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Abstract—The analog-to-digital converter (ADC) is a principal
component in every data acquisition system. Unfortunately, mod-
ern ADCs tradeoff speed, power, and accuracy. In this paper, novel
neuroinspired approaches are used to design a smart ADC that
could be trained in real time for general purpose applications
and break through conventional ADC limitations. Motivated by
artificial intelligent learning algorithms and neural network archi-
tectures, the proposed ADC integrates emerging memristor tech-
nology with CMOS. We design a trainable four-bit ADC with a
memristive neural network that implements the online gradient
descent algorithm. This supervised machine learning algorithm
fits multiple application specifications such as full-scale voltage
ranges and sampling frequencies. Theoretical analysis, as well as
simulation results, demonstrate highly powerful collective prop-
erties, including reconfiguration, mismatch self-calibration, adap-
tation to dynamic voltage and frequency scaling, noise tolerance,
and power consumption optimization. The proposed ADC achieves
8.25 fJ/conv FOM, 3.7 ENOB, 0.4 LSB INL, and 0.5 LSB DNL.
These promising properties make it a leading contender for gen-
eral purpose and emerging data driven applications.

Index Terms—Analog-to-digital conversion, adaptive systems,
calibration, computational intelligence, energy efficiency, memris-
tors, neuromorphic computing, reconfigurable architectures, su-
pervised learning.

I. INTRODUCTION

THE rapid evolution of data-driven systems towards the
internet of things era has paved the way to emergent inter-

acting and varying applications where data converters are ubiq-
uitous. With the advent of high-speed, high-precision, and low-
power mixed-signal systems, there is an ever-growing demand
for accurate, fast, and energy-efficient data converters. These
systems operate on a broad range of real-world continuous-
time signals; examples include medical imaging, biosensors,
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wearable devices, consumer electronics, automotive, instrumen-
tation, and telecommunication [1].

Unfortunately, the intrinsic speed-power-accuracy tradeoff in
analog-to-digital converters (ADCs) is pushing them out of the
application band of interest [2], [3]. Furthermore, with the non-
stop downscaling of technology motivated by Moore’s law, this
tradeoff has become a chronic bottleneck of modern systems
design due to alarming deep sub-micron effects [4], [5]. Those
effects are poorly handled with particular design techniques that
overload data converters with tremendous overhead, exacerbat-
ing the tradeoff and degrading their performance dramatically
[5]. Nowadays data converters lack design standards and are
customized with sophisticated specific design flow and archi-
tectures for special purpose applications.

This paper takes a different approach to design general pur-
pose ADCs. We propose that the converted data be used to train
the converter in order to autonomously adapt to the exact spec-
ifications of the running application as well as to adjust to envi-
ronmental variations. This approach will reduce the converter’s
time to market, efficiently scale with newer technologies, dras-
tically reduce its cost, standardize the design flow, and enable a
generic architecture for general purpose applications.

The proposed trainable ADC utilizes machine learning (ML)
algorithms to train an artificial neural network (ANN) archi-
tecture [6] based on the promising technology of memristors.
Memristors are now being widely adopted in the design of
synapses for artificial neural systems [7], [8] because of their
small footprint, analog storage properties, energy efficiency,
and non-volatility. These characteristics allow for synapse-like
behavior, where the conductance of the memristor is consid-
ered as the weight of the synapse [9]. We leverage the use of
memristors as synapses to achieve high-precision, high-speed,
low-power, a simple cost-efficient, and reconfigurable single-
channel ADC architecture that breaks through the speed-power-
accuracy tradeoff. The design methodologies are based on our
previous work on online training of memristive synapses [10]
and on digital-to-analog converter (DAC) [11].

The remainder of this paper is organized as follows. In
Section II, we explain the motivation behind our approach. In
Section III, the proposed ADC architecture, theory, and training
algorithm are described. In Section IV, circuit design and mech-
anisms of a four-bit ADC are detailed. In Section V, the circuit
operation and learning capability are evaluated. In Section VI,
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Fig. 1. Tradeoffs in conventional ADC architectures between (a) speed and accuracy, (b) speed and power, (c) accuracy and energy, as reported in [14]. Since the
power-accuracy tradeoff depends on the limitations of the underlying architectures, the energy-accuracy is independent of the architecture and shows the tradeoff
accordingly. (d) Spider diagram of ADC architectures (different color lines), design tradeoff, and associated applications (in blue).

design trade-offs and large-scale challenges are discussed. We
conclude in Section VII.

II. MOTIVATION

A. Speed-Power-Accuracy Tradeoff in ADC Architectures

While the analog domain is mainly characterized by its energy
efficiency in data processing, its digital counterpart outperforms
it in reliable computation [12]. ADCs are mixed-signal systems
that inherently combine hybrid analog-digital principles along
with the pros and cons of each domain. Therefore, these sys-
tems are optimally customized to fit a specific subset from a
wide functional spectrum. Design tradeoff is an extreme case
when the system is pushed toward its performance limits. The
ADC comprises a signal sampler that discretely samples the
continuous-time signal at a constant rate, and a quantizer that
converts the sampled value to the corresponding discrete-time
N-bit resolution binary-coded form. The quality of a system is
considered ideal when it achieves high speed and accuracy with
a low power drain. In practice, however, the resolution decreases
as the conversion rate increases, and greater power consumption
is required to achieve the same resolution.

Device mismatch is the dominant factor affecting system ac-
curacy [4]. Larger devices are necessary to improve system
accuracy, but the capacitive loading of the circuit nodes in-
creases as a result and greater power is required to attain a
certain speed. The maximal speed of the system is a func-
tion of the gain-bandwidth, but it is limited by the input pole.
Aside from device mismatches, four loss mechanisms affect the
ADC resolution and limit the signal-to-noise-and-distortion ra-

tio (SNDR): quantization noise, jitter, comparator ambiguity,
and thermal noise.

Quantization noise is the only error in an ideal ADC. Jitter
is a sample-to-sample variation of the instant in time at which
sampling occurred. Additionally, the conversion speed is limited
by the ability of the comparator to make assertive decisions
regarding the relative amplitude of the input voltage [3]. This
limitation is called comparator ambiguity and it is related to the
speed of the device used to fabricate the ADC. Device speed is
measured as the frequency, fT , at which there is unity current
gain. As a result of these limitations, approximately one bit of
resolution is lost each time the sampling rate doubles [3].

Whereas non-linear distortions, memory effects, and device
mismatches can be somewhat compensated for, thermal white
noise cannot; consequently, it is one of the more dominant lim-
iters of ADC performance. It is modeled by KT/C noise, where
K denotes Boltzmann’s constant, T denotes temperature, and
C denotes sampler capacitance. Lowering the noise floor by
a factor of two in purely thermal-noise limited circuits would
quadruple the power consumption [13]. The limit that device
mismatch imposes on the power consumption is approximately
two orders of magnitude higher than the limit imposed by ther-
mal noise [4]. The speed-power-accuracy tradeoff is illustrated
in Fig. 1(a)–(c); it is based on data that we have processed from
Stanford’s ADC survey [14], which includes papers published
during the last two decades.

The need to digitize so many signal types has produced a
broad range of data converters diverse in their resolution, sam-
pling rates, and power consumption budget. These considera-
tions profoundly affect system architectures and their perfor-
mance. The speed-power-accuracy tradeoff has resulted in a
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wide range of ADC architectures optimized for special purpose
applications, from high-speed, to high-resolution, to low-power
applications. Fig. 1(d) specifies the widely used ADC architec-
tures, each mapped to its market applications, on the basis of
data collected from [14].

B. ADC Figure-of-Merit (FOM)

When comparing ADCs with different specifications, a nu-
merical quantity known as a figure of merit (FOM) is used to
characterize the performance of each ADC relative to its alter-
natives. Two or more metrics can be combined into a single
FOM that accurately reflects the merits of the ADC in a certain
context and for a specified purpose. One of the most widely used
FOMs [3] is defined as

FOM =
P

2EN OB · fs

[
J

conv

]
, (1)

and relates the ADC power dissipation during conversion, P, to
its performance in terms of sampling frequency, fs , and effective
number of resolution bits (ENOB). Lower FOM values will
result in better ADC performance. The ENOB is calculated from
the SNDR as

ENOB =
SNDR (dB) − 1.76

6.02
. (2)

The aforementioned FOM best captures the fundamen-
tal speed-power-accuracy tradeoff [15]. The ongoing saga of
CMOS technology trends toward smaller transistor dimensions
has resulted thus far in ultra-deep submicron transistors [16].
The FOM evolution also best describes Moore’s law of ADCs.
Technology scaling improves sampling frequencies, because fT

allows for faster operation [5]. However, the speed of sampling
frequency is limited by the comparator ambiguity. In the same
context, the impact of technology scaling on power dissipa-
tion optimization is also limited by the supply voltages, and
by leakage currents that inevitably lead to an increase in the
power consumption required to maintain SNDR [16]. These
limitations, along with manufacturing process variations and
device mismatches in ultra-deep submicron technologies, are
the biggest obstacle to achieving high linearity, wide dynamic
range, and high-resolution converters [16]. Thus, the speed-
power-accuracy tradeoff is becoming dramatically more severe
with technology downscaling, pushing future data converters
out of the application band of interest [2], [4], [5].

The FOM evolution is shown in Fig. 2 and is based on data
collected from [14] that we have analyzed. The figure shows
an overall improvement in the FOM over the technology nodes.
This improvement is due to low-resolution converters that ben-
efit from technology scaling. However, the improvement has
slowed down significantly and ADC performance has recently
saturated, as anticipated in [5]. The noise-floor has saturated
during the last decade, indicating that future ADCs could very
well fail to maintain even the current state-of-the-art in noise
performance [5].

C. Trainable ADC for General Purpose Applications

Techniques for circumventing the tradeoff have recently been
investigated, with the goal of achieving ultra-low-power con-

Fig. 2. Average FOM evolution versus technology node scale-down of the
different ADC architectures and specifications shown in Fig. 1 and reported in
the ADC survey [14]. Overall, the FOM improves with the technology scale-
down. However, the asymptotic slowdown in the last decade is shown by the
trendline. The green star shows the achieved FOM of this work.

suming converters with high resolution through a combination
of systematic, architectural and technological approaches. Ex-
amples of such methods are digitally assisted background cal-
ibration, time-interleaving, pipelining, subranging, folding, in-
terpolating, and oversampling [13], [16], [17]. These techniques
have succeeded to postpone the FOM saturation.

Modern ADC architectures are custom designed circuits that
are fine-tuned to optimize specific capabilities and design pa-
rameters up to the application’s specification. Widely used
methods are sophisticated, specific, and technology dependent,
lacking standard design flow. These methods require exhaus-
tive characterization, massive validation, and relatively long
development time-to-market. Furthermore, a rapid increase in
multi-channel ADCs has recently been observed. Multiple chan-
nels are monolithically integrated for diversity-based applica-
tions, increasing the total area, cost, design complexity and
power consumption [18].

In the same context, reconfigurable architectures that dynam-
ically select between a narrow range of different predefined de-
sign specifications have been developed [19], [20]. In contrast,
minimalistic design approaches have been proposed to improve
power efficiency and potentially increase speed by utilizing sim-
plified analog sub-circuits [13]. Future collective improvements
in the ADC FOM will most probably be derived from a combina-
tion of factors that will include novel architectures, an emerging
technology device beyond CMOS, and a systematic approach
beyond Moore’s law.

The field of machine learning (ML) is devoted to the study
and implementation of systems capable of learning from data
using their evolving perceptual ability to make crucial decisions,
predictions, and classifications based on examples learned from
the past. Data conversion could be viewed as a special case
of the classification optimization and signal restoration problem
that could easily be solved using ML to learn from the data.

We propose a trainable ADC architecture for general pur-
pose applications, as shown in Fig. 3. In our system, a set
of parameters is determined to meet the requirements of the
running application. First, the sampling frequency fs is deter-
mined, followed by the number of resolution bits N, followed
by the full-scale voltage VF S , which specifies the ADC input
dynamic range. Then, the ADC is trained by a ML algorithm
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Fig. 3. Scheme of trainable 4-bit ADC receives fs , VF S , N and is trained
in real-time by providing a specific teaching dataset Ti . The training continues
until the ADC achieves the optimal FOM.

in real-time to optimize the ENOB and power dissipation. This
procedure is equivalent to a dynamic FOM optimization, which
will be proven in this work to potentially achieve a much lower
FOM (marked by a green star) than the trend-line in Fig. 2.
The technique is not exclusive to reconfiguration, but can also
be applied for device mismatch self-calibration, adaptation, and
noise tolerance, using generic, standard methodology [10], [11].
Furthermore, the trainability of the architecture adds flexibility
that makes it cost-effective and versatile, with a minimalistic
design that uses one channel and an intelligent ML algorithm.

III. NEURAL NETWORK ADC

Neuromorphic computing [6] is a mixed-signal design that
inherently combines both analog and digital domains in its
molecular, biophysical, behavioral, and functional abstraction
levels. Extrapolating from electronics to neurobiology, the au-
thors of [21] concluded that the brain computes efficiently in
a hybrid fashion. Analogously, we propose to interpolate per-
ceptual abilities from neurobiology to mixed-signal electronics
to break through the derived design tradeoffs and utilize the
advantages of both domains.

ANNs are receiving widespread attention as potential new ar-
chitectures and model implementations for a diverse assortment
of problems, such as pattern classification, object recognition,
and signal processing [22]. Furthermore, ANNs are considered
an efficient abstract platform for ML algorithms and big-data
interpretation. The massively parallel processing power of the
neural network lies in the cooperation between highly intercon-
nected computing elements (neurons), connected by long-term
memory elements (synapses). Furthermore, the trainable and
adaptive capabilities of ML algorithms are considered novel in-
telligent features providing an impetus in specific areas where
conventional computers perform poorly compared to our brain.

In this section, we propose a neural network ADC paradigm.
We show its architecture, fundamentals, theory, and an ML al-
gorithm to train the network.

A. Architecture

ANN architectures are distributed networks that collectively
make decisions based on the adjustment of successive ap-
proximation weights. Strikingly, this mechanism precisely de-
scribes ADCs in time-scale with successive binary-weighted
approximation, such the SAR ADC [23]. While bit comparison
is equivalent to neural activation, each reference scale during
the successive binary search algorithm is equivalent to a binary-
weighted synapse. As a first step, we start with transforming
the temporal binary search algorithm of 4-bit SAR conversion
to a spatial neural network with binary-weighted synapses and
pipelined [17] forward propagated neurons (MSB to LSB),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D3 = u (Vin − 8Vref )

D2 = u (Vin − 4Vref − 8D3)

D1 = u (Vin − 2Vref − 4D2 − 8D3)

D0 = u (Vin − Vref − 2D1 − 4D2 − 8D3)

, (3)

where Vin is the analog input and D3D2D1D0 is the corre-
sponding digital form (i = 3 is the MSB), and each bit (neuron
product) has either zero voltage or full-scale voltage. u(·) is
denoted as the signum neural activation function, and Vref is a
reference voltage equal to the smallest discrete voltage quan-
tum (LSB). Each neuron is a collective integrator of its inputs.
The analog input is sampled and successively (by a pipeline)
approximated by a combination of binary-weighted inhibitory
synaptic connections.

The approximation procedure of determining each bit in the
ADC is modular. The MSB voltage D3 can first be determined
independently of other bits by comparing to the middle of the
full-scale voltage. When D3 is known, it is bypassed to the sec-
ond MSB, which can be found regardless of D1D0 . If D3 is ‘1’,
then D2 is compared to three-quarters of the full-scale; other-
wise it is compared to one-quarter of the full-scale. Analogously,
the LSBs are approximated based on the driving MSBs. The suc-
cessive approximation flow is described by a binary-search tree
with all the possible combinations, as shown in Fig. 4(a). Each
neuron makes a decision, which takes td , and forwardly drives
other neurons in an asynchronous pipeline and with strength
(synaptic weight) proportional to its significance degree, during
the read cycle after propagation time tp . The total propagation
time should be less than the read cycle duration.

In a real-time operation where non-ideal, non-linear, stochas-
tic, and varying conditions affect the conversion accuracy, the
correct weights are not distributed deterministically in binary-
weighted style as in (3). In this case, the weights should be up-
dated in real-time in situ by a training feedback. Four different
binary-weighted weights are needed to implement a 4-bit ADC,
and 24 different precise weights around each binary-weighted
weight are required to fine-tune the LSB neuron. The intercon-
nected synaptic weights of the network are described by a matrix
W, and each element Wij represents the weight of the connec-
tion from pre-synaptic neuron j to post-synaptic neuron i. The
neural network ADC architecture including its building blocks
(neurons, synapses, and feedbacks) is illustrated in Fig. 4(b).
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Fig. 4. (a) Successive approximation flow of the SAR-like neural network using a binary-search algorithm. (b) Neural network 4-bit ADC architecture including
synapses Wi,j , neurons Ni , and feedbacks F Bi , in addition to a wave diagram of the neural activity forward propagation among bits. The propagation time of
neural decisions should be less than the read cycle. The digital outputs Di are sampled at the read-cycle end, and then are latched for the write cycle to compare
with the teaching data-set Ti , which corresponds to the analog input ramp. Read and write dependent signals are marked in blue and red, respectively.

B. Theory

Surprisingly, the proposed architecture is equivalent to a
well-studied architecture with emergent collective computa-
tional properties [24]. A simple single-layer neural network was
developed from a complex Hopfield neural network [25]. The
originally proposed Hopfield network is considered a sub-type
of recurrent neural networks with a parallel single layer that
comprises fully-connected neurons with inhibitory feedbacks,
bidirectional data traversal, and without auto-feedback. From a
design point of view, a Hopfield network with symmetric con-
nections is especially convenient for the ADC task [25]–[27].
Most interestingly, the ADC is based on an energy function
that describes the macroscopic dynamics of the network. The
energy function characterizes the energy minimization process
and recursive convergence of the network from an initial state to
a minimum energy in steady state [25]. The energy function is
used as a network cost function customized for solving specific
optimization problems. By defining the energy function, one
can easily extract the corresponding weights that fit the network
specifications and application demands.

Hopfield networks suffer, however, from several drawbacks
that limit their use for practical applications. Due to the com-
plex nature of the energy function, the solution of this symmet-
ric network is highly dependent on its initial state. The energy
function might decrease and then settle to one of the equilib-
rium points, called “spurious state” or “local minima,” that does
not correspond to the correct digital representation of the in-
put signal and results in ADC characteristics that are far from
ideal. Fortunately, these non-linearities can be eliminated using
a modified Hopfield network with an additional self-correcting
logic network and an extended resistive network [28], [29]. An-

other elimination technique is to use separate electronics that
force the neurons to reset, alternately limiting the operational
frequency and ADC speed [25], [30], [31]. Moreover, Hopfield
networks also suffer from structural shortcomings, especially at
a large scale: a large number of synapses, a high ratio between
weights, and quantization errors. Recently, a level-shifted 2-bit
Hopfield based ADC quantizer was proposed to overcome the
original Hopfield network scaling shortcomings and eliminate
the digital error that grows along with the number of bits [32].

Our proposed ADC architecture is equivalent to a particu-
lar class of asymmetric Hopfield-type networks. It has been
designed to overcome the Hopfield network drawbacks and sta-
bility issues [24]. The equilibrium point is globally attractive,
globally asymptotically stable and guaranteed [24]; that is, the
system will converge toward this point for every choice of initial
condition and for every choice of non-linearities. Furthermore,
neural networks with lower block triangular interconnection
structure for robust ADC application have been widely explored
in the literature [33]–[38], including their mathematical justifi-
cation, formalization, qualitative analysis, quantitative asymp-
totic constraints for stability, encoding techniques, and synthe-
sis. Analogously to the Hopfield energy function, we describe
the energy function of the proposed asymmetric architecture as

E =−
N −1∑
i=0

N −1∑
j=i+1

WijDiDj −
N −1∑
i=0

Di (VinWii n
+Vref Wir

) , (4)

where Wij is a synapse (conductance) between a pre-synaptic
neuron with index j and digital voltage Dj , and a post-synaptic
neuron with index i and digital voltage Di , as shown in Fig. 4(b).

The derivative of E according to Di , which is equivalent to
the inverting sum of neuron i input currents, is negative. Thus,
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E is a monotonically decreasing function and achieves minimal
value when Di changes to guarantee a zero total current over
the whole ramp input. The first component refers to the power
dissipation of the interconnected synapses, taking the network
asymmetry into consideration (j counts from i). The second
component refers to the external dissipated power composed of
the analog input voltage source and the reference voltage source.
The strategy employed in creating (4) is to consider the ADC
as an optimization problem implemented by the following error
function EQ , which is formalized analogously as

EQ =
1
2

(
Vin−

N −1∑
i=0

Di2i

)2

− 1
2

N −1∑
i=0

(
2i
)2 [Di (Di − 1)] , (5)

where the first component is the power of the quantization error.
It will achieve minimal value when the digital code corresponds
to the correct analog input. The second component is added
to eliminate diagonal elements (self-feedback), and its value
is always zero. By reordering (5) as an energy-like function,
similarly to (4) we get

EQ =

2N ·
⎡
⎣−

N −1∑
i=0

N −1∑
j=i+1

(−2j
)
DiDj −

N −1∑
i=0

Di

(
Vin−2i−1)

⎤
⎦, (6)

where 2N is a constant and does not affect the optimal weights
for the ADC network. We extract the weights by compar-
ing (6) to (4): Wij (j>i) = −2j ,Wij (j≤i) = 0,Wii n

= 1,Wir
=

−2i−1 . These values are typical for a deterministic ADC like
the one calculated in (3).

Unlike in a Hopfield network, the convergence of the en-
ergy function toward its minimum in the proposed network is
globally attractive and unaffected by the transient behavior of
the circuit elements. Moreover, the proposed network outper-
forms the Hopfield network in terms of scalability: the number
of synapses is halved, and each weight value is reduced by 2i .
In the next section, we show that the network converges after
training to the minimum energy level.

C. Training Algorithm

The learning capability of the asymmetric Hopfield network
was thoroughly investigated in [39], [40]. A learning algorithm
based on the least mean square (LMS) algorithm was introduced,
and several specific examples were considered to demonstrate
the learning ability, network flexibility, linear separability for
conversion, and the effectiveness of LMS in training the asym-
metric network as compared to the Hopfield and multi-layer
neural networks. The recurrency of the Hopfield network com-
plicates its feasibility for in situ training and adaptivity. Al-
ternately, the Hopfield network could be cascaded by a deep
neural network, trained using the backpropagation algorithm,
to adaptively calibrate quantization errors and maintain the
magnitude of digital output code within a manageable oper-
ating voltage range, as presented in [32]. This extension sepa-
rates between the training (encoding) path and the conversion
(inference) path, which could complicate the feasibility of the

scalable level-shifted architecture [32], consuming a large num-
ber of resources, in contrast to the proposed network.

Consider the following supervised learning task. Assume a
learning system that operates on K discrete trials, indexed by
k = 1, 2, . . . ,K. In each trial k, the system is given an empirical
data set of {Vin, Ti}, i = 0, . . . , N − 1, where V

(k)
in ∈ R is a

sampled analog pattern, Ti ∈ RN is the desired digital label
for D

(k)
i corresponding to V

(k)
in , and D

(k)
i is the actual i-th

digital output, with all pairs sharing the same desired relation,
T

(k)
i = f(V (k)

in ,D1 , . . . , Di−1). Note that two distinct patterns
can have the same label (the same digital level in the ADC case
depends on the quantization resolution). The goal of the system
is to estimate (learn) the function f(·) using the empirical data.
Suppose W is an asymmetric matrix as discussed, and consider
each neuron estimator as

D
(k)
i = u

⎛
⎝V

(k)
in −

N −1∑
j>i

W
(k)
ij D

(k)
j + c

⎞
⎠ , (7)

where u(·) is denoted as the signum neural activation function,
and c is a constant that refers to a reference voltage, while each
Di behaves as a linear classifier with one output and forward
propagates to approximate other outputs. Thus, there is no need
for hidden layers, and the signum activation function is sufficient
for estimating the function f(·). The proposed network could
be seen as a concurrent single-layer or a pipelined feedforward
multi-layer neural network where each layer determines an out-
put bit. Each estimator D

(k)
i should aim to predict the correct

teaching labels T
(k)
i for new unseen patterns Vin . To solve this

problem, W is tuned to minimize some measure of error between
the estimated and desired labels, over a K0-long subset of the
empirical data, or training set (for which k = 1, . . . ,K0). Then,
a common measure error metric is the least mean square error
function defined as

ELM S =
1
2

K 0∑
k=1

N −1∑
i=0

(
D

(k)
i − T

(k)
i

)2

, (8)

where the 1/2 coefficient is for mathematical convenience. One
can use different error measures as well. The performance of
the resulting estimators is then tested over a different subset,
called the test set (k = K0 + 1, . . . ,K). A reasonable iterative
algorithm for minimizing the error (that is, updating W where
the initial choice of W is arbitrary) is the following instance of
online stochastic gradient descent,

W (k+1) = W (k) − η

2
∇W (k )

N −1∑
i=0

(
D

(k)
i − T

(k)
i

)2
, (9)

where η is the learning rate, a (usually small) positive constant,
and each iteration k, a single empirical sample V

(k)
in is chosen

randomly and presented at system input. The chain rules (7) and
(8) are used to obtain the outer product [39]:

ΔW
(k)
ij (j>i) = −η

(
T

(k)
i − D

(k)
i

)
T

(k)
j . (10)

This update rule is known as the least mean square (LMS)
algorithm [41], used in adaptive filters for signal processing and
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Fig. 5. Building blocks of the neural network 4-bit ADC. (a) Schematic of the memristive synapse Si,j . Note that Wij = Rf /Sij . (b) Schematic of the neuron,
which comprises an inverting OpAmp for integration and a latched-comparator for decision-making. (c) Digital feedback circuit for the gradient descent algorithm.

control [42], [43]. Note that the update rule (10) is local, i.e., the
change in synaptic weight Wij (j>i) depends only on the related

components D
(k)
i , T

(k)
i , T

(k)
j . This local update, widely used in

ANN training and ML algorithms, allows massively parallel
acceleration [10]. The training phase continues until the error
is below Ethreshold, a small predefined constant threshold that
quantifies the learning accuracy. We show in the next section,
for the first time, that the error function in (8) after training is
proportional to the cost function in (5) and the network energy
function in (4). The training algorithm is implemented by the
feedback shown in Fig. 4(b), and its flow resembles the flow
presented in our previous work [11].

IV. CIRCUIT DESIGN

In this section, we present the circuit design building blocks
of the proposed ADC architecture, including its different com-
ponents: neuron, synapse, and feedback circuit. The design
methodologies, operational mechanism, and constraints of the
building blocks are based on our previous work [11]. For sim-
plicity, we provide the circuit design of the quantization stage
and assume that the analog input is sampled separately by means
of an external sample-and-hold circuit.

A. Artificial Synapse

We adopt our synapse circuit design from earlier work [10],
[11]: a single voltage-controlled memristor, connected to a
shared terminal of two MOSFET transistors (p-type and n-
type), as shown in Fig. 5(a). The circuit utilizes the intrinsic
dynamics of the memristive crossbar (2T1R), which inherently
implements Ohm’s and Kirchhoff’s laws for ANN hardware re-
alization [9]. The output of the synapse is the current flowing
through the memristor. The synapse receives three voltage input
signals: u is connected to the source of one transistor, ū = −u
is connected to the source of the other, and the enable signal e
is connected to the gates of both. The enable signal e can have
a zero value, meaning that both transistors are non-conducting,
VDD , meaning that only the NMOS is conducting, or −VDD ,
meaning that only the PMOS is conducting.

The synaptic weight is modified in accordance with the value
of e, which selects either input u or u . Hence, the writing
voltage, Vw (or −Vw ), is applied via the source terminal of
both transistors. Note that the right terminal of the memristor

is connected to the virtual ground of an OpAmp [11], whereas
the left terminal is connected to a transistor that operates in
the ohmic regime and a shock absorption capacitor [44]. The
memristor value Mi,j varies between low and high resistance
states, Ron and Roff , respectively. The assumption of transistors
in ohmic operation bounds the write and read voltages, and
constrains the initial memristive state variable and other design
parameters, as further described in our previous work [11].

For the design of the proposed ADC, we have used 0.18 μm
CMOS process, and memristors fitted by the VTEAM model
[45] to the Pt/HfOx /Hf/TiN RRAM device with a buffer layer
[46]. This device has a high-to-low resistance state (HRS/LRS)
ratio of∼50 and low forming, set, and reset voltages. The circuit
parameters are listed in Table I.

B. Artificial Neuron

The neural activation is the de facto activity in neuromorphic
computing that collectively integrates analog inputs and fires
output by means of a non-linear activation function. The neu-
ral activity is a mathematical abstraction that simply aims to
capture some features of real biological neurons. Several im-
plementations of artificial neuron circuits have been suggested
in the literature [6], [47]–[49]. The neural activation function
in the originally proposed Hopfield neural network [25] has
some constraints in linearity and monotonicity, as were care-
fully implemented in [31] using a complicated design to ensure
disturbance-free and leakless transient neural activity. Fortu-
nately, in asymmetric Hopfield networks, no such strict con-
straints are required, and simple digital comparators can be used
[24], [35], while device mismatches, parasitics, and instability
issues of the neuron circuit are adaptively compensated for by
the synapse.

Thus, our neuron circuit is realized, as shown in Fig. 5(b),
by a transimpedance amplifier implemented as an inverting op-
erational amplifier (OpAmp), cascaded to a comparator with
zero voltage reference, zero voltage Vmax, and −Vdd as Vmin to
generate negative signs for the inhibitory synapses of the LSBs.
The comparator is latched using time-interleaved phased clock,
and its decision result (0 V or −Vdd) is sampled at the end of
the reading cycle Tr , after transient effects are mitigated and
neurons synchronized, and their outputs are forward propagated
in pipeline. It is latched for the entire writing cycle Tw , and han-
dled by the feedback circuit. Note that the effective weights are
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TABLE I
CIRCUIT PARAMETERS

normalized via the OpAmp and equal to Wij,j>i = Rf /Sij,j>i,
where Rf is the negative feedback resistor and Sij is the effective
resistance of Mij and the serial transistor.

C. Feedback Circuit

The online gradient descent algorithm is executed by the feed-
back circuit, which precisely regulates the synaptic adaptation
procedure. Our aim is to design (10) in hardware and execute
basic subtraction and multiplication operations. The ADC sys-
tem is more sophisticated than the DAC system [11] and has
stronger applicative impact; however, its training circuit design
is much simpler because D

(k)
i , T

(k)
i , T

(k)
j as they appear in (10)

are digital values that do not require modulation techniques. The
subtraction product (T (k)

i − D
(k)
i ) is implemented by a digi-

tal subtractor, as shown in Fig. 5(c). The subtraction result of
each neuron (other than the MSB) is backward propagated as
an enable signal e simultaneously to all its synapses. The mul-
tiplication is invoked as an AND logic gate via the synapse
transistors and controlled by e, whereas the attenuated desired
digital output T

(k)
j is connected via the source of the synapse.

All circuits are controlled by interchangeable synchronous read
and write clock cycles with the ADC sampling frequency fs .
After the training is complete (E ≤ Ethreshold), the feedback is
disconnected from the conversion path.

V. EVALUATION

In this section, our proposed four-bit ADC design is discussed
and evaluated in a SPICE simulation (Cadence Virtuoso) using a
0.18μm CMOS process and the VTEAM memristor model [45].
The simulation methodology is based on our previous work [11].
First, the learning algorithm is evaluated in terms of least mean
square error and training time. Next, the circuit is statically and
dynamically evaluated, and finally power consumption is an-
alyzed. The proposed ADC functionality and robustness were
massively tested under extreme conditions using MATLAB. The
design parameters and constraints are listed in Table I. Further-
more, circuit variations and noise sources are quantified and
validated, as listed in Table II.

A. Reconfiguration

The basic deterministic functionality of the four-bit ADC
is demonstrated during training by the online gradient descent
algorithm. The learning rate is crucial to the adaptation perfor-
mance: it depends on the circuit parameters, the write voltage,
the pulse-time width, the feedback resistor, the present state, and
the physical properties of the memristive device. The learning
rate is

η (t) =
ΔR

R
=

(ROFF − RON) Δs (t)
Rf

, (11)

where Δs is the change in the memristor’s internal state defined
as in the VTEAM model [45],

Δs =
∫ Tw

0
Kon/off

(
VW

Von/off
− 1
)αon/ off

· f (s) dt, (12)

where Kon/off, and αon/off are constants that describe, respec-
tively, the state evolution rate and its nonlinearity, Von/off are
voltage thresholds, and f(s) is a window function that adds non-
linearity and state dependency during state evolution. These pa-
rameters are fitted to the Pt/HfOx /Hf/TiN RRAM device [46].
The fitted learning rate succeeded to converge to a global min-
imum with high accuracy [39], [50]. The learning rate as given
in (11) is state and time dependent.

Fig. 6(a) shows the resistive value of the synapses when
two sawtooth training datasets with different full-scale voltage
ranges (VDD and VDD /2) and different sampling frequencies (fs
and 100 fs) are applied successively in real time. After approxi-
mately 4000 training samples, which is equal to 40 ms training
time for 0.1MSPS conversion rate, the error according to (8)
is below Ethreshold and the network converges from a random
initial state to a steady state. Ethreshold is determined to be 50%
effectively misclassified digital output codes (8 codes in the case
of 4-bits) out of the total number of training samples, as listed
in Table I. Furthermore, when the full-scale voltage changes
to VDD /2 and the sampling frequency changes to 100 fs , the
system converges to a new steady state that quantizes 0.9 V full-
scale at a 10 MSPS sampling rate. In each case, the network is
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reconfigured to operate correctly under different specifications,
as illustrated by the different synaptic weights in Fig. 6(a). The
least mean square error (5) optimization toward its gradient
descent during training is shown in Fig. 6(b). In the same con-
text, neural activity adaptation that denotes digital output bits is
shown, at three different time stamps, in Fig. 6(c) for the ini-
tial state before training (samples 0–15), coarse-grained training
(i.e., where the error is slightly higher than Ethreshold, samples
220–235), and fine-grained training (i.e., where the error is suf-
ficiently low and the ADC response converges to the desired
state, samples 3720–3735). The digital outputs are ideally con-
verted to discrete analog via an ideal 4-bit DAC that is connected
back-to-back and accurately reproduces the ADC’s present state,
as shown in Fig. 6(d) at the same three time stamps.

B. Self-Calibration

As introduced in Section II, the accuracy of an ADC depends
on many critical factors including process variations, frequency-
dependent variations, device mismatches, device wear out, par-
asitic effects, delays, poles, gain and offset errors. Table II lists
the magnitude of variability for these effects. The process vari-
ation parameters for the memristor are pessimistically chosen
[11], randomly generated with a normal distribution, and incor-
porated into the VTEAM model [45] with a variance of approx-
imately 10% to cover wide reliability margins [10]. Transistor
parameters such as VW ,W/L, and VT in Table I are chosen to
guarantee a globally optimal solution even under such extreme
conditions. In Fig. 6, we show that the proposed training algo-
rithm can tolerate such variations over time and compensate for
them by using different synaptic weights.

We statically evaluated how the proposed ADC responds to
the DC ramp signal at the three given time stamps, as illustrated
in Fig. 7(a) and (b). The teaching staircase in Fig. 6(d) is a subset
of DC ramp input that statically evaluates the ADC at the afore-
said time stamps. The differences between two adjacent digital
output decimal codes within the actual ADC output are therefore
the differential non-linearities (DNL). Likewise, the differences
between the actual ADC output and the ideal staircase for each
digital input code are the integral non-linearities (INL) [1]. The
DNL of the last code is undefined. Results of the maximum DNL
and INL are shown, respectively, in Fig. 7(a) and (b). Prior to
training, the ADC is completely non-linear and non-monotonic,
with several missing codes. Thus, INL � 8 LSB, and DNL �
5 LSB. Improved performance can be seen at the second time
stamp (2 ms ∼ 200 samples), where the ADC appears mono-
tonic; however, it is still not accurate (INL �−2 LSB, DNL � 2
LSB). After the training is complete (40 ms), the ADC is almost
fully calibrated, monotonic, and accurate: INL � 0.4 LSB, and
DNL � 0.5 LSB.

Furthermore, parasitic effects such as capacitance and induc-
tance, as listed in Table II, which are the dominant factors in
ADC accuracy at high frequencies, have been adaptively cap-
tured as simulated by 10 MSPS within longer training time.

C. Noise Tolerance

In contemporary ADCs, calibration mechanisms [17] can
be used to compensate for device mismatch and process

Fig. 6. Training evaluation. (a) Synaptic weight reconfiguration during the
training phase for the VF S = 1.8 V and fs = 100 KSPS. Synapses are imme-
diately trained for the VF S = 0.9 V and fs = 10 MSPS and shown in real time.
The synaptic weight is equal to the ratio between Rf and the corresponding
memristor, thus it has no units. (b) The LMS error function optimization during
training until it achieves Ethreshold . (c) The actual digital outputs Di (logical
value) at three different time stamps during the training; periodic digital outputs
are achieved after the training is finished, corresponding to the analog input
ramp. (d) Comparison between the corresponding discrete analog values of the
teaching dataset and the actual output by connecting it to an ideal DAC, at three
different time stamps during the training; an identical staircase is obtained after
the training is complete.
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TABLE II
CIRCUIT VARIATIONS & NOISE

imperfections, but noise can irreparably degrade performance.
Noise is also less straightforward to capture at design time.
However, we believe that the effects of intrinsic noise on the
performance of the analog circuit are relatively small: adaptive
intelligent systems that employ machine learning techniques are
inherently robust to noise, because noise is a key factor in the
type of problems they are designed to solve.

Noise sources include intrinsic thermal noise from the
feedback resistor, memristor, and transistor [10], in addition
to quantization noise [51], jitter, comparator ambiguity [3], in-
put referred noise, random offsets [19], non-linear distortions,
training label sampling noise, memristor switching stochastics,
and frequency-dependent noise [52]. These noise sources are
listed in Table II.

The ADC non-linear functionality Vout = f(vi) in response
to voltage input vi = Acos (ωt), where A is the amplitude and
ω is the frequency, could be qualitatively described as

Vout =a0 +a1Acos (ωt)+
a2A

2

2
[1+ cos (2ωt)] + . . . , (13)

where ao is the DC constant, a1 is the small-signal gain constant,
and a2 is the distortion constant. Thus, as a result of non-linear
effects, we get harmonic distortions, which appear as spectral
spurs in sampling frequency multiples and degrade the SNDR
and the ADC precision. We show that the proposed algorithm
is able to adaptively alleviate non-linear distortions and tolerate
noise by estimating the f(·) function given in Section III-C.

The ADC is dynamically evaluated and analyzed, at the three
given time stamps, in response to a sinusoidal input signal
with 44 kHz frequency, which meets the Nyquist condition,
finput ≤ fs/2, and applies for coherent fast Fourier transform
(FFT) using a Hamming window and a prime number of cycles
distributed over 5000 samples, which is sufficient for reliable
FFT without collisions and data loss [53]. Fig. 7(c) shows the
FFT for signal and distortion power as a function of frequency,
where each time stamp is shown in a different color. The ADC
cutoff frequency fT ,max is bounded by the high-to-low memris-
tor impedance ratio [11]. Fig. 7(c) illustrates that the harmonic
distortions are mitigated, the fundamental power increases, and
the SNDR and ENOB improve as the training progresses.

Synaptic fluctuations arising due to noise and variation
sources are mitigated by the switching non-linearity and thresh-
old of the memristor [11]. Nonetheless, the gradient descent
algorithm continues capturing and averaging stochastic dynam-
ics and timing uncertainties (jitter) of the sampled input. The
comparison to noisy labels will strengthen the immunity of the
network against overfitting [54] and achieve reliable generaliza-
tion performance. In the same context, the memristor switching
stochasticity is characterized by a Poisson process [55], as listed
in Table II, and incorporated into the VTEAM model [45] as a
probabilistic shift in the threshold [55]. Along with the quanti-
zation noise or dither, this helps the network converge to a global
minimum, and improve the ENOB, breaking through the ther-
mal noise limit in some cases. This well-known phenomenon is
called stochastic resonance. It was reported in the past in ANNs
[56] and memristors [57]. Note that smaller learning rates will
better overcome real-time variations; however, this will come at
the cost of a training time penalty. The effective number of stable
resistive levels, as a function of noise margin (NM) due to sta-
tistically correlated variation sources, was massively analyzed
using Monte-Carlo simulations in our previous work [11]. Fur-
thermore, its impact on the ENOB was determined, with typical
results (in 38% of the cases) of 64 resistive levels, ∼3% NM,
and ∼3.7 ENOB.

D. Power Optimization

Section III-B shows the equivalence between the Hopfield-
like energy function of the network given by (4) and the cost
function that solves the conversion optimization given by (6).
The cost function achieves its minimum, lower bounded by
quantization error power, when the synaptic weights are con-
figured so as to guarantee that each analog input is correctly
mapped to its corresponding digital output. In Fig. 6(b), we
show that the error function given by (8) achieves a global min-
imum when the network is successfully trained to configure the
ADC. Consequently, the power consumption is optimized dur-
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ing training until it achieves its minimal value when the training
is finished. The best energetic state of the proposed network
is achieved when it is configured in an ADC manner. Conse-
quently, the power dissipation of the entire network is analyzed,
and is attributed to three sources:

1. Neural integration power: the power dissipated on the
feedback resistor of the OpAmp is

Pinti
=
(

Vin − 2iVref −
∑N −1

j=i+1

Rf

Rij
Vj

)2

/Rf . (14)

This function solves the ADC quantization after training for
each neuron, as described in (3). The total neural integration
power dissipated on all neurons is Pint =

∑N −1
i=0 Pinti .

2. Neural activation power: the power dissipated on the com-
parators and OpAmps at the sampling frequency. This
power source is constant and negligible: Pacti

= 3 μW in
0.18 μm CMOS process in fT . The total activation power
dissipated on all neurons is Pact =

∑N −1
i=0 Pacti .

3. Synapse power: the power dissipated on synapses, includ-
ing reconfigurable and fixed synapses for each neuron,
is

Psynapsei
=

V 2
in

Rf
+

2iV 2
ref

Rf
+

N −1∑
j=i+1

V 2
i

Rij
. (15)

The total synaptic power dissipation is Psynapse =∑N −1
i=0 Psynapsei

. Note that an effective transistor resistance in
series to the memristor is also taken into account.

Thus, the total power consumption is the sum of the three
power sources averaged on a full-scale ramp with 2N samples
(epoch), as shown in Fig. 7(d) during training time. Each point
in the horizontal axis represents a full-scale ramp, and its corre-
sponding value in the vertical axis represents the average of the
total dissipated power. After the training is finished and the net-
work configured as an ADC, the average of the synapse power
on a full-scale ramp is half of the maximum power dissipated,
and the neural integration power is minimal. This balance results
in optimal power dissipation.

Note that the dynamic power consumption as a result of up-
dating memristors during the training phase is not determined
and is not considered as conversion power dissipation by FOM
definition in (1). We neglec the power dissipation of the feedback
because, after the training is finished, the feedback is discon-
nected and the network maintains the minimal achieved power
dissipation level during conversion. We assume that this power
source is relatively low because of the small area of training
feedback, short training time, and the small ratio between train-
ing to conversion cycles during the lifetime of the converter
[11], even at a high rate of application configurations.

VI. DISCUSSION

In the broader scope of the results shown in Section V, we
discuss the potential to break through the speed-power-accuracy
tradeoff. Furthermore, we discuss the scaling challenges of the
proposed architecture.

Fig. 7. Static conversion evaluation that shows the efficiency of the training
algorithm in mismatch calibration (a) differential and (b) integral non-linearities
of the ADC at three different time stamps in response to the DC input voltage
ramp. (c) Dynamic conversion evaluation that shows the efficiency of the training
algorithm in noise tolerance and distortion mitigation by coherent fast Fourier
transform of the ADC output in response to a sinusoidal input signal with
44 kHz frequency at three different time stamps during the training with ENOB
calculation. (d) Power evaluation of the network that shows power optimization
during training.
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Fig. 8. Breaking through the speed-power-accuracy tradeoff. (a) Speed-accuracy tradeoff by achieving maximal ENOB regardless of fs after training is complete.
(b) Speed-power tradeoff by achieving minimal P regardless of fs after the training is complete. The frequency-dependent power dissipation is negligible.
(c) Accuracy-power tradeoff by achieving maximal ENOB and minimal P after the training is complete. (d) FOM dynamic optimization with training.

A. Breaking Through the Speed-Power-Accuracy Tradeoff

Having demonstrated the dynamic mechanism of the train-
able ADC proposed in Section II, we investigate the real-time
training of the ADC for general purpose applications. For ev-
ery selected fs within the fT bandwidth, the ADC is trained
correspondingly by a training data-set with the same specifica-
tions and achieves optimal ENOB as shown in Fig. 8(a). The
maximal ENOB (∼3.7) is asymptotically bounded by the intrin-
sic quantization noise, which is not exceeded. Analogously, the
power consumption is dynamically optimized for every fs to
achieve the minimal power dissipation of the network, as shown
in Fig. 8(b). The power dissipated on resistors has a greater effect
on overall power dissipation than the frequency-dependent dis-
sipation (e.g., capacitors). Simultaneously, and as we show that
the equivalence between the quantization cost function (6) and
the energy function (4) after the error function (8) is optimized,
co-optimization in terms of both ENOB and power dissipation
along the training samples is achieved, as shown in Fig. 8(c).

Interestingly, the collective optimization of the proposed ar-
chitecture breaks through the speed-power-accuracy tradeoff,
and dynamically scales the FOM to achieve a cutting-edge value
of 8.25 fJ/conv.step, as shown in Figs. 8(d) and 2. The versatil-
ity of the proposed architecture with regard to reconfiguration,
mismatch self-calibration, noise-tolerance, and power optimiza-
tion is attained using a simple and minimalistic design with a
reconfigurable single-channel. The proposed architecture more-
over utilizes the resistive parallel computing of memristors to
achieve high speed, in addition to its analog non-volatility, en-
abling a standard digital ML algorithm to intelligently adjust
its conductance precisely and in situ to achieve high-accuracy.
The minimalistic design results in low-power consumption, thus
achieving a cost-effective ADC. All these features, when com-
bined with the SAR architecture, the pipelined architecture, and
the online trainable mechanism, will enable a general-purpose
application architecture.

B. Challenges

However, scaling the proposed architecture is challenging.
When increasing the scale of the network, the number of
neurons, synapses, and feedbacks are quadratically higher.
Consequently, this will increase the area and power consump-
tion substantially, as calculated in Table III based on [11], [46],
[58], [59]. Due to the successive nature of the proposed ADC
architecture, higher numbers of neurons require longer conver-
sion time as a result of the propagation time, settling time, and
decision-making time of each. Therefore, to eliminate signal
aliasing, the maximal Nyquist sampling frequency will unfor-
tunately be limited, as determined in Table III.

Additional challenges in scaling are the required high-to-low
resistance states ratio of the synaptic weights, the number of
resistive levels, cutoff frequency, and endurance. We calculated
the maximal number of bits in our previous work [11], which
is four bits for the memristive device under test, but devices
with higher HRS/LRS are achievable [60]. Moreover, we show
in this paper that device-dependent properties are compensated
for by longer training time to achieve maximal ENOB, which is
equal to (N-3) bits regardless of the conversion speed. Overall,
the FOM still improves as the number of bits increases, be-
cause of the optimal achieved ENOB, as calculated in Table III.
Furthermore, in advanced CMOS technology nodes the FOM
will improve due to lower power consumption and higher sam-
pling rates. These findings prove that the proposed architecture
is conceptually and practically scalable, even in the presence
of the mentioned scaling challenges. These shortcomings still
need to be investigated by leveraging mixed-signal architec-
tures and deep neural network concepts. Our future work will
consider training deep neural networks for large-scale archi-
tectures that contain multi-cores of the proposed 4-bit ADC
and its complementary 4-bit DAC, proposed in our previous
work [11], in a pipelined, time-interleaved, or oversampling
style.
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TABLE III
SCALABILITY EVALUATION

VII. CONCLUSION

This paper proposes a proof-of-concept of a real-time train-
able ADC architecture for general purpose applications, which
breaks through the speed-power-accuracy tradeoff. Motivated
by the analogies between mixed-signal circuits and the neuro-
morphic paradigm, we exploit the intelligent properties of an
ANN, and suggest a pipelined SAR-like neural network archi-
tecture ADC that is trained online by a supervised ML algorithm.
The proposed network shares the Hopfield energy model, and
we show the equivalence between the energy function to the
conversion cost function and the training error function after the
training is complete.

The neural network is realized by means of a hybrid CMOS–
memristor circuit design. The trainable mechanism successfully
proves collective properties of the network in reconfiguration
to multiple full-scale voltages and frequencies, mismatch self-
calibration, noise-tolerance, stochastic resonance, power opti-
mization, and FOM dynamic scaling. We believe that the pro-
posed ADC constitutes a milestone with promising results for
large-scale architectures of data converters and emerging real-
time adaptive applications with varying conditions, such as
wearable devices and automotive applications.
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