
 

 

 

Abstract— Data converters are ubiquitous in data-abundant 

systems, where they are heterogeneously distributed across the 

analog-digital interface. Unfortunately, conventional data converters 

trade off speed, power, and accuracy. Furthermore, intrinsic real-

time and post-silicon variations dramatically degrade their 

performance. In this paper, we employ novel neuro-inspired 

approaches to design smart data converters that could be trained in 

real-time for general purpose applications, using machine learning 

algorithms and artificial neural network architectures. Our 

approach integrates emerging memristor technology with CMOS. 
This concept will pave the way towards adaptive interfaces with the 

continuous varying conditions of data driven applications. 

Keywords—Analog-to-digital conversion, adaptive systems, 

digital-to-analog conversion, memristors, machine learning, 

neuromorphic computing, reconfigurable architectures. 

I. INTRODUCTION 

With the advent of high-speed, high-precision, and low-power 

mixed-signal systems, the demand for accurate, fast, and energy-

efficient data converters is on the rise. These systems, which 

operate on a variety of real-world signals, are widely employed in 

medical imaging, biosensors, consumer electronics, 

instrumentation, and telecommunication.  

Unfortunately, the intrinsic speed-power-accuracy tradeoff in 

analog-to-digital converters (ADCs) and digital-to-analog 

converters (DACs) is pushing them out of the application band of 

interest [1]. Furthermore, with the continuous downscaling of 

technology motivated by Moore's law, this tradeoff has become a 

chronic bottleneck of modern systems design due to alarming deep 

sub-micron effects [1]. Those effects are poorly handled with 

particular technology-dependent design techniques that overload 

data converters with enormous overhead, exacerbating the 

tradeoff and severely degrading their performance [1]. 

Conventional data converters lack design standards and are 

customized with sophisticated design flow. Data converter 

architectures are optimized for special purpose applications, from 

high-speed, to high-resolution, to low-power applications [2]. 

These methods not only require exhaustive characterization and 

massive validation, but they are also expensive to develop, with a 

long time-to-market.  

This paper takes a different, systematic approach, beyond 

Moore's law, to design general purpose data converters [3][4]. We 

propose that the converted data be used to train the converter in 

order to autonomously adapt to the exact specifications of the 

running application and adjust to environmental variations. This 

approach will reduce the time to market, efficiently scale with 

newer technologies, drastically reduce its cost, significantly 

standardize the design flow, and enable a generic architecture for 

general purpose applications.  

The proposed trainable data converters utilize machine learning 

(ML) algorithms to train an artificial neural network (ANN) 

architecture based on the promising technology of memristors [5]. 

With their synapse-like behavior, memristors are becoming more 

and more prevalent in the design and realization of artificial neural 

systems [6]. Their small footprint, analog storage properties, low 

energy consumption, and non-volatility characteristics allow them 

to mimic neural synapses, where the conductance of the memristor 

is considered as the synapse weight [7].  

II. TRAINABLE DATA CONVERTERS  

A. Figure of Merit (FOM) Dynamic Optimization 

The field of machine learning (ML) is dedicated to the study 

and implementation of systems that can learn from data to make 

decisions, predictions, and classifications based on past examples. 

Data conversion can be viewed as a special case of the 

classification optimization and signal restoration problem that 

could easily be solved using ML.  

When comparing data converters with different specifications, 

a numerical quantity known as a figure of merit (FOM) is used to 

fairly characterize the performance of each converter relative to 

its alternatives. The FOM is defined as  

𝐹𝑂𝑀 =
𝑃

2𝐸𝑁𝑂𝐵 ∙ 𝑓𝑠

 [
𝐽

𝑐𝑜𝑛𝑣
],                                 (1) 

and relates the converter power dissipation during conversion, P, 

to its performance in terms of sampling frequency, 𝑓𝑠, and 

effective number of resolution bits (ENOB). The FOM best 

captures the fundamental speed-power-accuracy tradeoff [1]. It 

accurately reflects the merits of the converter in a certain context 

and for a specified purpose. 

We propose trainable data converter architectures for general 

purpose applications [3][4], as shown in Fig. 1.  A set of 

parameters is determined to meet the requirements of the running 

application. First, 𝑓𝑠 is determined, followed by the number of 

resolution bits N, followed by the full-scale voltage 𝑉𝐹𝑆 , which 

specifies the converter input dynamic range. Then, the converter 

is trained by a supervised ML algorithm, called online stochastic 

gradient descent. The training is done in real-time to optimize the 

ENOB and power dissipation, where the correct digital labels 

corresponding to the analog input are supplied and compared to 

the actual digital output. This procedure is equivalent to a dynamic 

FOM optimization. The technique is not exclusive to application 

reconfiguration but can also be used for device mismatch self-

calibration, adaptation, power optimization, and noise tolerance 

with generic, standard methodology [3][4].  

B. Neural Network Data Converter Architectures 

ANNs are distributed networks that collectively make decisions 

based on a successive adjustment of weights. This mechanism 

precisely describes ADCs in time-scale with successive binary-

weighted approximation (SAR). While bit comparison is 

equivalent to neural activation, each reference scale during the 
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successive binary search algorithm is equivalent to a binary-

weighted synapse. The temporal binary search algorithm of a SAR 

is transformed to a spatial neural network with binary-weighted 

synapses and pipelined forward-propagated neurons. 

Analogously, a single layer neural network with binary-weighted 

synapses could be viewed as a special case of the binary-weighted 

DAC architecture. The proposed networks [3] are based on energy 

optimization, where their energy level is minimal when they are 

used as data converters.     

In a real-time operation where non-ideal, non-linear, stochastic, 

and varying conditions affect the conversion accuracy, the correct 

weights are not distributed deterministically in binary-weighted 

style. In this case, the weights should be updated in real-time. We 

exploit the intelligent properties of the neural networks for online 

training by ML algorithms. The training algorithm ensures the 

learning capability of our networks in terms of accuracy and speed 

[3][4]. The synapse circuit design is composed of a single 

memristor, connected to a shared terminal of two MOSFET 

transistors (p-type and n-type) [7]. The circuit utilizes the intrinsic 

dynamics of the memristive crossbar, which inherently 

implements Ohm's and Kirchhoff's laws for ANN hardware 

realization [7]. The neurons are implemented by opAmps and 

comparators [6]. While the training feedback of the ADC is simple 

and realized by digital hardware, the feedback of the DAC is 

sophisticated and implemented by pulse-width modulator [3][4].    

III. GENERAL PURPOSE DATA CONVERTERS 

Having demonstrated the dynamic mechanism of the trainable 

data converters [3][4], we now discuss their real-time training 

capability for general purpose applications. For every selected 𝑓𝑠, 

the converter is trained correspondingly by a training data-set with 

the same specifications, thus achieving optimal ENOB. 

Analogously, the power consumption is dynamically optimized 

for every 𝑓𝑠 to achieve minimal power dissipation of the network.  

Interestingly, the collective optimization of the proposed 

architecture breaks through the speed-power-accuracy tradeoff, 

and dynamically scales the FOM to achieve 8.25 fJ/conv.step for 

a 4-bit ADC in 180nm CMOS technology, two orders of 

magnitude less than the average FOM of state-of-the-art ADCs 

[2][4]. The architecture’s versatility is realized by a simple and 

minimalistic design with a reconfigurable cost-effective single-

channel. The proposed architecture utilizes the resistive parallel 

computing capabilities of memristors to achieve high speed. It 

moreover utilizes their analog non-volatility to achieve high 

accuracy by enabling the ML algorithm to adjust its conductance 

precisely and in situ. All these features will enable a general-

purpose application architecture that is trained to fit different 

specifications from high-speed, to high-accuracy, to low-power, 

as illustrated in Fig. 2.      

IV. CONCLUSIONS AND FUTURE WORK 

This concept paper proposes a real-time trainable ADC 

architecture for general purpose applications, which breaks 

through the speed-power-accuracy tradeoff. Motivated by the 

analogies between mixed-signal circuits and the neuromorphic 

paradigm, we exploit the intelligent properties of an ANN, and 

propose neural network architectures for data converters that are 

trained online by a supervised ML algorithm. A hybrid CMOS–

memristor circuit design is proposed to realize the neural network. 

We believe that the proposed data converters constitute a 

milestone with valuable results for emerging applications with 

varying conditions, such as wearable devices and automotive 

applications. Large-scale challenges still need to be investigated 

by leveraging mixed-signal architectures (pipelined, time-

interleaved, and oversampling) and deep neural network concepts.  
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Fig. 1. Scheme of the trainable 4-bit ADC/DAC (blue/red path) neural 

network. The network receives 𝒇𝒔, 𝑽𝑭𝑺, 𝑵, and is provided a specific teaching 

dataset Ti for real-time training. The training continues until the converter 

achieves the optimal FOM.  

 
Fig. 2. Spider diagram of conventional ADC architectures (colored lines), 

design tradeoff, and associated applications (blue text), along with our 

trainable, general purpose, neural network architecture (yellow), which 

breaks through the tradeoff as shown by the balanced diagram. 
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