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DIDACTIC: A Data-Intelligent Digital-to-Analog
Converter with a Trainable Integrated Circuit
using Memristors

Loai Danial™, Nicolds Wainstein, Shraga Kraus, and Shahar Kvatinsky, Member, IEEE

Abstract—1In an increasingly data-diverse world, in which data
are interactively transferred at high rates, there is an ever-
growing demand for high-precision data converters. In this paper,
we propose a novel digital-to-analog converter (DAC) configu-
ration that is calibrated using an artificial intelligence neural
network technique. The proposed technique is demonstrated on
an adaptive and self-calibrated binary-weighted DAC that can
be configured on-chip in real time. We design a reconfigurable
4-bit DAC with a memristor-based neural network. This circuit
uses an online supervised machine learning algorithm called
“binary-weighted time-varying gradient descent.” This algorithm
fits multiple full-scale voltage ranges and sampling frequencies
by iterative synaptic adjustments, while inherently providing
mismatch calibration and noise tolerance. Theoretical analysis,
as well as simulation results, show the efficiency and robustness
of the training algorithm in reconfiguration, self-calibration, and
desensitization, leading to a significant improvement in DAC
accuracy: (.12 LSB in terms of integral non-linearity, 0.11 LSB
in terms of differential non-linearity, and 3.63 bits in terms of
effective number of bits. The findings constitute a promising
milestone toward scalable data-driven converters using deep
neural networks.

Index Terms— Adaptive systems, calibration, converters,
memristors, neuromorphic computing, reconfigurable architec-
tures, supervised learning.

I. INTRODUCTION

HE digital-to-analog converter (DAC) is a ubiquitous

component that exists in every data-driven acquisition
system and mixed-signal circuit. DACs are the link between
the digital domain of signal processing and the real-world of
analog transducers [1]. In modern VLSI circuit design, power
consumption awareness and reliable computation constraints
have rigorously paved the way towards hybrid analog—digital
design methodologies. A key role of an efficient hybrid frame-
work is a fast, robust, and ultra-low-energy DAC. Achieving
both high resolution and speed is, however, challenging due
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to the effect of timing errors, jitters, and parasitic capac-
itance. Furthermore, the real limiter of achieving accurate
CMOS-based data converters is device mismatches due to
manufacturing process variations along the continuous tech-
nology scaling. These imperfections are poorly handled by
current techniques due to their tremendous overhead. This
trade-off between performance and reliability is a major bot-
tleneck in data converter design, leading to special purpose
designs and sophisticated custom techniques for specific appli-
cations [2], [3].

This paper investigates innovative approaches for digital-
to-analog conversion by artificial intelligence (AI) techniques.
A novel approach to design a generic, high-precision, high-
speed, and energy-efficient DAC using artificial neural net-
works (ANNs) and neuromorphic computing [4] is proposed.
The immense computational power of neuromorphic chips
will encourage the interpolation of emergent collective char-
acteristics into DAC design. Parallelism, simplicity, fault tol-
erance, and energy-efficiency are just a few examples of
properties that would enhance conventional DAC circuits.
Notably, the trainable, adaptive, and self-repairing capabilities
of machine learning algorithms are considered novel intelligent
features for next-generation DACs. These features, based on
online predictions and cognitive decisions, will enable DACs
to be self-reconfiguring, self-calibrating, and noise tolerant,
utilizing the massive amount of correlated data to adapt to
real-time variations and the running application specifications.

In the proposed ANN circuit, the promising technology
of memristors is used to design synapses for the realization
of artificial neural systems [5]. The small footprint, analog
storage properties, low energy consumption, and non-volatility
characteristics of memristors potentially offer brain-like den-
sity in integrated technologies for ANNs [6]. We leverage the
use of memristors as synapses in a high-speed and ultra-low-
power DAC [7] to achieve high precision, and a cost-effective
reconfigurable, versatile, single-channel architecture.

The proposed binary-weighted DAC, which we term
DIDACTIC, consists of an adaptive single-layer neural net-
work, based on hybrid CMOS-memristor mixed-signal circuit
design. The conductance of the memristors can be adjusted
on-chip by a gradient descent training algorithm [8], [9].
The algorithm is capable of using different full-scale analog
teaching signals and sampling frequencies to flexibly adjust
the memristors’ conductance online for general purpose DACs.
The proposed DAC is also capable of self-calibrating device
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mismatches and process variations. As a result, it alleviates
non-linear distortions, tolerates noise, improves the effective
number of bits (ENOB), and achieves almost ideal static
figures of merit, i.e., integral and differential non-linearity
(INL and DNL, respectively), with approximately zero least
significant bits (LSB).

The rest of this paper is organized as follows. In Section II,
background on memristors and online gradient descent training
is given. In Section III, DIDACTIC architecture, training
algorithms, circuit design, and mechanisms of a four-bit DAC
are described. In Section IV, the circuit operation and learning
capability are evaluated, demonstrating a reconfigurable and
self-calibrated DAC with online binary-weighted time-varying
gradient descent training. In Section V, comparison, design-
trade-offs and large-scale architectures are discussed. The
paper is concluded in Section VI.

II. BACKGROUND

In this section, we present basic background information
on the building blocks of this paper: a binary-weighted
DAC, memristors, and the online gradient descent learning
algorithm. We emphasize their correlated characteristics to
simplify the understanding of the proposed device.

A. Binary-Weighted DAC

The simplest type of DAC uses a binary-weighted architec-
ture [1], where N (number of bits) binary-weighted distributed
elements (e.g., current sources, resistors, or capacitors) are
combined to provide a discrete analog output with finite
resolution. The binary-weighted DAC is based on a simple
and intuitive concept that utilizes the fundamental rule-of-
thumb binary to decimal basis transformation. The direct
conversion feature can be exploited for high-speed applica-
tions [1] because it uses a minimal number of conventional
components and small die area. This DAC topology relies on
the working principle of the inverting summing operational
amplifier circuit, as shown in Fig. 1. Hence, the output voltage
is the inverted sum of the input voltages, weighted by the
ratio between the feedback resistor and the series resistance
for each input. Digital inputs follow full-scale voltages, which
means that logical ‘1’ is equivalent to Vpp, and similarly,
logical ‘0’ is equivalent to 0 V. The LSB input is connected
to the highest resistance value, which equals the feedback
resistance R. Accordingly, the MSB input is connected to the
lowest resistance value R /2" ~!. The other bits are correspond-
ingly determined in a binary-weighted fashion. The resulting
discrete voltage of the amplifier output is

1 N—-1
Vou = =53 2, 2'Vis ()
i=0

where the minus sign is a result of the inverting operational
amplifier, and V; is the digital voltage input of a bit with
index i, after it has been attenuated by 2N which is a normal-
ization factor that fits the full-scale voltage. The output voltage
is proportional to the binary value of the word Vy_1 ... Vp.
Despite the simplicity of the binary-weighted DAC concept,
critical practical shortcomings have hindered its realization.
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Fig. 1. Binary-weighted resistors based DAC.

The variability of the resistors, which defines the ratio between
the MSB and LSB coefficients (dynamic range), is enormous
and grows exponentially with the number of resolution bits,
making accurate matching very difficult, and overwhelming
a huge asymmetric area with power starved resistors, e.g.,
for N bits the ratio equals 2V~!. Furthermore, maintaining
accurate resistance values over a wide range is problematic.
In advanced submicron CMOS fabrication technologies, it is
challenging to manufacture resistors over a wide resistance
range and preserve an accurate ratio, especially in the presence
of temperature variations. Process imperfections degrade the
conversion precision and increase the vulnerability to mis-
match errors, as listed in Table III in terms of INL, DNL,
and ENOB.

Therefore, practical limitations, scalability drawbacks, and
real-time variations are making the analog output V,,,;, deter-
mined by (1), non-deterministic and pushing binary-weighted
DACs out of the band of interest of both high-speed and
high-precision applications. Tremendous efforts have been
invested in developing novel techniques using CMOS to
eliminate mismatch errors; such techniques include self-
calibration [10] or current steering [11]. Alternative architec-
tures, e.g., fully/partially segmented DACs, have emerged to
achieve better accuracy and robustness [11].

B. Memristors

The memristor was originally proposed in 1971 by
Chua [12] as the missing fourth fundamental passive circuit
element. Memristors are two-terminal analog passive devices
with varying resistance, which changes according to a time
integral of the current flowing through the device, or alter-
natively, the integrated voltage across the device. Memristors
are non-volatile by definition, and in their physical realization,
they are usually fabricated in the back-end-of-line (BEOL)
of the CMOS process using only a few masks [13]. The
relatively small size of physical memristors enables the inte-
gration of memory with computing elements, allowing com-
pact, dense, and efficient parallel architecture for a variety
of applications such as memory [14], analog circuits [15],
logic design [16], machine learning algorithms [17] and
ANNSs [8]. The activation-dependent dynamics of memristors
make them a promising feature for registering and updating
synaptic weights. Thus, it is attractive to integrate memristors
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Fig. 2.

as weighted elements in binary-weighted DACs [7] to achieve
high energy-efficiency and scalability. In previous work [8], we
proposed the following small signal analysis model of mem-
ristors, which perfectly describes the memory state derivation
of synaptic weights:

i(1) = G (s(1)) (1), @)
d
;(f) = Fo(0), 5(1)). 3)

where s is a general state variable that evolves according
to a function of voltage f. Eq. (2) is Ohm’s law for a
time-varying conductance G. Thus, the memristor enables an
efficient design of trainable neural networks in hardware [8].
The VTEAM model [18] is used in this paper to accurately
model the non-linear memristive behaviors in our design and
evaluation.

C. Online Gradient Descent Algorithm

The field of machine learning (ML) is dedicated to the study
and implementation of systems that can learn from data, and
evolve their cognitive ability to make crucial decisions based
on a training phase. ANNs and neuromorphic computing are
well-established infrastructures that apply brain-inspired learn-
ing rules to interpolate novel computational abilities [4], e.g.,
adaptation and self-repair, beyond the conventional paradigm.
In previous work [8], we analyzed a simple neural network
topology (perceptron), comprising a single layer of binary
inputs V;, synapses W; (decimal weights), and a single neuron.
The neuron is considered the de facto neuroprocessing element
that performs the following dot product of inputs and weights,

N—1
A= Z W Vi, “4)
i=0

where A is an analog result of the digital inputs’ weighted
sum. From this stage, both deterministic and non-deterministic
equivalence between (1) and (4) are derived. Thus, the discrete
voltage of the DAC output as defined in (1) can be seen
as a special case of a single-layer ANN, and (4) could be
adjusted, using Al learning methods, to behave as a binary-
weighted DAC with intrinsic variations. To the best of our

Flow of the online binary-weighted time-varying gradient descent training algorithm, which updates the weights according to the error function.

knowledge, no neural based DAC has been developed in the
past. We exploit the neural network’s intelligent properties to
achieve an adaptive DAC that is trained online by an ML
algorithm.

Assume a learning system that operates on K discrete trials,
with N digital inputs Vi(k), actual discrete output A®) as in (4),
and desired labeled output (i.e., teaching signal) r®. The
weight W; is tuned to minimize the following mean square
error (MSE) of the DAC through the training phase

k=1
A reasonable iterative update rule for minimizing (5) (i.e.,
updating W, where initially W is arbitrarily chosen) is the
following online stochastic gradient descent iteration,

Aw® OE _ \y® oE  0A®
. = ——”——————— . frd ——” P —
! 6Wi(k) l 0A® oW,
(k) _ k k (k)
= AW ——r](A()—t())Vi , (6)

where # is the learning rate, a small positive constant,
and during each iteration k, a single empirical sample of
the digital input voltage V®) is chosen randomly. This
learning algorithm, called Adaline or LMS [19], is widely
used in adaptive signal processing and control systems [20].
Note that (6) is a local update rule, i.e., the change in
synaptic weight W; depends only on the related components
A® & and Vi(k). This local update, which is ubiquitous in
ANN training and ML algorithms, enables a massively parallel
acceleration. The training phase continues until the MSE is
less than E;preshoid, @ small predefined constant threshold
that quantifies the learning accuracy. Due to the periodicity
characteristic of the data used in digital-to-analog conversion,
the convergence time scale is inversely proportional to the
bit significance degree. For example, if the digital inputs are
randomly generated, then the expectation of their correspond-
ing teaching analog label will be in the middle of the analog
dynamic range. The MSB, which divides the data range into
two different sections, will begin its adjustment procedure
towards the error gradient descent. In the same way, other
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(a) Schematic of a four-bit adaptive DAC based on a single layer ANN and binary-weighted synapses, trained online by a supervised learning

algorithm executed by the feedback. (b) Schematic of the memristive synapse. (c) Feedback circuit for the gradient descent learning algorithm. (d) Schematic
of the PWM circuit [9] that generates fixed amplitude pulses with a time width proportional to the subtraction product between the real and teaching signals.

bits will gradually begin their adjustment procedure later, after
they converge to their relevant sections. Therefore, the training
dynamics of less significant bits is complex and requires more
time to be captured. Hence, the convergence time expectation
is also binary-weighted distributed.

The LSB, which represents the most precise quantum,
requires the longest resolution match and the lengthiest train-
ing time to converge. While the MSB can quickly achieve
a stable value, the LSB may still present oscillations, thus
continuously changing the collective error function in (5).
Concurrently, the MSB will be disturbed and swing back
and forth recursively in a deadlock around a fixed point.
This problem is aggravated in the presence of noise and
variations, and ameliorated by using smaller learning rates.
Hence, we propose a slightly modified update rule to guarantee
a global minimum of the error, and to fine-tune the weights
proportionally to their significance degree. We call the mod-
ified rule the binary-weighted time-varying gradient descent
learning rule, expressed as

AWi(k) — _n(t) (A(k) _ t(k)) . Vi(k)’ (7

where 7(¢) is a time-varying learning rate, decreasing in a
binary-weighted manner along with the training time, as shown
in Fig. 2. The expression for 7(t) is

n if k<K/2
n/2 if K/2 <k<3K/4
n(t) =
n/2N"1 i @V -y k2N <k < 2V - )
K /2N,

This learning rule utilizes the convergence time acceleration
and the decaying learning rate to reduce bit fluctuations around
a fixed point. In Section IV, we show that this learning rule
is better than (6) in terms of training time duration, accuracy,
and robustness to learning rate non-uniformity.

III. NEURAL NETWORK DAC ARCHITECTURE

In this section, we present DIDACTIC, our proposed DAC
architecture. We begin with a system overview, followed by the
circuit design. Finally, the learning algorithm implementation
is presented.

A. System Overview

We leverage the conceptual simplicity, parallelism level, and
minimum die size of the binary-weighted DAC architecture
by implementing online gradient descent in hardware, thus
achieving a reconfigurable, accurate, adaptive, and scalable
DAC that can be used for high-speed, high-precision, and cost-
effective applications. In Fig. 3(a), the proposed architecture
for a four-bit neural network DAC is shown. As mentioned,
the device is based on memristive synapses that collectively
integrate through the operational amplifier, and a feedback
circuit that regulates the value of the weights in real time
according to (7). The architecture is composed of four synapse
units, one neuron unit, and a synchronous training unit.

Depending on the characteristics and requirements of the
application, a set of system parameters is determined. First,
the sampling frequency f;, which specifies the DAC speed,
is determined, followed by the number of resolution bits N,
which specifies the accuracy of the converter, and then the
full-scale voltage Vg, which specifies the DAC input dynamic
range. Dynamic specifications concerning the learning rate are
taken into consideration during the training phase, in order to
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address further system requirements such as desired precision
level, training time, and power consumption. All these speci-
fications are defined for the peripheral circuitry according to
the application requirements, and are certainly bounded by the
technology. Voltage regulators for voltage scaling and phase
locked loop (PLL) for frequency scaling are examples of such
circuits [21].

The supervised learning algorithm is activated by inter-
changeable synchronous read and write cycles, utilizing the
same execution path for both read and write operations in
situ. Reading is the intended conversion phase; its final result
is sampled at the end of the reading cycle T, after transient
effects are mitigated, and it is latched by a negative-edge
triggered latch for the entire writing cycle. The writing cycle
T,, activates the feedback circuit, which executes the learning
algorithm, and compares the actual analog output of the DAC
sampled at the end of the read cycle to the desired analog
value, which is supplied by the peripheral circuit. During con-
version, the training feedback is disconnected, leaving a simple
low-power-consuming binary-weighted DAC [7]. It is prefer-
able that the reading cycle be equal to the writing cycle, which
will make it possible to capture the same non-deterministic
behaviors, intrinsic noise, and environmental variations in the
synaptic weights while training. Thus, the sampling frequency
is

1

fs = m (8)

B. Artificial Synapse

For the synapse design, we adopt our previously proposed
synapse circuit [8], which is composed of a single memristor,
connected to a shared terminal of two MOSFET transistors
(p-type and n-type), as shown in Fig. 3(b). The output of
the synapse is the current flowing through the memristor. The
synapse receives three voltage input signals: u and u = —u
are connected, respectively, to the source of both transistors,
and the enable signal e is connected to the gate of both
transistors. The enable signal can have a zero value; then, both
transistors are non-conducting, Vpp, when only the NMOS is
conducting, or —V pp when only the PMOS is conducting.
Thus, the magnitude of the input signal u should be less than
the minimum conductance threshold,

Vrol). ©)

The synaptic weight is modified based on the value of e,
which selects either input # or u#. Thus, the writing voltage,
Vi (or —V,), is applied via the source terminal of both
transistors, and must be higher than the threshold voltage for
memristive switching:

|u| < min (VTn,

VTP|)'

In this paper, we use voltage controlled synapses, unlike
the synapses in [8]. The read voltage V, must be sufficiently
lower than the switching threshold of the memristor to prevent
accumulative reads from disturbing the conductance of the
memristor (i.e., state drift) after several read operations. Hence,

Y

[Vin.mem| < [Vip| < min (VTn, (10)

Vel < |Vth,mem|-

A great advantage of these low read and write voltages is the
resulting low-power consumption [7], and low subthreshold
current leakage; high leakage would threaten the accuracy of
the memristor. Voltages V,, and V, are attenuated values of
the digital DAC inputs that fit design constraints (10) and (11).
Note that the right terminal of the memristor is connected to
the virtual ground of the operational amplifier, whereas the
left terminal of the memristor is connected to a transistor that
operates in the ohmic regime as described in [8].

The assumption of ohmic operation is valid only if the con-
ductance of the memristor is much smaller than the effective
conductance of the transistor, as follows,

1
(VDD —2max(Vy,, VTP))

where K is a technology dependent constant that describes the
transistor conduction strength, Vpp is the maximum power
supply, s is the memristor internal state variable distributed
between [0-1], and R,., refers to the memristor resistance
as a function of the state variable s. The latter relationship is
chosen to be linear [18]

Rinem (s(t)) > % 5 (12)

Rpuem(t) = s(t) - (Rorr — Ron) + Ron. (13)

As a result, the memristor resistance level that could
be achieved during training is lower bounded. Otherwise,
the applied voltage over the memristor during the write cycle
will not be sufficient to stimulate it. This constraint is achieved
by the following condition:

Rinem smin (Smin (1))

1

Vi
KVpp—2vy) + Runem s min (Smin (1))

(14)

= |Vth,mem| .

The voltage division creates non-uniformity in the writing
voltage of each cycle and will explicitly affect the learn-
ing rate. A shock absorption capacitor [9] was added to
eliminate fluctuation spikes derived from either subthreshold
leakage or high frequency switching. Its value is bounded by
the sampling frequency of the DAC,

1

B — T 15
K (Vpp —2Vr) (1>

1
Cshock,max =< z
C. Artificial Neuron

The neuron is implemented by an operational amplifier with
a negative feedback resistor R [7]. It receives currents from
N memristors and sums them simultaneously, as follows:

%—ZRRvai,

i=0

(16)

where V; is a read voltage via a memristor with index i,
which represents the digital input value of the i-th bit. In the
reading cycle, only the NMOS transistor is conducting since
e = Vy4, with a negative read voltage to eliminate the
inverting sign of the operational amplifier. The resolution
of the DAC, which equals the minimal quantum, is defined
by r = Vps/2V. The maximum analog output is achieved
when the digital input ‘11...11" is inserted, and is equal to
Apmax = (ZN — l) VEs /2N . Therefore, the read voltage equals
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TABLE I

CIRCUIT PARAMETERS

151

Type Parameter Value Type Parameter Value
Device parameters Design Parameters
Power supply Vop 1.8V Shock capacitor Cshock 100 fF
NMOS W/L 10 Writing voltage Vi +05V
VTn 0.56V Reading voltage |74 —0.1125V
PMOS W/L 20 Feedba?k re.sistor R 45 k0
Vr, -0.57V Reading time T, 5us
Vonjors -03V,04V Writing time Ty 5us
Konjors —4.8mm/s, 2.8mm/s Parasitic capacitance Coriem 1.145 fF
Memristors Qonjoff 3,1 Parasitic inductance Lem 3.7pH
Ron 2 k0
Rorr 100 k0
f(s) s-(1=>s)
DAC parameters Learning parameters
Sampling frequency fe 0.1MSPS Maximum learning rate max () 0.01
Number of bits N 4 Error threshold Etnreshold 2-1073
v
Full-scale voltage Vis [% — Vppl

V,=r= VFS/2N, and it should obey the constraints in (11).
Based on this read voltage, bounds on the number of resolution
bits that the DAC could hold were formalized. From (11),
we extract the minimal number of resolution bits,

V
Noin > | logs | ——=>—— ) |, (17)
min (VT”, VTp)

where the maximal number of resolution bits is bounded
by the binary-weighted levels within the dynamic range of

the memristor, Npyqx < log, (15?00)?\/ L ) Because of the serial
transistor resistance, however, it is undesirable to use sur-
rounding levels. Doing so decreases the number of bits by
log, (m—‘, which is approximated to be zero in
our case because Roy > 1/K(Vpp — 2Vr). Additionally,
in the case of smaller full-scale voltage, some levels should
be reserved. For example, if the full-scale voltage is half of
the maximum power supply Vrs = V pp/2, then the high-
est binary-weighted level should be reserved. Doing so will
decrease the effective number of bits by ’710g2 g VoD )-‘ The

VFs,min
maximum number of bits that the proposed DAC could convert

is up to

RorF 1
— log,
Ron RonK (Vpp —2Vr)

_ ’710g2 (V‘}:DDA )—‘ (18)

In this case, if the minimal full-scale voltage is Vs = V pp/2,
then the number of bits that could be converted by a DAC with
the device parameters listed in Table I is at most four.

In the same context, the feedback resistor is upper-bounded
by the minimal full-scale voltage and the highest resistance of
the memristor,

Nmax < log, (

R V
- RorrVrs

Ry R (19)

Vbp

when considering bi-directional variations of the training
above and below the fixed resistance level, respectively. These
variations are evaluated as +10% of the nominal value.

D. Feedback Training Unit

The feedback circuit is the main component for the exe-
cution of the binary-weighted time-varying gradient descent
algorithm, which precisely regulates the synaptic adaptation
procedure. Our aim is to design (7) in hardware and implement
basic subtraction and multiplication operations. The subtrac-
tion discrete voltage product (namely, the error) is pulse
modulated by a pulse-width modulator (PWM) with time
width linearly proportional to the error and =Vpp, 0 V pulse
levels. As illustrated in Fig. 3(c), the PWM product is applied,
via the feedback loop, to the synapse as an enable signal.
The PWM [9], as shown in Fig. 3(d), is controlled by a
clock that determines the maximum width of the product
pulse. If sign (A —T) > 0, then the NMOS is conducting
and the subtraction amplitude is compared to a positive ramp
with full-scale voltage and clock cycle time width. Otherwise,
the PMOS is conducting and the subtraction amplitude is
compared to a negative ramp with full-scale voltage and clock
cycle time width. As implied in (7), the learning rate is time
varying. This is achieved by controlling the PWM with clocks
with binary-weighted frequency multiples.

Therefore, the multiplication is invoked as an AND logic
gate and controlled by the modulated enable signal, whereas
the attenuated digital input is connected via the source of the
synapse. The input is attenuated to obey the constraint in (10),
as specified in Table I. The learning rate is a key factor of the
adaptation performance: it depends on the circuit parameters
listed in Table I, and on the write voltage, pulse-time width,
feedback resistor, present state, and memristor device physical
properties. The learning rate is

AR  (Rorr — Ron) As(1)
nt) = — = ,
R Rf

(20)
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where As is the change in the memristor internal state, and is
defined as in the VTEAM model,

Tll)
VW Gon/of f
As = / Konjorf (m - 1) - fls)de, (21)
onj/o
0

where Kopn/off, and aon/ofy are constants that describe the
state evolution rate and its nonlinearity, respectively, Vou/orf
are voltage thresholds, and f(s) is a window function that
adds nonlinearity and state dependency during state evolution.
These parameters are fitted to the Pt/HfOy/Hf/TiN RRAM
device with a buffer layer [22], with a high-to-low resistance
state ratio of ~50 and low forming, set and reset voltages.

1V. EVALUATION

In this section, the proposed four-bit DAC design is dis-
cussed and evaluated in a SPICE simulation using a 0.18x m
CMOS process and the VTEAM memristor model [18]. First,
the learning algorithm is evaluated in terms of mean square
error (MSE) and training time. Then, a static evaluation of
the circuit is described, and finally the dynamic evaluation
is presented. The proposed DAC has been tested in both
ideal and non-ideal cases. The circuit parameters, architectural
specifications, and design constraints are listed in Table I.

A. Ideal Case

The basic deterministic functionality of the four-bit DAC
is demonstrated while being trained by the online gradient
descent algorithm. Figure 4(a) shows the synapse resistive
value where two sawtooth training datasets with different
full-scale voltage ranges (Vpp, and Vpp/2) are applied suc-
cessively in real time. It can be observed that the network
converges from a random initial state to a steady state once
the error determined by (5) is lower than Ejp,eshoid, after
~2000 training samples. Furthermore, it can be observed that
when the full-scale voltage changes to Vpp/2, the system
converges to a new steady state that quantizes 0.9V full-
scale. In each case, the network is successfully reconfigured
to operate under different specifications, as shown by different
binary-weighted synaptic values in Fig. 4(a).

The DAC is next evaluated in terms of accuracy and training
time, as illustrated in Fig. 4(b—d). The static evaluation in
response to the DC ramp signal at three different time stamps
is shown in Fig. 4(b) for (I) the initial state before training,
(II) coarse-grained training (i.e., where the error is slightly
higher than E;jresnora), and (II) fine-grained training (i.e.,
where the error is low enough and the DAC response converges
to the final, desired state). The teaching staircase in Fig. 4(b)
is the same DC ramp input that statically evaluates the DAC
at the three given time stamps. Therefore, the differences
between two adjacent digital input codes within the actual
DAC output are the differential non-linearity (DNL), and
similarly, the total voltage differences between the actual DAC
output and the desired staircase for each digital input code are
the integral non-linearity (INL). Results of the DNL and INL
are shown, respectively, in Fig. 4(c) and 4(d).
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Fig. 4. (a) Binary-weighted synaptic adaptation during the training phase

for the 1.8V full-scale output voltage range. Immediately, synapses are
trained for the 0.9V full-scale output voltage range and shown in real time.
(b) Comparison between the teaching dataset and the actual neural discrete
analog DAC output at three different time stamps during the training; an
identical staircase is achieved after the training is complete. (c) Differential
and (d) integral non-linearities of the DAC at three different time stamps in
response to the DC input voltage ramp.

As shown in Fig. 4(c—d), before the training state the DAC is
completely non-linear and non-monotonic, with several miss-
ing codes. Thus, the maximum difference between the discrete
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analog output and the ideal staircase, and the maximum dif-
ference between two adjacent analog levels, are considerably
high: INL ~ —32 LSB, and DNL ~ —13 LSB. At the second
time stamp (2ms ~ 200 samples), however, the DAC performs
better and appears monotonic but not sufficiently accurate
(INL ~ —1 LSB, DNL ~ —1 LSB). After the training is
complete (20ms), the DAC is fully calibrated: INL ~ 0 LSB,
and DNL ~ 0 LSB. The fact that the DNL and INL are almost
ideal proves that the training algorithm achieves maximum
performance. The DAC also showed robustness when it was
simulated with a randomly generated training dataset.

The improvements in static figures of merit significantly
affect the dynamic figures of merit. The ENOB is a function
of signal-to-noise and distortion ratio, whereas the distortions
are a result of the DAC’s non-linearity. If the DAC is non-
linear (e.g., INL, DNL=0), then harmonic distortion spurs will
appear in the dynamic response, degrading the ENOB [1].
Therefore, improving the INL and DNL by learning and
calibration techniques alleviates distortions and improves the
ENOB, improving the precision of the DAC. To evaluate the
ENOB, the DAC is dynamically evaluated and analyzed in
response to a sine input with 40 k H z frequency, which meets
the Nyquist condition: finpus < fs/2. The achieved ENOB
in the ideal case is 3.71, which is almost ideal considering
the intrinsic quantization error. All the extracted performance
metrics are summarized in Table III.

B. Non-Ideal Case

Usually, analog domains suffer from reduced robustness
and vulnerability to noise and variations in comparison to
their digital counterparts. DACs are being continuously pushed
towards their performance limits as technology scales down
and system specifications become more challenging. While
device mismatch and process imperfections in modern DACs
can be compensated for by calibration mechanisms [10], noise
can irreparably degrade performance and is less straightfor-
ward to capture at design time. Several analysis methods
have been established to estimate noise sources and their
impact on the performance [23], [24]. All these mechanisms
are specific and technology dependent, requiring exhaustive
characterization, massive validation, and relatively long devel-
opment time-to-market. Adaptive intelligent systems motivated
by machine learning algorithms are, however, inherently robust
to noise, which is a key element in the set of problems
they are designed to solve. This suggests that the effects
of intrinsic noise on the performance of the analog circuit
are relatively small. Therefore, online training algorithms are
not exclusive to reconfiguration, but can also be used for
self-calibration, adaptation, and noise tolerance with generic
standard methodology [8].

For this reason, a crude estimation of the magnitude of
noise and variability has been extracted from [8], [23]-[30]
and characterized as listed in Table II:

1. The process variation parameters for the memristor are
pessimistically chosen, with a coefficient of variation
(CV = standard deviation/mean ~10%) to cover wide
reliability margins [8]. The variability in the parameters

TABLE 11
CIRCUIT VARIATIONS & NOISE

Type Nominal value Variance
Device mismatch
. W = 2um
0,
Resistor R =500/ +0.5%um
Canacitor W = 0.15um +1%um
P C, = 0.68fF /um?
wW/L +10%
NMOS/PMOS v, L7%Y
Comparator Vossset +5mV
Von Joff +10%V
Memristor Konjors +10%mm/s
Ron +10%0
Rorr
Noise sources
Thermal noise 2kTg;* 10716y 2%s
IR drop Vi +10%V
Pulse-width White noise 50 ps
modulation noise
. 4 v
Labels noise v = 56.25mV SN = 32.5mV
Frequency-dependent noise and variations / aging
Input switching noise Ldl/dt +10%V/vHz
Opamp input noise 1/f flicker noise 10nv/VHz
Slew rate 2 f Vs 1.13V /ns
. . RorF
Memristor OFF impedance Rorr Tt RorpCooan
Endurance degradation AR 10%/decade

of the memristors is equivalent either to corresponding
changes in the synaptic weights or to the learning rate
n. In Fig. 5, we show that the proposed binary-weighted
time-varying gradient descent training algorithm is able
to tolerate such process variations over time. The vari-
ability in the transistor parameters can also dramatically
affect the learning performance; thus, transistor parame-
ters such as Vy, W/L, and Vr in Table I are chosen to
guarantee a global optimal solution even in such extreme
scenarios.

2. Noise sources include intrinsic thermal noise coming
from the feedback resistor, memristor, and transistor [8],
as well as pulse-width modulation noise, input referred
noise [23], training label fluctuations as a result of sup-
plier converter quantization noise [27], and frequency-
dependent noise sources, which are quantified and
estimated [28].

3. Frequency-dependent variations capture the parasitic
capacitance and inductance of the memristor [29] and
model it by a varying impedance as a function of
the frequency. In addition, AR degradation [30] along
switching cycles as a result of oxide defects and device
aging is considered.

While process variations determine the convergence time
and accuracy, noise can cause the network to deviate from the
optimum weights with destructive oscillations. In Fig. 5(a),
the training processes for both gradient descent and the
binary-weighted time-varying gradient descent with decaying
learning rate are shown. Observe that the regular gradient
descent, which succeeded in stabilizing the synapses without
the presence of noise, now fails to stabilize the synapses.
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Fig. 5. Comparison between regular gradient descent (GD) and the proposed
binary-weighted time-varying gradient descent (BW TV GD) algorithms in the
presence of noise and process variations. (a) The GD failed to converge the
synapses, whereas the BW TV GD succeeded and outperformed the GD with
(b) smaller MSE, better (¢) DNL, and (d) INL.

Conversely, the binary-weighted time-varying gradient descent
with decaying learning rate successfully overcame noise and
variations with stable synapses. The comparison is made,
accordingly, in terms of MSE, DNL, and INL, as shown
in Fig. 5(b—d), respectively. The switching non-linearity and
threshold of the memristor device mitigate synaptic fluctua-
tions derived from noise and variation sources. Nevertheless,
the gradient descent algorithm fails to converge to a global
optimum and keeps excessively capturing stochastic dynamics
whereas the time-varying learning rate of the proposed algo-

TABLE III
ACCURACY COMPARISON

Type Value
Ideal case — Gradient descent
Maximum DNL ~ 0
Maximum INL ~ 0
ENOB 3.71
Training time 20ms
MSE 2-1073
Non-ideal case — Gradient descent
Maximum DNL 0.15 LSB
Maximum INL 0.38 LSB
ENOB 3.18
Training time 30ms
MSE 5-1073

Non-ideal case — Binary-weighted time-
varying gradient descent

Maximum DNL 0.11 LSB
Maximum INL 0.12 LSB
ENOB 3.63
Training time 30ms
MSE 2-1073
Non-ideal case — Resistor-based DAC
Maximum DNL 1.28 LSB
Maximum INL 0.81 LSB
ENOB 2.66

rithm enhances the network immunity against overfitting [31]
and achieves reliable predictive performance on unseen data.

For robust validation of the DAC functionality in the pres-
ence of correlated variations and noise sources in Table II,
we statistically analyzed the DAC performance for large
numbers of randomly generated scenarios. We show the dis-
tribution of the achieved effective number of resistive levels
in Fig. 6(a). The number of resistive levels, however, is finite
and is a function of variations, data retention, noise margin,
and amplifier sensitivity [32]. Fig. 6(a) shows that extreme
cases where the write variation is £10% and the comparator
offset of the PWM is £5mV are less likely. Therefore,
the effective number of resistive levels in the typical case
(approximately 38% of the cases) is ~64. The number of
resistive levels has a key role in achieving such adaptive, self-
calibrated, noise-tolerant, and highly accurate DACs. Due to
its self-calibration capability, the DAC can tolerate variations
and compensate for them by imposing a penalty of more
training samples, as shown in Fig. 6(b). Alternately, fewer
training samples or stable resistive levels are sufficient for
lower accuracy, as shown in Fig. 6(c), in terms of ENOB,
lower-bounded by five uniformly distributed binary-weighted
levels covering a half- to full-scale voltage range. Results of
the dynamic evaluation in terms of ENOB and training time
in the typical case are listed in Table III, and compared to a
resistor based binary-weighted DAC.

Endurance is an essential performance criterion of mem-
ristive devices for memory applications. Therefore, qualitative
and pessimistically approximative analysis is done to evaluate
the DAC’s lifetime versus the increasing training time as a
result of the memristor’s endurance degradation. Endurance
failure behavior is observed in Hf-based RRAM [30] and can
be explained by different physical mechanisms that degrade
its switching characteristics and high-to-low resistance ratio.
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Fig. 6. (a) Statistical simulations of randomly generated variations and
noise sources show the probability distribution of typical and extreme cases in
terms of the effective number of resistive levels. (b) The impact of variations
in the number of effective levels on the number of training samples in
each case. (c) ENOB as a function of the number of stable resistive levels,
where the minimum is five uniformly distributed binary-weighted levels.
(d) Endurance degradation along device lifetime, in terms of full switching
cycles, logarithmically affect AR in each training sample and are compensated
for by the increasing training time for the whole epoch.

Among these mechanisms is the oxidation induced interface
reaction, a result of high voltage/current during SET. The
endurance of the fitted Pt/HfO/Hf/TiN is ~ 8K cycles with
1.15 V for SET and —2.25 V for RESET, as observed in [22].

Decreasing operational voltages considerably improves the
endurance while increasing the switching time of the device.
According to the fitted parameters in Table I, the simulated
switching time with £V ,is 75 us instead of the reported
400 ns with 1.15 V for SET, and 1 ms instead of the reported
10 us with —2.25 V for RESET [22]. The trade-off between
write latency and endurance has been well-studied [33], and
the relationship between them is formalized [34] as

wp
Endurance ~ (—

Expo_factor
fo )

; (22)

where twp is write latency, 7o is a device related constant,
and Expo_factor is an empirical constant with a typical value
of 2. Accordingly, the endurance of the device will increase
to 8- 107 cycles with the proposed writing voltage.

Due to the nature of the proposed DAC, it will continue
training until it equals E;preshoig and achieves a high ENOB.
Thus, the high-to-low resistance ratio degradation is not dis-
cernible, as it is compensated for by longer training times.
A rough approximation, using logarithmic endurance degra-
dation in time, is modeled by a 10% drop of AR per decade,
as listed in Table II. The training time as a function of the
number of switching cycles is shown in Fig. 6(d). To prove
that the endurance is not a limitation for the proposed DAC,
we estimate the number of training epochs until wear-out. As a
pessimistic evaluation, we assume that every 1 ms of training
time equals a full RESET. This assumption is more aggressive
for degradation than a total of 200 intermediate switches in
1 ms [30]. Therefore, the maximum training time is 160 ms
and the corresponding minimal number of training epochs until
wear- out is ~ % = 500K . This finding implies that, in the
worst case, the DAC could be reconfigured ~150 times per day
for ~10 years either for new configuration or for calibration-
only, depending on the running application [35].

The proposed DAC was simulated with different sampling
frequencies f; to show its versatility and flexibility to adapt
to different conditions that represent different specifications
for different applications. At high frequency the memristor is
modeled as a resistor in parallel to a capacitor and is connected
in series with an inductance on each side [36]. The parasitic
capacitance between electrodes of the memristor is dominant
at high frequencies. As a result, the equivalent impedance
of the memristor decays along the frequency. The values of
the parasitic capacitance and inductance are listed in Table I.
The maximum frequency at which the DAC can operate,
Sfmax, 1s defined as the frequency at which the high-to-low-
impedance ratio will not allow binary-weighted distribution
of N-bits that covers the half- to full-scale voltage range:

|ZOFF

| < 2N+1,
Zon

(23)
where Zprr and Zpy are high and low impedance states,
respectively. At the frequency-band of interest, Zony ~ Ron,

ZOFF ROFF”z”jfscmem 1+27fjfscmemROFF ’

the series inductance is negligible. By solving (22), we find

and

RorF

! 2
= : 1. (4
Fmax 27 RoFrFCumem \/(RON -2N+1) @)




156 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 8, NO. 1, MARCH 2018

""""" fmax (Ves=Vop/2) — = fmax (Ves=Vpp)
6100 ‘ ‘ o ‘
80 - | 1
Z 60 ]
S 40 ; 1
N 20 ‘ ‘ 1 ‘
0 1 2 3 4 5
Frequency (GHz)
(a)
sol "~R1-R2-R3-R4
S
& 15
5 1 1 1
0 1000 2000 3000
#Samples
(b)
Fig. 7. (a) A high impedance state Zopp as a function of sampling

frequency; dashed lines indicate the maximum possible frequency bandwidth
for a half- to full-scale voltage range with a high-to-low-impedance ratio
of 32 and 16, respectively. (b) DAC reconfiguration for a 10MSPS sampling
frequency, by continuous synaptic update. The frequency-dependent variations
were captured by the synaptic weights.

The decay of Zprr as a function of frequency is shown
in Fig. 7(a), along with the maximum frequency bandwidth for
different-scale voltages. In our case, for a four-bit DAC and
full- to half-scale voltage range, fiqx = 1.668G H z, which is
below the transit frequency fr of 0.18 um CMOS transistors,
the cutoff frequency of memristors [37], and the OpAmp slew
rate.

The training dynamics are different in this case because
the learning rate is a function of the pulse-width duration,
which is a function of the sampling frequency. The higher
the sampling frequency, the smaller the learning rate and the
higher the number of training samples. Additionally, taking the
frequency dependent variations into consideration, the synaptic
weights are different and are able to absorb and compensate
for these variations, as shown in Fig. 7(b) in response to the
10 MSPS sampling frequency. The frequency is 100x higher
than 100 KSPS; as a result, the time interval for a single
sample is 100x smaller, as is the learning rate. However,
the total number of training samples until the error equals
Ethreshoidis ~1.5x greater, with ~66x smaller training time
(~0.45ms). The ratios are not linear because the convergence
time is different among the bits and not linear. This property
proves that the DAC is a general-purpose device with a generic
standard methodology.

V. EXPANDING THE DAC DESIGN

As explained in the previous sections, a DAC is determined
by its sampling frequencies and the number of resolution bits.
These two specifications are challenging to achieve together in
conventional DACs, and they are considered two major bottle-
necks. We show an efficient mechanism that achieves optimal
possible accuracy from the number of real allocated bits N
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Fig. 8. An eight-bit reconfigurable DAC composed from two four-bit DACs
by using a two-layer neural network.

for each sampling frequency f;. In Section III, we formalized
the constraints on the number of bits in (17) and (18). Using
these constraints and the design parameters listed in Table I,
the maximum number of bits was at most four. This section
discusses large-scale DACs by using the proposed four-bit
DAC as a prototype that can be duplicated or cascaded
to create a larger architecture. Interestingly, Al techniques
that involve deep neural networks and backpropagation algo-
rithms [8], [19] can be exploited and interpolated into the
design of large-scale DACs that are based on the four-bit DAC.

For example, in Fig. 8, an eight-bit DAC that is based on
the four-bit DAC is shown. The analog output of such a DAC
is

R
Ay~ — Ly,
i—0 Rmemi
7
R (25)
i—g ‘\mem;
| Aror = W21 A1 + W As.

where W,y, Way are the second-layer weights (W, i =
Ry/ Réjzl’z). Similarly to (5), the error function of the eight-
bit deep neural network DAC is

1S 2
E=3> (4l —1®)"

k=1

(26)

The learning rules of the first layer synapses Wy;(0<i<7) are
extracted by using the error gradient descent and backpropa-
gation algorithms

k k

aw® __, OF _ | OE oAy 047
e 7

k k
= —nwa (a5 =1 @) v, @7)

(k) (k)

awh __,OE | OF  dAi 34
e

= Wy (4 — 1) v ®. (28)

Using the same design methodology as for the four-bit
DAC, this network defines a high precision eight-bit DAC
with adaptive abilities to self-calibrate mismatches and tol-
erate variations. The weights in the second layer are fixed
and predefined during design time; they do not need to be
adjustable, and they do not obey the learning rule. Thus,
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learning rules (27) and (28) depend on predefined parameters
and do not vary during training as in multi-layer neural
networks with a backpropagation algorithm [8]. The training
data-set is given through and compared to the DAC output,
which is the second layer output, and then the error product
is back-propagated directly to the first layer synapses for both
four-bit DACs simultaneously. Different learning rates are used
for each four-bit DAC. Although resistors are highly prone
to manufacturing variations, they can be used effectively for
the second layer since the mismatches in that layer will be
calibrated and compensated for by the weights of the first
layer. Thus, the proposed large-scale concept will actually
take advantage of the defects and handle them robustly.
Furthermore, considering adjustable weights in the second
layer will necessarily increase the design complexity of the
training mechanism: its implementation will involve specific
circuitry with higher area and power consumption, which may
lead to undesired oscillations and wasteful training time.

A major challenge that directly relates to large-scale train-
able DACs is how to generate the data-set for teaching.
We assume that peripheral circuitry is provided and able to
generate real-time data-sets with different specifications that
fit the required DAC. Larger numbers of bits, smaller full-scale
voltages, and higher frequencies, however, will be challenging
for these circuits, which are not only technology dependent
but also special purpose. For example, pulse-width modulators
are bounded by the frequency with they can work. Therefore,
the proposed binary-weighted time-varying gradient descent
complicates the design but improves accuracy, compared to
the regular gradient descent that uses a uniform learning rate.
In future work, we will investigate general purpose peripheral
circuitry that generates data-sets in real time.

VI. CONCLUSIONS

We proposed a novel, reconfigurable and self-calibrating
binary-weighted DAC that exploits the intelligent properties
of an artificial neural network, and we demonstrated the
equivalence between a single-layer neural network and a
binary-weighted DAC. A supervised learning algorithm termed
“binary-weighted time-varying gradient descent” was devel-
oped to train the network efficiently on-chip in real time to
configure an adaptive high-precision four-bit DAC. A hybrid
CMOS-memiristor circuit design was proposed for the realiza-
tion of the neural network. The learning algorithm successfully
adjusted the memristors and reconfigured the DAC along with
the full-scale voltage range and sampling frequency. It also
successfully calibrated the DAC, improving its linearity and
tolerating noise.

With an output range of 1.8 V, the training process
improves the DNL and INL to 0.11 and 0.12 LSB, respec-
tively, and improves the ENOB to 3.63 in the presence
of noise and variations. To the best of our knowledge,
this is the first neural-network-based DAC. We discussed
how the proposed DAC might be used as a prototype for
large-scale architectures, along with the corresponding chal-
lenges. Encouraged by the simplicity of the binary-weighted
DAC architecture and its direct parallel conversion feature,
we believe that this proof-of-concept will be a milestone

with valuable results for large-scale data-driven converters,
achieving high-precision, high-speed, cost-effective, and low-
power consumption for general purpose applications.
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