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Abstract—This paper presents a novel approach for designing and 

implementing in-memory logic operations. The uniqueness of this 

work is the development of SIMPLE, a framework that optimizes 

the execution of an arbitrary logic function, while considering all 

the constraints involved in performing it within a memristive 

memory. SIMPLE automatically generates a defined sequence of 

atomic memristor-aided logic NOR operations, whose 

implementation can be facilitated efficiently within the memory. 

Motivated to overcome the memory-CPU bottleneck, this 

approach designs an optimal solution in terms of performance by 

exploiting the parallelism of the memristor-aided logic NOR gates. 

SIMPLE achieves performance speedups of 1.94x compared to a 

previous work and 1.48x compared to a naïve optimization based 

on standard synthesis tools. 

Keywords—Memristor, memristive systems, logic design, MAGIC, 

mMPU, von Neumann architecture, logic synthesis. 

I. INTRODUCTION 

Over the last several decades, the rate of improvement in 

processors has exceeded that of memory by several orders of 

magnitude. The separation between the memory and CPU in 

von Neumann architecture and the need to transfer data 

between them have created the primary performance and 

energy bottleneck in modern computing systems. This 

bottleneck is known as the memory wall. Methods for 

alleviating the memory wall have been widely explored by 

researchers, using different techniques to reduce data transfer 

between the CPU and memory, usually by exploiting data 

locality in the memory system. Processing data within the 

memory itself seems like the ultimate way to break the von 

Neumann separation. 

Performing pure in-memory computing is only possible 

when the same physical entities are used for both memory (i.e., 

data storage) and logic (i.e., data processing). Conventional 

memory architectures, such as SRAM, DRAM and Flash, do 

not offer this capability. Emerging nonvolatile memory 

technologies, on the other hand, have the capability to perform 

logic operations in certain conditions. These technologies 

include RRAM, PCM, STT MRAM and others. For simplicity, 

we refer to all of them as memristors. The memristor is a 

passive element with numerous promising features, such as low 

power consumption, CMOS fabrication compatibility, high 

density, and good scalability [1], [2]. An attractive approach for 

performing logic within a conventional memristive memory 

array is stateful logic, where the logical states are represented 

by resistance. The memory cells are used to construct logic 

gates, where the inputs and outputs are, respectively, the states 

of specific memristors before and at the end of the computation. 

This paper considers an improved stateful logic family called 

Memristor-Aided loGIC (MAGIC) [3] that outperforms 

previously proposed stateful logic families [4]. The key idea 

behind MAGIC in-memory is to use it to execute NOR 

operations, which can be used as the basis for performing any 

desired computation. 

A recently proposed architecture, where the conventional 

DRAM memory is replaced with a memristive Memory 

Processing Unit (mMPU), is described in [5]. mMPU is a 

memory architecture with processing capabilities, based on 

MAGIC NOR and NOT operations. Although it has the 

potential to perform general purpose computations, current 

methods require that the sequence of MAGIC operations 

required to implement the desired logical function in-memory 

be manually designed [6]. Obviously, this approach is neither 

general nor optimal, since it does not guarantee a full utilization 

of in-memory computation advantages, especially the 

parallelism offered by MAGIC-based operations [4]. 

This paper presents SIMPLE, a general framework that 

allows the implementation of arbitrary logical functions within 

the memory in an optimal manner. To the best of our 

knowledge, this is the first synthesis tool that makes it possible 

to map logical gates to specific memory cells of a conventional 

memristive memory. Hence, this work creates, for the first time, 

an end-to-end in-memory implementation method for any 

logical function. For that purpose, we develop an automatic tool 

that combines the synthesis of MAGIC-based functions with an 

optimal mapping into the memristive memory. This is done 

while minimizing the latency of the entire computation by 

finding an optimal division of the logical function into small 

execution steps. We define and solve an optimization problem 

to get the best possible sequence of NOR operations that 

maximally exploits the mMPU for a certain computing task. 

This optimization offers 89%, 48% and 94% latency 

improvements on average as compared to, respectively, the 

original circuit implemented with NOR and NOT gates, a naïve 

approach synthesized with standard CMOS synthesis tools with 

NOR and NOT gates, and previous work which synthesizes by 



merely dividing into execution steps, without considering the 

mapping into the memory cells [7]. Therefore the authors 

evaluations in [7] are optimistic (i.e., without considering the 

exact data location and the overhead of moving data to the 

appropriate location in order to process it) and our improvement 

over their results is probably much more significant than 112%. 

II. BACKGROUND AND RELATED WORK 

Over the last years, several methods for synthesizing 

specific logical operations for memristor-based implementation 

were developed, only a few of which are suitable for in-memory 

computations. However, almost all work in this field focuses 

merely on the synthesis of the logical function, and not on its 

mapping into the actual memory cells. Furthermore, most 

synthesized functions cannot be executed within the memory as 

is, but require additional cycles (e.g., copy and read operations) 

to achieve the desired functionality. Since other works do not 

offer a full implementable framework, their computation 

latency cannot be correctly evaluated, and no relevant 

comparison can be performed. Nevertheless, for completeness 

we describe the previous achievements in this field, alongside 

their advantages and disadvantages. In this section, we describe 

previous work on synthesis with memristors and discuss 

approaches for executing true in-memory processing using 

MAGIC operations. 

A. Previous Work 
Previous attempts to synthesize logic functions using 

memristors have been focused mostly on non-stateful logic 
techniques. Therefore, in-memory execution of these methods 
is restricted. Logic techniques that combine CMOS and 
memristors [8], [9] are not suitable for in-memory computing, 
since CMOS logic has to be added within the memory array. 
Another synthesis technique is based on the FBLC method [10], 
which requires disabled memristors (permanently in the high 
resistance state) [11]. This technique is thus also unsuitable for 
execution within fully operational memristive memories. Even 
though using a dedicated memory allows computations to be 
performed with the FBLC method, the processing tasks must be 
determined before fabrication, and cannot be dynamically 
chosen as in stateful logic. In addition, the area utilization of 
this type of processing is low, since the percentage of disabled 
memristors in the computation area is high. 

Synthesis of in-memory computing includes both 

optimizing the performance and mapping the operations into 

specific memory cells within the memristive memory array. 

One synthesis approach is based on the majority function [12]–

[14] using Majority-Inverter Graphs (MIGs), where 

memristors execute majority and negation functions. MIGs 

show good results in logic optimization in terms of the number 

of levels, as compared to data structures such as Binary 

Decision Diagrams (BDDs) and And-Inverter Graphs (AIGs) 

[15]. However, the number of computational steps presented in 

[12]–[14] is estimated from the number of MIG levels. This 

estimation is based on the assumption that all Majority gates 

from the same level are executed in parallel, which is usually 

not feasible when physical mapping into a crossbar is taken into 

account. Additionally, the output of the majority gate is the 

logical state of the memristor (represented by its resistance) at 

the end of the computation, whereas the inputs of the majority 

gate are the voltages applied to the rows and columns. Hence a 

read operation is required between every two chained majority 

 

Figure 1. Schematic of (a) MAGIC NOR gate and (b) MAGIC NOR gate within a memristive memory array. IN1 and IN2 are the input 

memristors and OUT is the output memristor. A single voltage VG is applied to perform the NOR operation [3].  
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Figure 2. Parallel MAGIC NOR execution of gates j, k. Parallel 

execution of gates requires alignment of their inputs and output. 

Gates k and j are aligned by their columns. Since the memory is 

symmetric, the gates can also be aligned by rows. The operation is 

performed within the memristive memory array by applying VG 

to the columns of the input memristors, ground to the column of 

the output memristor, and VISO to isolate unselected columns and 

rows. The operation takes a single clock cycle, regardless of the 

number of gates executed in parallel. 
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gates, and a complex controller for executing in-memory logic 

has to be developed.  

Another approach is using stateful logic families, such as 

material implication (IMPLY) together with false operations 

[16], [17]. Since IMPLY is an unconventional logic gate, new 

op timization methods for lowering the latency of computation 

must be developed. Previous attempts have been mostly manual 

and without considering the exact mapping within memory 

[18]–[22]. Ignoring the mapping prevents full utilization of 

stateful logic. Efforts towards full synthesis of logic functions 

using IMPLY have been made in [23], where similar to the MIG 

case mentioned above, the number of steps is erroneously 

estimated by the number of Or-Inverter Graph (OIG) levels. 

The sole work which comes close to estimating the actual 

number of in-memory execution steps is [7], where the IMPLY-

based logic synthesis is done using a BDD. Each node of the 

BDD is mapped to a 2-to-1 multiplexer (MUX), implemented 

with an IMPLY gate. In their estimation of the number of 

execution steps, the authors exclude the numerous copy cycles 

required for in-memory parallel execution with IMPLY. 

Therefore, the improvement of SIMPLE as compared to [7] is 

more significant than is evident from a plain comparison with 

their results. Furthermore, although their method is based on 

parallel execution, the size of a BDD depends exponentially on 

the number of inputs, thus limiting the performance of this 

approach for large benchmarks. However, since they actually 

produce the sequence of operations executed within the 

memory, while determining which gates are executed in 

parallel, then this is the only fair comparison to our work.   

B. Memristor-Aided LoGIC (MAGIC) 

Memristor-Aided loGIC (MAGIC) [3], a stateful logic 

family that outperforms the previously proposed stateful logic 

families, has been recently proposed. In MAGIC, only a single 

voltage VG is used to perform a NOR logic operation, and the 

inputs and output memristors are separated, as shown in Figure 

1 (as opposed to IMPLY, where two different voltages are 

required, and one of the input memristors is also the output 

memristor, causing that input to be overwritten by the 

execution). Additionally, MAGIC gates do not require 

additional devices to perform the operation (unlike IMPLY, 

which requires an additional resistor for each row). 

Furthermore, because NOR is a standard logical function, 

executing functions based on NOR operations is simple and 

straightforward. Since NOR is a complete logic function, a 

MAGIC NOR operation is sufficient to execute any Boolean 

operation. Hence, MAGIC NOR may be used as the basis for 

performing all desired processing within memory by dividing 

the desired function into a sequence of MAGIC NOR 

operations. These basic NOR operations are executed one after 

the other using the memory cells as computation elements. 

Another advantage of MAGIC is its ability to perform logic 

operations in parallel on sets of data. The crossbar array is 

structured such that applying the operating voltage VG on any 

two selected columns and grounding a third column will result 

in NOR operations being performed on all rows on which VISO 

is not applied (i.e., on rows that are not isolated). The schematic 

of a MAGIC gate operation, performed over gates arranged in 

different rows and aligned in columns within a memristive 

memory, is shown in Figure 2. Note that due to the symmetry 

of memristive crossbar arrays (i.e., transpose memory), 

performing NOR operations on column vectors is feasible in a 

similar manner. 

III. SYNTHESIS FOR MAGIC WITHIN MEMORY 

In conventional CMOS logic synthesis flow, an input netlist 

representing a Boolean function is first divided into multiple 

levels, based on the data dependencies, as shown in Figure 3a. 

The input values of each gate in any level must be produced in 

one of the previous levels. Therefore, there are no input 

dependencies among gates from the same level. For example, 

 

Figure 4. Breakdown of execution steps (OP) to number of 

MAGIC NOR and copy cycles, when using conventional synthesis 

flow. 
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Figure 3. (a) CMOS NOR netlist divided into levels, and (b) conventionally synthesized netlist mapped to a memristive memory array. 

Ai, Bi are inputs and Ei is the output of gate i. The table represents locations in the memory array and the colors represent the 

corresponding cycle number. Each copy operation takes two clock cycles. 
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outputs of gates in Level 1 (Ei where i=1,2,3,4) are the inputs 

of gates in Level 2 (Aj, Bj, where j=5,6). Hence, the execution 

of gates 5,6 can only begin after gates 1,2,3,4 finish their 

operation. Furthermore, in CMOS implementation, each level 

can be executed in parallel. 

In the case of in-memory computing, the location of data is 

an added constraint. As shown in Figure 3b, for parallel 

MAGIC NOR execution the inputs must be aligned in the same 

columns. Under the assumption that the inputs of Level 1 are 

already aligned, they produce outputs Ei (where i=1,2,3,4) in 

column 3 in a single clock cycle, as shown. For parallel 

execution in Level 2, the inputs must be realigned. This is done 

by copying the desired operands to the same columns in two 

cycles using two MAGIC NOT operations.  

In the case of larger functions, these copy operations can 

significantly degrade the performance of the system. To find 

the cost of copy operations, we conducted experiments for an 

in-memory computing approach on various benchmarks [24] 

using conventional synthesis flow. Figure 4 shows the 

breakdown of the number of execution steps (OP) as compared 

to the number of actual MAGIC NOR operations and the 

number of copy cycles for aligning the data. We can conclude 

from the figure that, on average, 90.2% of the execution time is 

spent on data arrangement. Hence, the conventional logic 

synthesis flow cannot be directly adopted for memristive in-

memory computing. 

To overcome this limitation, we require a novel method for 

synthesis and mapping of a given logic function that does not 

waste energy and time on unnecessary copying operations. In 

this paper, we propose a flow for synthesizing logical functions 

called SIMPLE. SIMPLE takes a desired function and 

automatically constructs and optimizes the required sequence 

of MAGIC NOR operations. This sequence is optimized 

specifically for in-memory MAGIC execution, while exploiting 

the parallel processing capability offered by memristive 

memories. 

A. Overall Logic Synthesis Flow 
In the proposed synthesis approach, a desired logic function 

represented in Berkeley Logic Interchange Format (BLIF) is 

first converted into a NOT and NOR netlist representation, 
which is then area optimized using a modified ABC tool [25]. 
The produced netlist is, however, not optimal for in-memory 
logic since standard synthesis tools, such as ABC, are designed 
to minimize the area (number of gates) without considering the 
location and timing constraints of the computation steps, which 
are critical for efficient logic within memory. 

The NOR and NOT netlist is mapped to a memristor-based 
memory, and the received mapping provides the optimal 
(lowest) latency, as detailed in Section IV. For a specific 
execution, the mapping is reshuffled in real time according to 
the addresses of the inputs and outputs of the desired function, 
in accordance with the specific occupancy of the memory at the 
time of execution. The synthesis flow is shown in Figure 5. 

B. Real-time Operation and Control Signals 

The mMPU architecture relies on having a set of 

predetermined functions that have been synthesized and stored 

in the mMPU controller [26]. The stored function set includes 

a general mapping of the inputs, outputs, and intermediate 

values to locations within a memory array, along with the 

relative number of steps in which each NOR operation is 

performed. When one of these functions is invoked, an exact 

real-time mapping of rows and columns is carried out to adjust 

the general locations to the exact locations of inputs and desired 

output, while considering the exact state of the memory (e.g., 

stored data that cannot be overwritten, addresses of the input 

data and result).  

After the real-time mapping, the operations in the set are 

translated by the mMPU controller into a set of control signals 

applied to the rows and column decoders of the memory. In 

other words, the inputs of the function are moved to the desired 

locations by the mMPU controller, if needed. Then the control 

signals compute the intermediate results step by step (where 

aligned gates are executed in parallel during the same clock 

cycle), and the last step yields the results in the desired address. 

The real-time mapper was not implemented here but will be 

developed in future work. 

 
Figure 5. Proposed logic synthesis flow. The desired logic function is synthesized using ABC for NOR and NOT gates and then optimized 

specifically for MAGIC within memory, generating a general mapping and a sequence of operations. The general execution is mapped to 

specific cells in real-time, based on the temporary state of the mMPU. 
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IV. OPTIMIZATION FOR EFFICIENT MAPPING INTO 

MEMRISTIVE MEMORIES 

To minimize the latency using SIMPLE, we define and 

solve an optimization problem for in-memory MAGIC 

execution. The optimization problem is described in this 

section, and h as been implemented using the AMPL modeling 

language [27] and using the IBM ILOG CPLEX Optimization 

Studio solver [28]. 

Since each input and output (I/O) of the logic gates is stored 

in a memory cell, each I/O is assigned to a coordinate (i.e., 

location in the array). The optimization tool checks all possible 

execution patterns with different mappings (locations) of the 

I/Os of all gates, while considering the specific constraints of 

executing MAGIC within memory. The output of the synthesis 

tool is an optimal mapping with minimal latency. In this 

section, we describe the constraints for parallel processing 

within a memristive memory and the other major assumptions 

and constraints for the optimization problem. 

A. Parallelism 

The primary advantage of executing MAGIC within 

memory is its ability to execute numerous NOR operations 

simultaneously on different rows or columns, as described in 

Section B. Wisely exploiting the parallelism capability may 

significantly improve the computation performance. 

In this section, a logic gate j is defined by the following 

variables:  

 ({𝑅𝐴𝑗 , 𝐶𝐴𝑗} , {𝑅𝐵𝑗 , 𝐶𝐵𝑗} , {𝑅𝐸𝑗 , 𝐶𝐸𝑗}) - Location 

(coordinates of memory cells) of the inputs 𝐴𝑗 , 𝐵𝑗 and the 

output 𝐸𝑗 of the gate.  

 Tj - Clock cycle (step) in which the gate is executed. 

To perform parallel processing, the corresponding inputs 

and output of different gates should be aligned within the 

memory. Formally, gates 𝑔1, 𝑔2, … , 𝑔𝑘 can be executed in 

parallel on multiple rows (meaning 𝑇1 = 𝑇2 = ⋯ = 𝑇𝑘) iff 

𝐴𝑖1, 𝐵𝑗2, 𝐸𝑙 , ∀𝑖, 𝑗, 𝑙 = 1,… , 𝑘 are located, respectively, in 

columns 𝐶𝑛, 𝐶𝑚 , 𝐶𝑟  ∀𝑛 ≠ 𝑚 ≠ 𝑟 and 𝐴𝑖1, 𝐵𝑖2, 𝐸𝑖 , ∀𝑖 = 1,… , 𝑘 

are in the same row. When using a transpose memory [4], 

parallel execution on multiple columns is also possible when 

switching between the rows and columns. As illustrated in 

Figure 2, gates k, j are aligned, since 𝐼𝑁𝑗1, 𝐼𝑁𝑗2, 𝑂𝑈𝑇𝑗 

respectively share columns with 𝐼𝑁𝑘1, 𝐼𝑁𝑘2, 𝑂𝑈𝑇𝑘, and the 

output and inputs of each gate share rows. Therefore, the 

execution of gates k, j can be performed at the same clock cycle.  

Applying a voltage to a specific column affects all executed 

gates simultaneously. Hence, two NOR gates with a different 

number of inputs (e.g., two-input NOR and NOT) cannot be 

executed in the same cycle. For simplicity, we define the 

problem merely for two-input NORs, and execute each NOT 

gate by forcing one input to '0', as 𝑁𝑂𝑇(𝑋) = 𝑁𝑂𝑅(𝑋, 0).  

B. Latency Optimization Problem 

The problem of optimizing an in-memory Boolean function 

for minimal latency has two degrees of freedom: the locations 

of data and the execution cycle of different logic gates. The 

execution of a given Boolean function is finished when the 

operations of all gates are completed. Thus maxj(Tj) is the 

latency of a specific mapping, where 0 < 𝑗 ≤ #𝑔𝑎𝑡𝑒𝑠. 
Therefore, the latency (in clock cycles) of the best mapping is 

the minimum latency out of all different mappings: 

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑏𝑒𝑠𝑡 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 =  𝑚𝑖𝑛 {𝑚𝑎𝑥
𝑗
𝑇𝑗}, 

0 < 𝑗 ≤ #𝑔𝑎𝑡𝑒𝑠.

The legal mappings are limited by location, connectivity 

and timing, and are restricted by the following constraints: 

1) Location constraints: 

 Every I/O has to be mapped to a memory cell. Thus, 
the coordinates of each I/O are limited by the physical 
size of the memory. Formally, for a memory array of the 
size 𝑹𝒐𝒘𝒏𝒖𝒎× 𝑪𝒐𝒍𝒏𝒖𝒎, this constraint is 

∀𝐱𝐣𝛜{𝐀𝐣, 𝐁𝐣, 𝐄𝐣}: 

(𝟎 < 𝑪𝒙𝒋 ≤ 𝑪𝒐𝒍𝒏𝒖𝒎) ∩ (𝟎 < 𝑹𝒙𝒋 ≤ 𝑹𝒐𝒘𝒏𝒖𝒎).

(a)                                                                (b) 
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Figure 6. Single-bit full adder. (a) The netlist created by ABC, and (b) the optimized mapping and timing from the synthesis tool, 

achieving latency of 10 clock cycles. Ai, Bi are inputs and Ei is the output of gate i. The table represents locations in the memory array 

(using a memory array with 12 rows and 4 columns) and the colors represent the corresponding clock cycle. 
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 Two different outputs cannot be placed in the same 
memory cell (whereas the same input may be used for 
two different gates, and therefore their inputs share 
coordinates). Formally,  

∀𝑬𝒌, 𝑬𝒋: (𝑪𝑬𝒋 ≠ 𝑪𝑬𝒌) ∪ (𝑹𝑬𝒋 ≠ 𝑹𝑬𝒌). 

In such a configuration, reuse of a cell (after resetting) 
is not supported. Note that this constraint is not 
mandatory and is used to simplify the problem at the 
cost of potentially using more cells for intermediate 
operations. 

 I/Os of each gate have to be located in the same row 
and different columns, or alternatively, in the same 
column and different rows. Formally, 

∀𝒈𝒂𝒕𝒆 𝒋: [(𝑪𝑨𝒋 = 𝑪𝑩𝒋 = 𝑪𝑬𝒋) ∩ (𝑹𝑨𝒋 ≠ 𝑹𝑩𝒋 ≠ 𝑹𝑬𝒋)] 

∪ [(𝑪𝑨𝒋 ≠ 𝑪𝑩𝒋 ≠ 𝑪𝑬𝒋) ∩ (𝑹𝑨𝒋 = 𝑹𝑩𝒋 = 𝑹𝑬𝒋)]. 

 The simultaneous execution of different NOR gates is 
possible only when they are aligned in the rows or in 
the columns, in order to meet the parallelism 
requirement described in Section A. 

∀𝒈𝒂𝒕𝒆𝒔 𝒋, 𝒌:  𝑻𝒋 ≠ 𝑻𝒌 ∪ 

{
 
 

 
 
{
[(𝑪𝑨𝒋 = 𝑪𝑨𝒌 ∩ 𝑪𝑩𝒋 = 𝑪𝑩𝒌) ∪ (𝑪𝑨𝒋 = 𝑪𝑩𝒌 ∩ 𝑪𝑩𝒋 = 𝑪𝑨𝒌)]

∩ 𝑪𝑬𝒋 = 𝑪𝑬𝒌
}

∩ (𝑹𝑨𝒋 = 𝑹𝑩𝒋 = 𝑹𝑬𝒋 ∩ 𝑹𝑨𝒌 = 𝑹𝑩𝒌 = 𝑹𝑬𝒌) }
 
 

 
 

∪ 

{
 
 

 
 
{
[(𝑹𝑨𝒋 = 𝑹𝑨𝒌 ∩ 𝑹𝑩𝒋 = 𝑹𝑩𝒌) ∪ (𝑹𝑨𝒋 = 𝑹𝑩𝒌 ∩ 𝑹𝑩𝒋 = 𝑹𝑨𝒌)]

∩ 𝑹𝑬𝒋 = 𝑹𝑬𝒌
}

∩ (𝑪𝑨𝒋 = 𝑪𝑩𝒋 = 𝑪𝑬𝒋 ∩ 𝑪𝑨𝒌 = 𝑪𝑩𝒌 = 𝑪𝑬𝒌) }
 
 

 
 

. 

2) Connectivity constraints: 

 Every output of gate h that is connected to an input 
of gate j has to be mapped to the same memory cell, 
and the execution of gate j has to be performed only 
after the execution of gate h.  

∀𝑬𝒉, 𝒙𝒋𝝐{𝑨𝒋, 𝑩𝒋} 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑: 

[(𝑪𝑬𝒉 = 𝑪𝒙𝒋) ∩ (𝑹𝑬𝒉 = 𝑹𝒙𝒋)] ∩ (𝑻𝒉 < 𝑻𝒋). 

This configuration does not support movement of data 
within the memory array. When copy operations are 

                                                                          

1 The SIMPLE MAGIC modified ABC tool can be found at: 

https://github.com/RotemBenHur/SIMPLE-MAGIC  

allowed, the mapping can be done to different memory 
cells, but the order of execution must be maintained. 

3) Timing constraints: 

 The execution time of each gate is positive. 

∀𝒈𝒂𝒕𝒆 𝒋: 𝑻𝒋 > 𝟎 

A toy example of a single-bit full adder optimization is 
illustrated in Figure 6. The obtained latency is only 10 clock 
cycles, while naïve implementation of serial execution based on 
the given ABC netlist has a latency of 15 clock cycles, and 
previous work that manually optimizes the netlist [4] reached a 

latency of 13 clock cycles. 

V. EXPERIMENTAL RESULTS  

To evaluate the SIMPLE synthesis tool, we modified the 

input library file of the ABC system [25] to convert a given 

Boolean function into a NOT and two-input NOR netlist1. The 

netlist was mapped and scheduled for minimum latency using 

the optimization algorithm implemented in the AMPL language 

[27] and in the Cplex solver [28]. The output of the optimizer 

gives a general mapping of all input, output and intermediate 

memristors, and a sequence of operations. We ran the synthesis 

tool on the LGsynth91 benchmark suite [24] and compared the 

results with a naïve approach, where the gates are executed 

serially on the same row in the memory array (thus the number 

of gates equals the number of clock cycles) before and after the 

ABC optimization. In addition, we compared the proposed 

approach with previous work by Chakraborti et al. [7], where 

IMPLY operations [17] were optimized using the Binary 

Decision Diagram (BDD). The resistors used in each row for 

IMPLY operations would have resistance values similar to 

those of the memristors (same order of magnitude). Therefore, 

when using memristors with similar features for both IMPLY 

and MAGIC operations, the memory frequency would be 

equivalent. This allows for a fair comparison between the 

number of operations required by the SIMPLE synthesis tool, 

which optimizes the execution of in-memory functions by 

means of MAGIC operations, and by the method of Chakraborti 

et al., which is based on IMPLY operations. 

Table I lists the synthesis results for a number of 

combinational benchmarks. The table lists the number of inputs 

TABLE I. EXPERIMENTAL SYNTHESIS RESULTS. 

Benchmarks 
Original Netlist ABC SIMPLE MAGIC Chakraborti et al. [7]  

In Out Gates  Gates OP Mem Area OP Mem 

5xp1 7 10 171 112 97 142 315 73 84 

clip 9 5 271 152 136 184 444 89 120 

cm150a 21 1 88 62 51 87 189 127 56 

cm162a 14 5 64 60 46 92 186 102 46 

cm163a 16 5 63 61 45 95 183 116 42 

misex1 8 7 93 78 45  112 294 69 83 

parity 16 1 76 76 37  107 240 113 23 

x2 10 7 98 68 36  86 168 80 60 

 

 



(In), outputs (Out), and the original number of gates prior to the 

ABC optimization (Gates), followed by the number of NOR 

and NOT gates after the ABC optimization (ABC Gates), which 

is equivalent to the number of execution steps in the naïve 

approach. The results of the SIMPLE synthesis tool include the 

area (number of memristors that occupy the memory array for 

the solution), number of active memristors (Mem), and the 

latency (OP, number of steps required to compute the function). 

The ABC optimization lowers the number of gates on 

average by 31%. SIMPLE synthesis flow gains another 48% 

latency improvement on average to a total 89% latency 

improvement as compared to the original netlist. 

Finally, the table shows that the original netlist and the 

netlist after the ABC optimization have, respectively, an 

average improvement of 8% and 30%, as compared to 

Chakraborti et al. Hence, using a NOR and NOT netlist offers 

an advantage over the BDD implementation with IMPLY even 

without any optimization. SIMPLE improves performance by 

94% on average as compared to Chakraborti et al., at the cost 

of a 44% increase in the number of memristors. Such significant 

improvement is due to SIMPLE's ability to exploit the 

parallelism offered by the stateful logic technique, thus 

revealing the optimal mapping, and by the ability of MAGIC to 

reduce the number of execution steps as compared to IMPLY. 

Furthermore, since Chakraborti et al. [7] did not consider the 

number of cycles required for copy operations, their evaluations 

are optimistic. Hence, the improvement of this work is even 

more significant. 

VI. CONCLUSIONS  

This paper presents an automatic logic synthesis flow called 

SIMPLE for optimizing the performance of in-memory 

computations based on the MAGIC family. SIMPLE solves an 

optimization problem to minimize the latency of a desired 

computation. Although solving the optimization problem is 

mathematically cumbersome and, as a result, computationally 

intensive, it is solved only once during the design of the mMPU 

controller, and only the precise mapping is performed in real-

time, according to the temporary state of the memory. 

Our experimental results show that SIMPLE yields an 

average performance improvement of 89% as compared to the 

NOT and NOR netlist prior to optimization, 48% on average as 

compared to the ABC optimized netlist, and 94% on average as 

compared to a previous proposed optimization flow. 

In future work, we plan to comprehensively evaluate 

SIMPLE with additional benchmarks and consider removing 

the non-mandatory constraints (at the cost of an even more 

computationally intensive optimization problem). Furthermore, 

we intend to expand SIMPLE to support 3 and 4 input NOR 

gates, which may also be executed in-memory as a MAGIC 

operation. Preliminary results show a substantial decrease in the 

number of gates when including 3-input NOR gates for large 

benchmarks, probably allowing further latency improvement. 

Additionally, we plan to extend the optimization problem to 

other cost functions, such as energy and area, and to develop a 

real-time address mapping module to complete the synthesis 

flow.  
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