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Abstract— The growing disparity between processor and
memory performance poses significant limits on system perfor-
mance and energy efficiency. To address this widely investigated
problem, modern computing systems attempt to minimize data
transfer by means of a memory hierarchy. Yet the benefit from
such a solution for data-intensive applications is limited. Emerg-
ing non-volatile resistive memory technologies (memristors) offer
the ability to both store and process data within the memristive
memory cells, with almost no data transfer. In this paper, we
propose algorithms for performing fixed point multiplication
within the memristive memory using Memristor Aided Logic
(MAGIC) gates and execute them in a cycle-accurate simulator
to verify and evaluate them. Previously proposed implementations
were not feasible for execution within memory because the
required number of memory cells for the computation was too
large to fit the size-limited memristive memory arrays. The
algorithms proposed in this paper not only improve the latency as
compared to previously proposed algorithms by 1.8× on average,
but their significantly better area efficiency now makes it possible
to perform numerous fixed point multiplications simultaneously
within memristive memory arrays.

I. INTRODUCTION

Conventional computing systems are based on von Neu-
mann architecture, where the data is stored in a memory
but processed in a separate processing unit. Transferring
the data between these different units is several orders of
magnitude more expensive in terms of both energy and per-
formance as compared to the computation itself [1], which
is the primary bottleneck in data intensive applications. One
promising approach to reduce the amount of data transfer
is moving computation into the memory unit [2]. Real in-
memory processing can be performed using novel memory
structures based on emerging memristive technologies, such as
Resistive RAM (RRAM) [3]. Memristive memory cells consist
of resistive switches (namely, memristors), which change their
resistance according to the voltage across them. Memristive
technologies are considered as alternatives to DRAM and
Flash, due to their high density, low power consumption, and
good scalability [4]–[10].

A unique property of memristive memory cells is their
ability to be used for both memory and logic [11]–[14];
no additional computation elements are needed and the data
movement is minimal. One promising technique for exe-
cuting in-memory computations is Memristor Aided loGIC
(MAGIC) [15]. MAGIC can be used to execute NOR and NOT
operations within a memristive memory array, in which the

resistance of specific memory cells represents the inputs and
outputs of logic gates at different stages of the computation.
Since data is stored in RRAM as resistance, information can
be stored and processed using the same cells, with no need for
conversion, sensing or moving of data. These advantages have
been the driving force behind many recent works on MAGIC
and similar techniques [16]–[20]. An important feature of
MAGIC is that when the inputs and outputs of different gates
are located in the same row/column, the operation of all gates
can be executed simultaneously in a single cycle. Applications
that require the same instruction on multiple data in parallel
are thus likely to benefit greatly from using MAGIC.

Digital image processing, fast Fourier transform [21], con-
volutional neural networks [22], and matrix multiplication are
examples of data intensive applications that should benefit
naturally from MAGIC since many data inputs are processed
similarly in parallel. To simplify complicated multiplication
operations, most of these applications depend on fixed-point
(FiP) multiplication [22]–[33], which is unfortunately not
properly supported by MAGIC yet. Support and optimization
of FiP multiplication is therefore a crucial step in realizing the
potential of MAGIC in these applications.

A previous attempt to implement FiP multiplication using
MAGIC [34] concluded that its excessive latency and area
preclude supporting it in size-limited memory arrays. Thus, the
authors implemented FiP multiplication using standard CMOS
logic in the periphery. This implementation requires reading
the data from the memory array to the periphery, processing
it, and writing it back to the memory, which involves data
movement [2], one of the very problems that MAGIC is
designed to solve.

In this paper, we argue that the MAGIC based FiP multipli-
cation can be significantly improved to fit memristive memory
arrays. This paper makes the following contributions:

• We propose two algorithms for efficient execution of FiP
multiplication using MAGIC gates.

• We execute the proposed algorithms in a cycle-accurate
simulator to verify and evaluate them.

• We show that our algorithms achieve on average 1.8×
better latency and 23× better area efficiency than the pre-
viously proposed implementation [34], making it possible
to perform numerous FiP multiplications simultaneously
within acceptably sized memristive memory arrays.
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Fig. 1. Performing a MAGIC NOR operation within a memristive memory
array. Three independent MAGIC NOR operations are executed in parallel
on the first, third, and fourth rows (gates j, k and n) by applying voltages as
presented. All of the other cells are unselected and isolated.

II. BACKGROUND AND RELATED WORK

A. Memristor Aided loGIC (MAGIC)

The logical state of each memristive memory cell is repre-
sented by resistance, where high and low resistances (ROFF

and RON ) are considered, respectively, as ‘0’ and ‘1’. In
stateful logic techniques [2] such as MAGIC, the inputs of
the gates are the initially stored logical states of the input
memristors, and the output is the logical state of the output
memristor at the end of the computation. In MAGIC, NOR
and NOT logic operations can be executed within the memory
by applying specific voltages (i.e., V0 and ground) to the
input(s) and output memristors, as shown in Figure 1. Note that
MAGIC requires initializing the output memristors to logical
‘1’ (RON ) before the execution [15]. The MAGIC operation of
all gates can be executed simultaneously in a single cycle when
the inputs and outputs of different gates are co-located on the
same row (wordline) or column (bitline). Any row on which
we do not wish to perform the operation can be excluded by
applying an isolation voltage to the corresponding row [17].

B. Related Work

FiP multiplication is similar to integer multiplication but
with an implied decimal point which allows having fractional
results. It could thus be implemented using the partial prod-
ucts algorithm [35]. Previously, we proposed an algorithm to
execute an N -bit adder using MAGIC [17] in 12N+1 cycles.
Imani et al. [34] implemented FiP multiplication by serializing
similar adders after generating the partial products, requiring
15N2 − 11N − 1 cycles and 15N2 − 9N − 1 memristors.
For the rest of the paper, we consider this algorithm to be the
baseline.

The baseline algorithm requires numerous memristors for
relatively small tasks. Particularly, the large number of re-
quired memristors does not permit the execution of FiP multi-
plication on a single row, where even 16-bit FiP multiplication
requires more than 3700 consecutive memristors, much more
than the number available in any reasonable memory array.

Hence, Imani et al. concluded that in-memory FiP multiplica-
tion with MAGIC is impractical.

III. THE PROPOSED FIP MULTIPLICATION ALGORITHMS

In this section, we describe two algorithms for efficient in-
memory execution of FiP multiplication that offer substantial
improvements over the baseline.

The proposed algorithms improve the latency of the exe-
cution (in terms of the number of cycles for the execution
sequence), but more importantly, the area (determined as
the number of memristors participating in the execution) is
linearly dependent on the size (number of bits) of the inputs
rather than the quadratic dependency in the baseline algorithm.
The improvement in area makes it feasible to execute FiP
multiplication in a single row, enabling massive parallelism
within the memristive memory array.

A. Full Precision FiP Multiplication

To multiply two numbers, we use the partial products
multiplication algorithm and reuse the memristive cells during
execution. For simplicity and without loss of generality, we
assume two N -bit numbers, A and B, stored in the same
row (A and B are located in memristors 0 to 2N − 1) in the
memristive memory array. The algorithm starts by initializing
the memristors participating in the computation to RON . A
and B are then negated to memristors at locations 2N to
4N − 1. After that, the partial products are generated and
accumulated (using the latency optimized adder proposed in
[17]) one by one in a repeated multiply-accumulate (MAC)
manner using the same memristors. The entire computation
is summarized in Algorithm 1. Figure 2(a, b, c) shows an
example of this algorithm where A = 010 and B = 001.

The latency of the proposed algorithm is composed of 2N
cycles to generate negated versions of A and B, and N − 1
MAC operations. Each MAC operation takes O(N ) cycles to
complete [17], bringing the total number of cycles to O(N2).
The area required for all the MAC stages is similar to the
area required for a single add operation and a single partial
product (due to the repeated use of the same memristors
for computation), which is O(N ) [17]; together with the 4N
memristors for storing A, A′, B and B′, and 2N memristors
for storing the final result, the total number of memristors is
O(N ). The exact latency and area are summarized in Table I.

The numbers (A and B) inside the memory array are
assumed to be in the same row. However, if the two numbers
are stored in different rows, they should be brought to the
same row by negating each one in 1 cycle to the exact row
(all the bits of each number are negated simultaneously).
Note that while this adds up to 2 cycles to the latency, 2N
cycles are actually saved by removing steps 2 − 4 in the
algorithm, which serially negate the two numbers bit after bit.
Therefore, the expressions listed in Table I include the worst
case scenario. Note that the two numbers might be located
in different memory arrays and thus external data movement
must be considered [36].
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Algorithm 1 Full Precision FiP Multiplication
// Mi = Memristor at location i

// M0 to N − 1 = A, MN to 2N − 1 = B

// M4N to 6N − 1 = Final Result

1: M2N to 20N − 5 ← RON

// Generate A′ and B′:

2: for i = 0 to 2N − 1 do
3: Mi + 2N ← NOT (Mi)
4: end for
5: M6N − 1 ← NOR(M3N − 1, M4N − 1)

// Final ResultLSB ← NOR(A′LSB, B′LSB)

6: for j = 1 to N − 1 do
7: M8N − j ← NOR(M3N − 1− j , M4N − 1)

// First partial productj − 1 ← NOR(A′j, B′LSB)

8: end for
9: INTERMEDIATE RESULT , M7N + 1 to 8N − 1

/* INTERMEDIATE_RESULT refers to First partial

product */

// Perform N − 1 MAC operations:

10: for i = 1 to N − 1 do
11: for j = 0 to N − 1 do
12: M7N − 1− j ← NOR(M3N − 1− j , M4N − 1− i)

// ith partial productj ← NOR(A′j, B′i)

13: end for
14: if i < N − 1 then
15: if i mod 2 == 1 then
16: (M8N to 9N − 1, M6N − 1− i) ←

SUM(M6N to 7N − 1, INTERMEDIATE RESULT)
/* SUM(ith partial product,

INTERMEDIATE_RESULT) */

17: INTERMEDIATE RESULT , M8N to 9N − 1

/* INTERMEDIATE_RESULT refers to the new

intermediate result */

18: (M6N to 8N − 1, M9N to 20N − 5) ← RON

19: else
20: (M7N to 8N − 1, M6N − 1− i) ←

SUM(M6N to 7N − 1, INTERMEDIATE RESULT)
/* SUM(ith partial product,

INTERMEDIATE_RESULT) */

21: INTERMEDIATE RESULT , M7N to 8N − 1

/* INTERMEDIATE_RESULT refers to the new

intermediate result */

22: (M6N to 7N − 1, M8N to 20N − 5) ← RON

23: end if
24: end if
25: end for
26: M4N to 5N ← SUM(M6N to 7N − 1,

INTERMEDIATE RESULT)
/* Final ResultMSBs ← SUM(Final partial product,

INTERMEDIATE_RESULT) */

B. Limited Precision FiP Multiplication

The algorithm proposed in the previous subsection generates
a result with twice the precision of the inputs (2N ). However,
in conventional systems, especially in digital signal processors

TABLE I
LATENCY AND AREA OF THE PROPOSED FIP MULTIPLICATION
ALGORITHMS. N IS THE NUMBER OF BITS IN EACH NUMBER.

Algorithm Latency Area
(Cycles) (# of memristors)

Full Precision 13N2 − 14N + 6 20N − 5
Limited Precision 6.5N2 − 7.5N − 2 19N − 19

(DSPs) [32], [33], the inputs and outputs are from the same
type (precision). Hence, it is inefficient and unnecessary to
generate a 2N -bit result.

To limit the precision of the result to N bits, we propose to
perform a limited precision FiP multiplication, which modifies
the previous algorithm by generating and accumulating only
the necessary partial products, as illustrated in the example in
Figure 2(d). To generate only the necessary partial products,
the algorithm decreases the size of partial product i to N − i
bits by skipping the most significant i bits when this partial
product is generated. The reduced size partial products are
accumulated in a MAC manner similarly to Algorithm 1. The
new algorithm improves the latency by approximately 2×.

The exact latency and area are summarized in Table I. The
benefits in latency come from decreasing the size of the partial
products throughout the computation (N,N − 1, ..., 1) rather
than using a constant N -bits for each partial product, which
reduces the total number of bits accumulated and generated in
Algorithm 1 to half.

IV. SIMULATION RESULTS

To verify the correctness of the proposed FiP multiplication
algorithms, we implemented a functional simulator written in
MATLAB that accurately performs the operations proposed
in the algorithms cycle by cycle. The results confirmed the
theoretical results.

To evaluate the latency and area (number of memristors
participating in the computation) of the proposed FiP multipli-
cation algorithms, we compare them to the baseline algorithm
by Imani et al. [34]. Table II lists the latency and area results
for FiP multiplication as a function of different numbers of
bits (commonly used N -bit precisions) generated by the cycle-
accurate simulator. The average improvement in latency is
1.2× for full precision and 2.4× for limited precision. This
improvement is mainly attributed to the algorithm’s ability to
avoid adding unnecessary zeros before each addition operation
of partial products as well as to its ability to generate two
negated versions of the input numbers. The latter makes it
possible to generate each partial product in N cycles rather
than 3N . Additionally, the limited precision algorithm reduces
the number of bits generated as partial products and accumu-
lated to half. The benefits of this reduction are observed in the
2× improvement over the full precision algorithm.

Most of the savings in area are due to the proposed MAC
operation, which allows the same memristors to be reused
for all the partial products and add operations. The average
improvement in area is 22× in full precision and 24× in
limited precision; more importantly, area is linearly dependent
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Bits not generated 
and not accumulated
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and accumulated

Step number in 
Algorithm 1:

1
(Initialization)

2-4
(Generating A’, B’)

5-8
(First partial product)

10-13
(i == 1)

14-16
(Sum = 000 + 01 = 0001)

18
(Initialize prev. used cells)

10-13
(i == 2)

26
(Sum = 000 + 000 = 0000)

(d)

Fig. 2. Example of full precision FiP multiplication described in Algorithm 1 where A = 010 and B = 001. (a) The general structure of the processed row,
(b) the same row during different steps of the execution, and (c) the multiplication of A and B, and (d) its execution in limited precision FiP multiplication.
Brown dots mean more logical ‘1’s (RON ), other dots mean the memristors participating in the SUM computations, and the colors of the bits illustrate what
is being computed from the multiplication of A and B.

TABLE II
LATENCY AND AREA RESULTS GENERATED BY A CYCLE-ACCURATE SIMULATOR FOR THE PROPOSED FIP MULTIPLICATION ALGORITHMS AS FUNCTION

OF NUMBER OF BITS (N ) COMPARED TO THE BASELINE ALGORITHM [34].

Latency (Cycles) Area (# of memristors)
N Imani et al. [34] Full Prec. Limited Prec. Imani et al. [34] Full Prec. Limited Prec.
8 871 726 354 887 155 133

16 3663 3110 1542 3695 315 285
32 15007 12870 6414 15071 635 589
64 60735 52358 26142 60863 1275 1197

on the number of bits rather than the quadratic dependency in
the baseline algorithm.

The proposed algorithms assume the array size is suffi-
ciently large to execute any given N -bit number multiplication.
Nevertheless, the size of a memristive array is limited in
practice, typically to 512 × 512 [37]. Since the prevalent
FiP precision is 16-bit [32], [33], the required number of
rows/columns in the memristive array (in the worst case
algorithm) is therefore 315 rows/columns, which is compatible
with state-of-the-art memristive memory arrays. This is in
contrast to the baseline algorithm, where 3700 rows/columns
are required. Hence, we conclude that the proposed algorithms
enable in-memory FiP multiplication using MAGIC.

V. EXPLOITING THE PARALLELISM OF MAGIC
In the proposed algorithms, the computation is done in a

single row, which seemingly hinders reaching the full potential
in terms of latency. Nevertheless, this approach has been
chosen because aligning multiple inputs in multiple rows
enables vector operations to be realized (multiplying multiple
inputs simultaneously) with the same latency as a single
multiplication. For example, for 16-bit limited precision FiP

multiplication the latency is approximately 1500 cycles. While
this value for a single multiplication is high, in memristive
arrays of size 512 × 512, 512 multiplications could be per-
formed simultaneously, effectively decreasing this latency to
3 cycles for a single multiplication and substantially improving
throughput (number of executions per cycle).

VI. CONCLUSIONS

In this paper, we propose novel algorithms that enable the
efficient execution of FiP multiplication within a single row
in memristive memory arrays using MAGIC. We envision that
parallel execution of the algorithms will enable the efficient ex-
ecution of more sophisticated data intensive applications such
as the Hadamard product [27] and image convolution [26],
which we seek to implement and evaluate in future work.
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