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Deep/Multilayer Neural Networks

• Useful, robust, computationally intensive

• Many applications:
– Pattern recognition 

– Natural Language Processing

– Signal processing

– Data Mining
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Computational Bottlenecks

• Propagation                       costs                operations

• Training each layer also costs               operations
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Common NN Hardware

• Offline training in CPU/GPU

• Dedicated hardware (TrueNorth, DianNao, TPU)

• Online training – hard with CMOS

4 IBM TrueNorth



Memristors to the Rescue
Emerging Nonvolatile Memory Technologies
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Memristor – Memory Resistor
Resistor with Varying Resistance

Decrease resistanceIncrease resistance

Current

Voltage

Current
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Neural Networks with Memristors

• Memristor conductance ~ synaptic weights

• Voltage/current on memristors adapts weights

• Many memristive Spike-Timing-Dependent 

Plasticity (STDP) papers
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Spike-Timing-Dependent Plasticity (STDP)
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S. Saighi et al., “Plasticity in Memristive Devices for Spiking Neural Networks,” Frontiers in Neuroscience, March 2015

• Biological motivation

• Not useful for machine learning



Gradient Descent Learning
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∆Wnm
(k) = 𝜂x𝑚

(k) ∙ 𝑦𝑛
(k)

Update rule – a multiplication



Online Memristive
Gradient Descent Training
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D. Soudry, D. Di Castro, A. Gal,  A. Kolodny, and S. Kvatinsky, “Memristor-based Multilayer Neural Networks with Online Gradient Descent Training,”
IEEE Transactions on Neural Networks and Learning Systems, October 2015

s – Memristor state variable

(e.g., resistance)

Moving from voltage to time and voltage

x --> u (voltage)

y --> e (voltage and duration)



Synapse with TEAM Model
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• TEAM is nonlinear – single step read

• Increasing s increases resistance, 0<s<1

• s = 0.5 equivalent to w = 0 (negative weights)

S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM: ThrEshold Adaptive Memristor Model,” IEEE Trans. Circuits and Systems I, 2013



Single Layer Design
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Current to voltage

Subtracting operating point

Feedback circuit

E. Rosenthal, S. Greshnikov, D. Soudry, and S. Kvatinsky, “A Fully Analog Memristor-Based Multilayer Neural Network with Online Backpropagation 

Training,” IEEE Conference on Circuits and Systems, May 2016



Multi-Layer Design

Sigmoid
Inverted read

E. Rosenthal, S. Greshnikov, D. Soudry, and S. Kvatinsky, “A Fully Analog Memristor-Based Multilayer Neural Network with Online Backpropagation 

Training,” IEEE Conference on Circuits and Systems, May 2016



Results – Single Layer
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Similar accuracy

as software 10X faster than software

E. Rosenthal, S. Greshnikov, D. Soudry, and S. Kvatinsky, “A Fully Analog Memristor-Based Multilayer Neural Network with Online Backpropagation 

Training,” IEEE Conference on Circuits and Systems, May 2016



Results – Multi Layer
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2X more accurate than single layer

Worse than software (why?)

400X faster than software



Ongoing Directions
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• Machine learning accelerators

• Reconfigurable adaptive hardware (ADC, DAC, etc.)

• Memristors for excitation



Conclusions

• Neuromorphic accelerators have
huge potential for machine learning

– Fast (400X for small network)

–Accurate (with noise and variations)

–Dense (2T1M synapse) 
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Thanks!
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