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Threshold Scaling and Leakage
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The End of Frequency Scaling
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Moving to Multicore
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The Four Horsemen of Dark Silicon
Taylor DAC 2012

• Shrink 

• Dim

• Specialize

• Technology magic 

(Deus Ex Machina)
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Sources of Energy Inefficiency
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M. Horowitz, “Computing’s Energy Problem (and what we can do about it),” ISSCC Keynote 2014

A. Pedram, S. Galal, S. Richardson, S. Kvatinsky, and M. Horowitz, “Dark Memory and Accelerator-Rich System 

Optimization in the Dark Silicon Era,” IEEE Design & Test (submitted)

I-Cache Access Register File

Access

Add

Operation
(16-bit operand)

Energy/Op
(45 nm)

Cost
(vs. Add)

Add operation 0.18 pJ 1X

Load from on-chip SRAM 11 pJ 61X

Send to off-chip DRAM 640 pJ 3,556X

Control



Dark Memory and Specialization

• Memory system contributes >50% system power

• Memory hierarchy does not solve everything, 

SRAM is never completely dark

• Specialization increases memory

power portion

• Amdahl’s law - need to dim memory

19A. Pedram, S. Galal, S. Richardson, S. Kvatinsky, and M. Horowitz, “Dark Memory and Accelerator-Rich System 

Optimization in the Dark Silicon Era,” IEEE Design & Test (submitted)



Will Memristors Light
the (Dark) Memory?

• Nonvolatility – low static energy

• Dense memory – short wires

• Still large memory -> relatively long wires,

not a fundamental change in energy

20



Fundamental Solution – SW-HW

• Minimizing memory accesses – algorithm 

execution

• High chip-level locality

• Memristive accelerators

can help

21A. Pedram, S. Galal, S. Richardson, S. Kvatinsky, and M. Horowitz, “Dark Memory and Accelerator-Rich System 

Optimization in the Dark Silicon Era,” IEEE Design & Test (submitted)



Memristive Accelerators

• Resistive Associative Processor

(ReAP, Yavits et al. CAL 2015)

• Resistive GP-SIMD (Morad et al., TACO 2016)

• Neuromorphic (Soudry et al. TNNLS 2015)

• Memory Processing Unit (MPU, Kvatinsky et al. 

TVLSI 2014, TCAS II 2014, Levy et al. MEJ 2014)
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Associative Processor

• Processing in-memory (PiM), using CAM

• AP is similar to a look-up table

• Computation is a series of “compare” and 

“write” operation

24



Example: Associative Vector Addition
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AP Complexity
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• Arithmetic:

– Fixed point

• 𝑚 bit add / sub: 𝑂 𝑚 cycles

• 𝑚 bit mult/div: 𝑂(𝑚2) cycles

• Pattern match: 𝑂(1) cycles

• Finding max/min: 𝑂 1 cycles

• Independent of the dataset size:
The larger the problem, the better the 
performance of the Associative Processor!



Resistive Associative Processor
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• Converting a memory crossbar into 
a massively parallel SIMD processor

Enabling a 100M PU-AP



What AP is Good for
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• Dense and sparse linear algebra

• K-means clustering

• Linear SVM classification

• FFT, convolution, feature extraction

• Sequence alignment (Smith-Waterman)

• Graph processing (Dijkstra’s shortest path 
finding)



Performance and Power Consumption
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• ReAP size (and consequently performance) are 
constrained by memristor write energy

• Max Dense Matrix Multiplication performance is 
5TFLOPS under this constraint
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• Temperature and hot 
spots are the reason 
3D integration of 
CPUs and DRAM is 
stalling  

• AP does not have 
this problem due to 
its (almost) uniform 
thermal distribution 

56.0

54.5

55.0

55.5

(a) (b)

ReAP Floorplan

ReAP Thermal Map
ReAP Temperature (vs. DRAM)



Summary

• The dark (silicon and memory) age

– Main source of inefficiency is data movement

• The solution: accelerators and HW-SW 

awareness

• Memristive accelerators!
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Thanks!
shahar@ee.technion.ac.il
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