Learning with Memristors

Shahar Kvatinsky

Viterbi Faculty of Electrical Engineering
Technion – Israel Institute of Technology
ICSEE November 2016

Deep/Multilayer Neural Networks

- Useful, robust, computationally intensive
- Many applications:
 - Pattern recognition
 - Natural Language Processing
 - Signal processing
 - Data Mining

Computational Bottlenecks

- Propagation ${f r}={f W}{f x}$ costs $O(N^2)$ operations
- Training each layer also costs ${\cal O}(N^2)$ operations

Common NN Hardware

- Offline training in CPU/GPU
- Dedicated hardware (TrueNorth, DianNao, TPU)
- Online training hard with CMOS

Design	#Transistors	Comments		
Proposed design	2 (+1 memristor)			
[54]	2	Also requires UV light +		
[54]	2	Weights decay ~ minutes		
[55]	6	Weights only		
	0	increase (unusable)		
56.57	39	Must keep training		
[58]	52	Must keep training		
[59]	92	Weights decay ~ hours		
[60]	83	Also requires a "weight unit"		
61	150			

IBM TrueNorth

Memristors to the Rescue Emerging Nonvolatile Memory Technologies

Resistive RAM (RRAM)

SanDisk SONY

Panasonic TOSHIBA

STT MRAM

Phase Change Memory (PCM)

Memristor – Memory Resistor Resistor with Varying Resistance

Neural Networks with Memristors

- Memristor conductance ~ synaptic weights
- Voltage/current on memristors adapts weights
- Many memristive Spike-Timing-Dependent

Plasticity (STDP) papers

Spike-Timing-Dependent Plasticity (STDP)

- Biological motivation
- Not useful for machine learning

Gradient Descent Learning

Update rule – a multiplication

$$\Delta W_{nm}^{(k)} = \eta X_m^{(k)} \cdot y_n^{(k)}$$

Online Memristive Gradient Descent Training

(e.g., resistance) Synaptic Grid

Moving from voltage to time and voltage

y --> e (voltage and duration)

Synapse with TEAM Model

- TEAM is nonlinear single step read
- Increasing s increases resistance, 0<s<1
- s = 0.5 equivalent to w = 0 (negative weights)

Single Layer Design

Multi-Layer Design

Results – Single Layer

Dataset	Unique Training Samples	Unique Test Samples	No. of Inputs	No. of Outputs	NN Size
Wisconsin Diagnostic Breast Cancer	300	120	30	2	30 <i>x</i> 2
Wine	96	48	13	3	13x3
Iris	90	60	4	3	4x3

			Simulation Type - Error				Runtime	
Cimilar accuracy							Analog han so	Marlah ftware
	Wine	1200	3.75% <u>+</u> 0.52%	2.5% ± 0.52%	2.29% ± 1.09%	18ms	~35 min	278.5ms
	Breast Cancer	1200	3% ± 0.5%	4.67% <u>+</u> 0.67%	3.1% ± 1.83%	18ms	~30 min	210ms
	Iris	1080	15.67% <u>+</u> 0.79%	16.5% <u>±</u> 0.67%	15.33% ± 0.03%	16.2ms	\sim 20 min	95.3ms

E. Rosenthal, S. Greshnikov, D. Soudry, and S. Kvatinsky, "A Fully Analog Memristor-Based Multilayer Neural Network with Online Backpropagation Training," IEEE Conference on Circuits and Systems, May 2016

Results - Multi Layer

Dataset	Unique Training Samples	Unique Test Samples	No. of Inputs	No. of Outputs	NN Size
Iris	90	60	4	3	4x4x3

	Sin	Runtime				
Total Training Samples	Analog Model	Noisy Analog Model	Matlab Model	Analog Model	Analog Model Wall Clock	Matlab Model
2160	8.16 <u>+</u> 1.47%	9.83% <u>+</u> 1.06%	4.5% ± 1.93%	43.2ms	\sim 10 hours	16.6 <i>s</i>

2X more accurate 1400X faster than software Worse than software (why?)

Ongoing Directions

- Machine learning accelerators
- Reconfigurable adaptive hardware (ADC, DAC, etc.)
- Memristors for excitation

Conclusions

- Neuromorphic accelerators have huge potential for machine learning
 - Fast (400X for small network)
 - Accurate (with noise and variations)
 - Dense (2T1M synapse)

nanks Asic²

technion computer engineering center

