation.

A recently proposed architecture, where the conventional

DRAM memory is replaced with a memristive Memory

Processing Unit (mMPU), is described in [5]. mMPU is a

memory architecture with processing capabilities, based on

MAGIC NOR and NOT operations. Although it has the

potential to perform general purpose computations, current

methods require that the sequence of MAGIC operations

required to implement the desired logical function in-memory

be manually designed [6]. Obviously, this approach is neither

general nor optimal, since it does not guarantee a full utilization

of in-memory computation advantages, especially the

parallelism offered by MAGIC-based operations [4].

This paper presents SIMPLE, a general framework that

allows the implementation of arbitrary logical functions within

the memory in an optimal manner. To the best of our

knowledge, this is the first synthesis tool that makes it possible

to map logical gates to specific memory cells of a conventional

memristive memory. Hence, this work creates, for the first time,

an end-to-end in-memory implementation method for any

logical function. For that purpose, we develop an automatic tool

that combines the synthesis of MAGIC-based functions with an

optimal mapping into the memristive memory. This is done

while minimizing the latency of the entire computation by

finding an optimal division of the logical function into small

execution steps. We define and solve an optimization problem

to get the best possible sequence of NOR operations that

maximally exploits the mMPU for a certain computing task.

This optimization offers 89%, 48% and 94% latency

improvements on average as compared to, respectively, the

original circuit implemented with NOR and NOT gates, a naïve

approach synthesized with standard CMOS synthesis tools with

NOR and NOT gates, and previous work which synthesizes by

merely dividing into execution steps, without considering the

mapping into the memory cells [7]. Therefore the authors

evaluations in [7] are optimistic (i.e., without considering the

exact data location and the overhead of moving data to the

appropriate location in order to process it) and our improvement

over their results is probably much more significant than 112%.

II. BACKGROUND AND RELATED WORK

Over the last years, several methods for synthesizing

specific logical operations for memristor-based implementation

were developed, only a few of which are suitable for in-memory

computations. However, almost all work in this field focuses

merely on the synthesis of the logical function, and not on its

mapping into the actual memory cells. Furthermore, most

synthesized functions cannot be executed within the memory as

is, but require additional cycles (e.g., copy and read operations)

to achieve the desired functionality. Since other works do not

offer a full implementable framework, their computation

latency cannot be correctly evaluated, and no relevant

comparison can be performed. Nevertheless, for completeness

we describe the previous achievements in this field, alongside

their advantages and disadvantages. In this section, we describe

previous work on synthesis with memristors and discuss

approaches for executing true in-memory processing using

MAGIC operations.

A. Previous Work
Previous attempts to synthesize logic functions using

memristors have been focused mostly on non-stateful logic
techniques. Therefore, in-memory execution of these methods
is restricted. Logic techniques that combine CMOS and
memristors [8], [9] are not suitable for in-memory computing,
since CMOS logic has to be added within the memory array.
Another synthesis technique is based on the FBLC method [10],
which requires disabled memristors (permanently in the high
resistance state) [11]. This technique is thus also unsuitable for
execution within fully operational memristive memories. Even
though using a dedicated memory allows computations to be
performed with the FBLC method, the processing tasks must be
determined before fabrication, and cannot be dynamically
chosen as in stateful logic. In addition, the area utilization of
this type of processing is low, since the percentage of disabled
memristors in the computation area is high.

Synthesis of in-memory computing includes both

optimizing the performance and mapping the operations into

specific memory cells within the memristive memory array.

One synthesis approach is based on the majority function [12]–

[14] using Majority-Inverter Graphs (MIGs), where

memristors execute majority and negation functions. MIGs

show good results in logic optimization in terms of the number

of levels, as compared to data structures such as Binary

Decision Diagrams (BDDs) and And-Inverter Graphs (AIGs)

[15]. However, the number of computational steps presented in

[12]–[14] is estimated from the number of MIG levels. This

estimation is based on the assumption that all Majority gates

from the same level are executed in parallel, which is usually

not feasible when physical mapping into a crossbar is taken into

account. Additionally, the output of the majority gate is the

logical state of the memristor (represented by its resistance) at

the end of the computation, whereas the inputs of the majority

gate are the voltages applied to the rows and columns. Hence a

read operation is required between every two chained majority

Figure 1. Schematic of (a) MAGIC NOR gate and (b) MAGIC NOR gate within a memristive memory array. IN1 and IN2 are the input

memristors and OUT is the output memristor. A single voltage VG is applied to perform the NOR operation [3].

VG VG

IN1 IN2 OUT

IN1

IN2

OUT
VG

(b)(a)

Figure 2. Parallel MAGIC NOR execution of gates j, k. Parallel

execution of gates requires alignment of their inputs and output.

Gates k and j are aligned by their columns. Since the memory is

symmetric, the gates can also be aligned by rows. The operation is

performed within the memristive memory array by applying VG

to the columns of the input memristors, ground to the column of

the output memristor, and VISO to isolate unselected columns and

rows. The operation takes a single clock cycle, regardless of the

number of gates executed in parallel.

Gate k

VGVG

Gate j

VISO VISO VISO

VISO

INj1 INj2 OUTj

INk1 INk2 OUTk

gates, and a complex controller for executing in-memory logic

has to be developed.

Another approach is using stateful logic families, such as

material implication (IMPLY) together with false operations

[16], [17]. Since IMPLY is an unconventional logic gate, new

op timization methods for lowering the latency of computation

must be developed. Previous attempts have been mostly manual

and without considering the exact mapping within memory

[18]–[22]. Ignoring the mapping prevents full utilization of

stateful logic. Efforts towards full synthesis of logic functions

using IMPLY have been made in [23], where similar to the MIG

case mentioned above, the number of steps is erroneously

estimated by the number of Or-Inverter Graph (OIG) levels.

The sole work which comes close to estimating the actual

number of in-memory execution steps is [7], where the IMPLY-

based logic synthesis is done using a BDD. Each node of the

BDD is mapped to a 2-to-1 multiplexer (MUX), implemented

with an IMPLY gate. In their estimation of the number of

execution steps, the authors exclude the numerous copy cycles

required for in-memory parallel execution with IMPLY.

Therefore, the improvement of SIMPLE as compared to [7] is

more significant than is evident from a plain comparison with

their results. Furthermore, although their method is based on

parallel execution, the size of a BDD depends exponentially on

the number of inputs, thus limiting the performance of this

approach for large benchmarks. However, since they actually

produce the sequence of operations executed within the

memory, while determining which gates are executed in

parallel, then this is the only fair comparison to our work.

B. Memristor-Aided LoGIC (MAGIC)

Memristor-Aided loGIC (MAGIC) [3], a stateful logic

family that outperforms the previously proposed stateful logic

families, has been recently proposed. In MAGIC, only a single

voltage VG is used to perform a NOR logic operation, and the

inputs and output memristors are separated, as shown in Figure

1 (as opposed to IMPLY, where two different voltages are

required, and one of the input memristors is also the output

memristor, causing that input to be overwritten by the

execution). Additionally, MAGIC gates do not require

additional devices to perform the operation (unlike IMPLY,

which requires an additional resistor for each row).

Furthermore, because NOR is a standard logical function,

executing functions based on NOR operations is simple and

straightforward. Since NOR is a complete logic function, a

MAGIC NOR operation is sufficient to execute any Boolean

operation. Hence, MAGIC NOR may be used as the basis for

performing all desired processing within memory by dividing

the desired function into a sequence of MAGIC NOR

operations. These basic NOR operations are executed one after

the other using the memory cells as computation elements.

Another advantage of MAGIC is its ability to perform logic

operations in parallel on sets of data. The crossbar array is

structured such that applying the operating voltage VG on any

two selected columns and grounding a third column will result

in NOR operations being performed on all rows on which VISO

is not applied (i.e., on rows that are not isolated). The schematic

of a MAGIC gate operation, performed over gates arranged in

different rows and aligned in columns within a memristive

memory, is shown in Figure 2. Note that due to the symmetry

of memristive crossbar arrays (i.e., transpose memory),

performing NOR operations on column vectors is feasible in a

similar manner.

III. SYNTHESIS FOR MAGIC WITHIN MEMORY

In conventional CMOS logic synthesis flow, an input netlist

representing a Boolean function is first divided into multiple

levels, based on the data dependencies, as shown in Figure 3a.

The input values of each gate in any level must be produced in

one of the previous levels. Therefore, there are no input

dependencies among gates from the same level. For example,

Figure 4. Breakdown of execution steps (OP) to number of

MAGIC NOR and copy cycles, when using conventional synthesis

flow.

0

20

40

60

80

100

%
 B

re
a

k
d

o
w

n
 o

f
O

P

Benchmarks

% Copy Cycles % MAGIC NOR Cycles

(a) (b)

1

2

3

4

5

6

7

Level 1 Level 2 Level 3

Figure 3. (a) CMOS NOR netlist divided into levels, and (b) conventionally synthesized netlist mapped to a memristive memory array.

Ai, Bi are inputs and Ei is the output of gate i. The table represents locations in the memory array and the colors represent the

corresponding cycle number. Each copy operation takes two clock cycles.

row 1

row 2

row 3

row 4

column 1 column 2 column 3 column 4 column 5

B1A1

B2A2

B3A3

B4A4

Cycle 1

Cycle

Cycle

Cycle

Cycle

Cycle

Tim
e o

f execu
tio

n

E1 A5

E2

E3 A6

E4

B6

B5

E6

E5

copy

copy

outputs of gates in Level 1 (Ei where i=1,2,3,4) are the inputs

of gates in Level 2 (Aj, Bj, where j=5,6). Hence, the execution

of gates 5,6 can only begin after gates 1,2,3,4 finish their

operation. Furthermore, in CMOS implementation, each level

can be executed in parallel.

In the case of in-memory computing, the location of data is

an added constraint. As shown in Figure 3b, for parallel

MAGIC NOR execution the inputs must be aligned in the same

columns. Under the assumption that the inputs of Level 1 are

already aligned, they produce outputs Ei (where i=1,2,3,4) in

column 3 in a single clock cycle, as shown. For parallel

execution in Level 2, the inputs must be realigned. This is done

by copying the desired operands to the same columns in two

cycles using two MAGIC NOT operations.

In the case of larger functions, these copy operations can

significantly degrade the performance of the system. To find

the cost of copy operations, we conducted experiments for an

in-memory computing approach on various benchmarks [24]

using conventional synthesis flow. Figure 4 shows the

breakdown of the number of execution steps (OP) as compared

to the number of actual MAGIC NOR operations and the

number of copy cycles for aligning the data. We can conclude

from the figure that, on average, 90.2% of the execution time is

spent on data arrangement. Hence, the conventional logic

synthesis flow cannot be directly adopted for memristive in-

memory computing.

To overcome this limitation, we require a novel method for

synthesis and mapping of a given logic function that does not

waste energy and time on unnecessary copying operations. In

this paper, we propose a flow for synthesizing logical functions

called SIMPLE. SIMPLE takes a desired function and

automatically constructs and optimizes the required sequence

of MAGIC NOR operations. This sequence is optimized

specifically for in-memory MAGIC execution, while exploiting

the parallel processing capability offered by memristive

memories.

A. Overall Logic Synthesis Flow
In the proposed synthesis approach, a desired logic function

represented in Berkeley Logic Interchange Format (BLIF) is

first converted into a NOT and NOR netlist representation,
which is then area optimized using a modified ABC tool [25].
The produced netlist is, however, not optimal for in-memory
logic since standard synthesis tools, such as ABC, are designed
to minimize the area (number of gates) without considering the
location and timing constraints of the computation steps, which
are critical for efficient logic within memory.

The NOR and NOT netlist is mapped to a memristor-based
memory, and the received mapping provides the optimal
(lowest) latency, as detailed in Section IV. For a specific
execution, the mapping is reshuffled in real time according to
the addresses of the inputs and outputs of the desired function,
in accordance with the specific occupancy of the memory at the
time of execution. The synthesis flow is shown in Figure 5.

B. Real-time Operation and Control Signals

The mMPU architecture relies on having a set of

predetermined functions that have been synthesized and stored

in the mMPU controller [26]. The stored function set includes

a general mapping of the inputs, outputs, and intermediate

values to locations within a memory array, along with the

relative number of steps in which each NOR operation is

performed. When one of these functions is invoked, an exact

real-time mapping of rows and columns is carried out to adjust

the general locations to the exact locations of inputs and desired

output, while considering the exact state of the memory (e.g.,

stored data that cannot be overwritten, addresses of the input

data and result).

After the real-time mapping, the operations in the set are

translated by the mMPU controller into a set of control signals

applied to the rows and column decoders of the memory. In

other words, the inputs of the function are moved to the desired

locations by the mMPU controller, if needed. Then the control

signals compute the intermediate results step by step (where

aligned gates are executed in parallel during the same clock

cycle), and the last step yields the results in the desired address.

The real-time mapper was not implemented here but will be

developed in future work.

Figure 5. Proposed logic synthesis flow. The desired logic function is synthesized using ABC for NOR and NOT gates and then optimized

specifically for MAGIC within memory, generating a general mapping and a sequence of operations. The general execution is mapped to

specific cells in real-time, based on the temporary state of the mMPU.

module ckt(
.
.
.
endmodule

Logic function
(.blif)

GATE inv …
GATE nor2 …
.
.
.

Customized
standard cell

library (.genlib)

NOR and NOT
netlist (.v)

Performance
Optimization

In-memory
computation
constraints

Spatial independent
execution sequence

Real-time
Address
Mapping

Location specific
execution sequence

ABC
Synthesis Tool

Addresses
constraints

IV. OPTIMIZATION FOR EFFICIENT MAPPING INTO

MEMRISTIVE MEMORIES

To minimize the latency using SIMPLE, we define and

solve an optimization problem for in-memory MAGIC

execution. The optimization problem is described in this

section, and h as been implemented using the AMPL modeling

language [27] and using the IBM ILOG CPLEX Optimization

Studio solver [28].

Since each input and output (I/O) of the logic gates is stored

in a memory cell, each I/O is assigned to a coordinate (i.e.,

location in the array). The optimization tool checks all possible

execution patterns with different mappings (locations) of the

I/Os of all gates, while considering the specific constraints of

executing MAGIC within memory. The output of the synthesis

tool is an optimal mapping with minimal latency. In this

section, we describe the constraints for parallel processing

within a memristive memory and the other major assumptions

and constraints for the optimization problem.

A. Parallelism

The primary advantage of executing MAGIC within

memory is its ability to execute numerous NOR operations

simultaneously on different rows or columns, as described in

Section B. Wisely exploiting the parallelism capability may

significantly improve the computation performance.

In this section, a logic gate j is defined by the following

variables:

 ({𝑅𝐴𝑗 , 𝐶𝐴𝑗} , {𝑅𝐵𝑗 , 𝐶𝐵𝑗} , {𝑅𝐸𝑗 , 𝐶𝐸𝑗}) - Location

(coordinates of memory cells) of the inputs 𝐴𝑗 , 𝐵𝑗 and the

output 𝐸𝑗 of the gate.

 Tj - Clock cycle (step) in which the gate is executed.

To perform parallel processing, the corresponding inputs

and output of different gates should be aligned within the

memory. Formally, gates 𝑔1, 𝑔2, … , 𝑔𝑘 can be executed in

parallel on multiple rows (meaning 𝑇1 = 𝑇2 = ⋯ = 𝑇𝑘) iff

𝐴𝑖1, 𝐵𝑗2, 𝐸𝑙 , ∀𝑖, 𝑗, 𝑙 = 1,… , 𝑘 are located, respectively, in

columns 𝐶𝑛, 𝐶𝑚 , 𝐶𝑟 ∀𝑛 ≠ 𝑚 ≠ 𝑟 and 𝐴𝑖1, 𝐵𝑖2, 𝐸𝑖 , ∀𝑖 = 1,… , 𝑘

are in the same row. When using a transpose memory [4],

parallel execution on multiple columns is also possible when

switching between the rows and columns. As illustrated in

Figure 2, gates k, j are aligned, since 𝐼𝑁𝑗1, 𝐼𝑁𝑗2, 𝑂𝑈𝑇𝑗

respectively share columns with 𝐼𝑁𝑘1, 𝐼𝑁𝑘2, 𝑂𝑈𝑇𝑘, and the

output and inputs of each gate share rows. Therefore, the

execution of gates k, j can be performed at the same clock cycle.

Applying a voltage to a specific column affects all executed

gates simultaneously. Hence, two NOR gates with a different

number of inputs (e.g., two-input NOR and NOT) cannot be

executed in the same cycle. For simplicity, we define the

problem merely for two-input NORs, and execute each NOT

gate by forcing one input to '0', as 𝑁𝑂𝑇(𝑋) = 𝑁𝑂𝑅(𝑋, 0).

B. Latency Optimization Problem

The problem of optimizing an in-memory Boolean function

for minimal latency has two degrees of freedom: the locations

of data and the execution cycle of different logic gates. The

execution of a given Boolean function is finished when the

operations of all gates are completed. Thus maxj(Tj) is the

latency of a specific mapping, where 0 < 𝑗 ≤ #𝑔𝑎𝑡𝑒𝑠.
Therefore, the latency (in clock cycles) of the best mapping is

the minimum latency out of all different mappings:

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑏𝑒𝑠𝑡 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = 𝑚𝑖𝑛 {𝑚𝑎𝑥
𝑗
𝑇𝑗}, 

0 < 𝑗 ≤ #𝑔𝑎𝑡𝑒𝑠.

The legal mappings are limited by location, connectivity

and timing, and are restricted by the following constraints:

1) Location constraints:

 Every I/O has to be mapped to a memory cell. Thus,
the coordinates of each I/O are limited by the physical
size of the memory. Formally, for a memory array of the
size 𝑹𝒐𝒘𝒏𝒖𝒎× 𝑪𝒐𝒍𝒏𝒖𝒎, this constraint is

∀𝐱𝐣𝛜{𝐀𝐣, 𝐁𝐣, 𝐄𝐣}:

(𝟎 < 𝑪𝒙𝒋 ≤ 𝑪𝒐𝒍𝒏𝒖𝒎) ∩ (𝟎 < 𝑹𝒙𝒋 ≤ 𝑹𝒐𝒘𝒏𝒖𝒎).

(a) (b)

CIN

A

B

COUT

S

1
2 3

4 5

6 7
8

9

10

11

12

13

14

15

Figure 6. Single-bit full adder. (a) The netlist created by ABC, and (b) the optimized mapping and timing from the synthesis tool,

achieving latency of 10 clock cycles. Ai, Bi are inputs and Ei is the output of gate i. The table represents locations in the memory array

(using a memory array with 12 rows and 4 columns) and the colors represent the corresponding clock cycle.

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

row 9

row 10

row 11

row 12

column 1 column 2 column 3 column 4

A2

E2

A4

E4 Cycle 1A3

B3

A5

B5

E5

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle 10E3

E11A11 B11

A6

A

B6

E9

A9

B9

E6

B8

A8

E8

E7

B10

A10

E13

B13

A13

E1

A7

A12

B12

E12

E14 A14

E15 A15

E10

Tim
e o

f execu
tio

n

 Two different outputs cannot be placed in the same
memory cell (whereas the same input may be used for
two different gates, and therefore their inputs share
coordinates). Formally,

∀𝑬𝒌, 𝑬𝒋: (𝑪𝑬𝒋 ≠ 𝑪𝑬𝒌) ∪ (𝑹𝑬𝒋 ≠ 𝑹𝑬𝒌).

In such a configuration, reuse of a cell (after resetting)
is not supported. Note that this constraint is not
mandatory and is used to simplify the problem at the
cost of potentially using more cells for intermediate
operations.

 I/Os of each gate have to be located in the same row
and different columns, or alternatively, in the same
column and different rows. Formally,

∀𝒈𝒂𝒕𝒆 𝒋: [(𝑪𝑨𝒋 = 𝑪𝑩𝒋 = 𝑪𝑬𝒋) ∩ (𝑹𝑨𝒋 ≠ 𝑹𝑩𝒋 ≠ 𝑹𝑬𝒋)]

∪ [(𝑪𝑨𝒋 ≠ 𝑪𝑩𝒋 ≠ 𝑪𝑬𝒋) ∩ (𝑹𝑨𝒋 = 𝑹𝑩𝒋 = 𝑹𝑬𝒋)].

 The simultaneous execution of different NOR gates is
possible only when they are aligned in the rows or in
the columns, in order to meet the parallelism
requirement described in Section A.

∀𝒈𝒂𝒕𝒆𝒔 𝒋, 𝒌: 𝑻𝒋 ≠ 𝑻𝒌 ∪

{

{
[(𝑪𝑨𝒋 = 𝑪𝑨𝒌 ∩ 𝑪𝑩𝒋 = 𝑪𝑩𝒌) ∪ (𝑪𝑨𝒋 = 𝑪𝑩𝒌 ∩ 𝑪𝑩𝒋 = 𝑪𝑨𝒌)]

∩ 𝑪𝑬𝒋 = 𝑪𝑬𝒌
}

∩ (𝑹𝑨𝒋 = 𝑹𝑩𝒋 = 𝑹𝑬𝒋 ∩ 𝑹𝑨𝒌 = 𝑹𝑩𝒌 = 𝑹𝑬𝒌) }

∪

{

{
[(𝑹𝑨𝒋 = 𝑹𝑨𝒌 ∩ 𝑹𝑩𝒋 = 𝑹𝑩𝒌) ∪ (𝑹𝑨𝒋 = 𝑹𝑩𝒌 ∩ 𝑹𝑩𝒋 = 𝑹𝑨𝒌)]

∩ 𝑹𝑬𝒋 = 𝑹𝑬𝒌
}

∩ (𝑪𝑨𝒋 = 𝑪𝑩𝒋 = 𝑪𝑬𝒋 ∩ 𝑪𝑨𝒌 = 𝑪𝑩𝒌 = 𝑪𝑬𝒌) }

.

2) Connectivity constraints:

 Every output of gate h that is connected to an input
of gate j has to be mapped to the same memory cell,
and the execution of gate j has to be performed only
after the execution of gate h.

∀𝑬𝒉, 𝒙𝒋𝝐{𝑨𝒋, 𝑩𝒋} 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑:

[(𝑪𝑬𝒉 = 𝑪𝒙𝒋) ∩ (𝑹𝑬𝒉 = 𝑹𝒙𝒋)] ∩ (𝑻𝒉 < 𝑻𝒋).

This configuration does not support movement of data
within the memory array. When copy operations are

1 The SIMPLE MAGIC modified ABC tool can be found at:

https://github.com/RotemBenHur/SIMPLE-MAGIC

allowed, the mapping can be done to different memory
cells, but the order of execution must be maintained.

3) Timing constraints:

 The execution time of each gate is positive.

∀𝒈𝒂𝒕𝒆 𝒋: 𝑻𝒋 > 𝟎

A toy example of a single-bit full adder optimization is
illustrated in Figure 6. The obtained latency is only 10 clock
cycles, while naïve implementation of serial execution based on
the given ABC netlist has a latency of 15 clock cycles, and
previous work that manually optimizes the netlist [4] reached a

latency of 13 clock cycles.

V. EXPERIMENTAL RESULTS

To evaluate the SIMPLE synthesis tool, we modified the

input library file of the ABC system [25] to convert a given

Boolean function into a NOT and two-input NOR netlist1. The

netlist was mapped and scheduled for minimum latency using

the optimization algorithm implemented in the AMPL language

[27] and in the Cplex solver [28]. The output of the optimizer

gives a general mapping of all input, output and intermediate

memristors, and a sequence of operations. We ran the synthesis

tool on the LGsynth91 benchmark suite [24] and compared the

results with a naïve approach, where the gates are executed

serially on the same row in the memory array (thus the number

of gates equals the number of clock cycles) before and after the

ABC optimization. In addition, we compared the proposed

approach with previous work by Chakraborti et al. [7], where

IMPLY operations [17] were optimized using the Binary

Decision Diagram (BDD). The resistors used in each row for

IMPLY operations would have resistance values similar to

those of the memristors (same order of magnitude). Therefore,

when using memristors with similar features for both IMPLY

and MAGIC operations, the memory frequency would be

equivalent. This allows for a fair comparison between the

number of operations required by the SIMPLE synthesis tool,

which optimizes the execution of in-memory functions by

means of MAGIC operations, and by the method of Chakraborti

et al., which is based on IMPLY operations.

Table I lists the synthesis results for a number of

combinational benchmarks. The table lists the number of inputs

TABLE I. EXPERIMENTAL SYNTHESIS RESULTS.

Benchmarks
Original Netlist ABC SIMPLE MAGIC Chakraborti et al. [7]

In Out Gates Gates OP Mem Area OP Mem

5xp1 7 10 171 112 97 142 315 73 84

clip 9 5 271 152 136 184 444 89 120

cm150a 21 1 88 62 51 87 189 127 56

cm162a 14 5 64 60 46 92 186 102 46

cm163a 16 5 63 61 45 95 183 116 42

misex1 8 7 93 78 45 112 294 69 83

parity 16 1 76 76 37 107 240 113 23

x2 10 7 98 68 36 86 168 80 60

(In), outputs (Out), and the original number of gates prior to the

ABC optimization (Gates), followed by the number of NOR

and NOT gates after the ABC optimization (ABC Gates), which

is equivalent to the number of execution steps in the naïve

approach. The results of the SIMPLE synthesis tool include the

area (number of memristors that occupy the memory array for

the solution), number of active memristors (Mem), and the

latency (OP, number of steps required to compute the function).

The ABC optimization lowers the number of gates on

average by 31%. SIMPLE synthesis flow gains another 48%

latency improvement on average to a total 89% latency

improvement as compared to the original netlist.

Finally, the table shows that the original netlist and the

netlist after the ABC optimization have, respectively, an

average improvement of 8% and 30%, as compared to

Chakraborti et al. Hence, using a NOR and NOT netlist offers

an advantage over the BDD implementation with IMPLY even

without any optimization. SIMPLE improves performance by

94% on average as compared to Chakraborti et al., at the cost

of a 44% increase in the number of memristors. Such significant

improvement is due to SIMPLE's ability to exploit the

parallelism offered by the stateful logic technique, thus

revealing the optimal mapping, and by the ability of MAGIC to

reduce the number of execution steps as compared to IMPLY.

Furthermore, since Chakraborti et al. [7] did not consider the

number of cycles required for copy operations, their evaluations

are optimistic. Hence, the improvement of this work is even

more significant.

VI. CONCLUSIONS

This paper presents an automatic logic synthesis flow called

SIMPLE for optimizing the performance of in-memory

computations based on the MAGIC family. SIMPLE solves an

optimization problem to minimize the latency of a desired

computation. Although solving the optimization problem is

mathematically cumbersome and, as a result, computationally

intensive, it is solved only once during the design of the mMPU

controller, and only the precise mapping is performed in real-

time, according to the temporary state of the memory.

Our experimental results show that SIMPLE yields an

average performance improvement of 89% as compared to the

NOT and NOR netlist prior to optimization, 48% on average as

compared to the ABC optimized netlist, and 94% on average as

compared to a previous proposed optimization flow.

In future work, we plan to comprehensively evaluate

SIMPLE with additional benchmarks and consider removing

the non-mandatory constraints (at the cost of an even more

computationally intensive optimization problem). Furthermore,

we intend to expand SIMPLE to support 3 and 4 input NOR

gates, which may also be executed in-memory as a MAGIC

operation. Preliminary results show a substantial decrease in the

number of gates when including 3-input NOR gates for large

benchmarks, probably allowing further latency improvement.

Additionally, we plan to extend the optimization problem to

other cost functions, such as energy and area, and to develop a

real-time address mapping module to complete the synthesis

flow.

 ACKNOWLEDGMENT

This research was partially supported by Intel Collaborative

Research Institute for Computational Intelligence (ICRI-CI), by

the Viterbi Fellowship in the Technion Computer Engineering

Center, and by EU COST Action IC1401.

REFERENCES

[1] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “The

Desired Memristor for Circuit Designers,” IEEE Circuits and

Systems, vol. 13, no. 2, pp. 17–22, Jun. 2013.

[2] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, “Design implications of

memristor-based RRAM cross-point structures,” in 2011 Design,

Automation & Test in Europe, 2011, pp. 1–6.

[3] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G.

Friedman, A. Kolodny, and U. C. Weiser, “MAGIC—Memristor-

Aided Logic,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[4] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic Design within

Memristive Memories Using Memristor-Aided loGIC (MAGIC),”

IEEE Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650,

Jul. 2016.

[5] R. Ben Hur and S. Kvatinsky, “Memory Processing Unit for In-

Memory Processing,” in Proceedings of the IEEE/ACM International

Symposium on Nanoscale Architectures, 2016, pp. 171–172.

[6] R. Ben Hur, N. Talati, and S. Kvatinsky, “Algorithmic

Considerations in Memristive Memory Processing Units (MPU),”

in Proceedings of the International Workshop on Cellular Nanoscale

Networks and their Applications, 2016, pp. 1–5.

[7] S. Chakraborti, P. V. Chowdhary, K. Datta, and I. Sengupta, “BDD

based synthesis of Boolean functions using memristors,” in

Proceedings of the International Design and Test Symposium, 2014,

pp. 136–141.

[8] F. Lalchhandama, B. G. Sapui, and K. Datta, “An Improved

Approach for the Synthesis of Boolean Functions Using Memristor

Based IMPLY and INVERSE-IMPLY Gates,” in Proceedings of the

IEEE Computer Society Annual Symposium on VLSI, 2016, pp. 319–

324.

[9] A. Chakraborty, R. Das, C. Bandopadhyay, and H. Rahaman, “BDD

based Synthesis Technique for Design of High-Speed Memristor

based Circuits,” in Proceedings of the International Symposium on

VLSI Design and Test, 2016, pp. 1–6.

[10] M. Traiola, M. Barbareschi, A. Mazzeo, and A. Bosio, “XbarGen: a

Memristor Based Boolean Logic Synthesis tool,” in Proceedings of

the IFIP/IEEE International Conference on Very Large Scale

Integration (VLSI-SoC), 2016, pp. 1–6.

[11] L. Xie, H. A. Du Nguyen, M. Taouil, K. Bertels, and S. Hamdioui,

“Fast boolean logic mapped on memristor crossbar,” in Proceedings

of the IEEE International Conference on Computer Design, 2015, pp.

335–342.

[12] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Fast

logic synthesis for RRAM-based in-memory computing using

Majority-Inverter Graphs,” in Proceedings of the Design,

Automation, and Testing in Europe, 2016, pp. 948–953.

[13] D. Bhattacharjee and A. Chattopadhyay, “Delay-optimal technology

mapping for in-memory computing using ReRAM devices,” in

Proceedings of the 35th International Conference on Computer-

Aided Design, 2016, pp. 1–6.

[14] M. Soeken, S. Shirinzadeh, P.-E. Gaillardon, L. G. Amarú, R.

Drechsler, and G. De Micheli, “An MIG-based compiler for

programmable logic-in-memory architectures,” in Proceedings of the

53rd Annual Design Automation Conference (DAC), 2016, pp. 1–6.

[15] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-Inverter

Graph: A novel data-structure and algorithms for efficient logic

optimization,” in Proceedings of the The 51st Annual Design

Automation Conference on Design Automation Conference, 2014, pp.

1–6.

[16] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman,

“Memristor-based IMPLY logic design procedure,” in Proceedings

of the IEEE 29th International Conference on Computer Design,

2011, pp. 142–147.

[17] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U.

C. Weiser, “Memristor-Based Material Implication (IMPLY) Logic:

Design Principles and Methodologies,” IEEE Transactions on Very

Large Scale Integration (TVLSI), vol. 22, no. 10, pp. 2054–2066, Oct.

2014.

[18] J. H. Poikonen, E. Lehtonen, and M. Laiho, “On Synthesis of Boolean

Expressions for Memristive Devices Using Sequential Implication

Logic,” IEEE Transactions on Computer-Aided Design, vol. 31, no.

7, pp. 1129–1134, Jul. 2012.

[19] P. Teodorovic, S. Dautovic, and V. Malbasa, “Recursive Boolean

Formula Minimization Algorithms for Implication Logic,” IEEE

Transactions on Computer-Aided Design, vol. 32, no. 11, pp. 1829–

1833, Nov. 2013.

[20] A. Raghuvanshi and M. Perkowski, “Logic synthesis and a

generalized notation for memristor-realized material implication

gates,” in Proceedings of the IEEE/ACM International Conference

on Computer- Aided Design, 2014, pp. 470–477.

[21] F. S. Marranghello, V. Callegaro, M. G. A. Martins, A. I. Reis, and

R. P. Ribas, “Factored Forms for Memristive Material Implication

Stateful Logic,” IEEE Journal on Ememrging and Selected Topics in

Circuits and Systems, vol. 5, no. 2, pp. 267–278, Jun. 2015.

[22] F. S. Marranghello, V. Callegaro, A. I. Reis, and R. P. Ribas, “SOP

based logic synthesis for memristive IMPLY stateful logic,” in IEEE

International Conference on Computer Design, 2015, pp. 228–235.

[23] A. Chattopadhyay and Z. Rakosi, “Combinational Logic Synthesis

for Material Implication,” in IEEE/IFIP 19th International

Conference on VLSI and System-on-Chip, 2011, pp. 200–203.

[24] S. Yang, “Logic synthesis and optimization benchmarks user guide:

Version 3.0.,” in MCNC, 1991.

[25] A. Mishchenko, “ABC: A System for Sequential Synthesis and

Verification,” Berkeley Logic Synthesis and Verification Group,

http://www.eecs.berkeley.edu/~alanmi/abc/. 2012.

[26] R. Ben Hur and S. Kvatinsky, “Memristive Memory Processing Unit

(MPU) Controller for In-Memory Processing,” in Proceedings of

the IEEE International Conference on Science of Electrical

Engineering, 2016, pp. 1–5.

[27] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling

Language for Mathematical Programming. Duxbury

Press/Wadsworth, 1993.

[28] I. IBM ILOG CPLEX Optimization Studio V12.3, “Using the

CPLEXR Callable Library and CPLEX Barrier and Mixed Integer

Solver Options.” 2011.

