
 

THEME ARTICLE: Memristor-Based Computing 

Not in Name Alone: A 
Memristive Memory 
Processing Unit for Real 
In-Memory Processing 

Data movement between processing and memory is 

the root cause of the limited performance and energy 

efficiency in modern von Neumann systems. To 

overcome the data-movement bottleneck, we present 

the memristive Memory Processing Unit (mMPU)—a 

real processing-in-memory system in which the computation is done directly in the 

memory cells, thus eliminating the necessity for data transfer. Furthermore, with its 

enormous inner parallelism, this system is ideal for data-intensive applications that are 

based on single instruction, multiple data (SIMD)—providing high throughput and 

energy-efficiency. 

Modern computers are typically based on the von Neumann architecture, in which the memory is 
separated from the processing space and programs are executed by moving data between the pro-
cessing and memory units. This incessant data movement is the lead cause of the performance 
bottleneck known as the memory wall, which has increased in severity over the years as CPU 
speed improvements have surpassed those of memory speed and bandwidth. Furthermore, with 
the demise of Dennard scaling, energy-efficiency is becoming a major concern in modern com-
puters; for example, moving data to an off-chip DRAM consumes four orders of magnitude more 
energy than the computation itself.1 

One approach to addressing the challenges arising from data movement is to move the computa-
tion closer to the memory. Both DRAM and emerging non-volatile memory technologies can 
provide ample intrinsic parallelism, which goes unutilized today due to pin-limited integrated 
circuit interfaces. Processing in memory (PIM) can leverage this intrinsic parallelism by avoid-
ing the need for high-latency and high-energy chip-to-chip data transfers, thus yielding mas-
sively parallel, high-performance, energy-efficient processing systems. 
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Widely investigated in the 1990s, the PIM concept is hardly new. For example, the authors of 
IRAM2 attempted to increase the bandwidth between CPU and memory by designing them on 
the same die. However, despite this and other attempts, inadequate technology prevented the 
widespread adoption of PIM. Additional obstacles included the effort required to design custom 
PIM architecture and memory interfaces and the need for new programming abstractions. Alt-
hough recent advances in technology—for example, the emergence of 3D die stacking—have led 
to renewed interest in PIM, the recently proposed machines still suffer from the same fundamen-
tal problem: the need to transfer data between the processing and the memory spaces. So, while 
new PIM machines such as the Micron’s Automata processor rely on cutting down the distance 
between the processing and memory units, they do not attempt to eliminate the data transfer it-
self. Nor can DRAM cells provide the ultimate solution to the data-transfer problem, as they are 
incapable of performing logic; systems with DRAM as a memory require a separate resource to 
perform computation. 

The von Neumann architecture limitations can only be fully overcome if logical functions are 
computed directly using the memory cells, precluding the need to move data or instantiate addi-
tional CMOS blocks for processing. We present a new PIM approach that does just that. The 
memristive Memory Processing Unit (mMPU) relies on emerging memristive technologies such 
as resistive random access memory (RRAM3) to give computational capabilities directly to the 
memory cells. By directly tackling the data-movement problem, this approach differs fundamen-
tally from all previous PIM techniques. The evolution of this scheme is illustrated in Figure 1. 
Furthermore, with its massive innate parallelism, the mMPU yields considerably higher perfor-
mance and energy-efficiency than the current state-of-the-art approaches. 
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Figure 1. Architectural evolution from (left) von Neumann machines with separate computation and 
storage to (middle) near-data processing, and finally to (right) the proposed architecture in which 
logical operations are performed within the mMPU by the same cells that store the data—thus 
eliminating the von Neumann bottleneck. 

MEMRISTOR-AIDED LOGIC (MAGIC) 
We have recently proposed a stateful logic family called Memristor-Aided loGIC (MAGIC4). In 
MAGIC, only a single voltage is used to perform a NOR logic operation, and there are separate 
input and output memristors. Figure 2 shows a schematic of a MAGIC NOR gate operation per-
formed over column vectors within a memristive memory. Since NOR is functionally complete, 
a MAGIC NOR operation is sufficient to execute any Boolean operation. For example, a recently 
fabricated memory crossbar demonstrated the feasibility of implementing an adder using 
MAGIC.5 MAGIC enables true in-memory processing since data need not be read or sensed dur-
ing the computation; the data is processed using only memory cells chosen by the memory con-
troller, thus eliminating the data transfer. We propose that MAGIC NOR be employed as the 
basis for all data processing within the mMPU by dividing the desired function into a sequence 
of MAGIC NOR operations. These basic NOR operations will be executed one after the other 
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using the memory cells as computational elements. Another virtue of MAGIC is its ability to 
perform logic operations in parallel on sets of data. Due to the structure of the crossbar array, 
applying the operating voltage VG on any two selected columns and grounding a third column 
will result in NOR operations being performed on all selected rows (isolation of rows is possible 
if desired). This allows massive parallelism within the mMPU, which is independent of the data 
size. Due to the symmetry of memristive crossbar arrays, performing NOR operations on row 
vectors is feasible in a similar manner. 

 
Figure 2. Schematic of (a) a MAGIC NOR gate and (b) a MAGIC NOR gate within a memristive 
memory array. IN1 and IN2 are the input memristors, and OUT is the output memristor. The inputs 
are the initial resistances (states) of the input memristors, and the output is the resistance (state) of 
the output memristor at the end of the computation. To perform the NOR operation, a single voltage 
VG is applied to the bitline (BL) of the inputs, ground is applied to the BL of the output memristor, 
and VISO (the isolation voltage) is applied to unselected BLs and wordlines (WLs). 

MEMRISTIVE MEMORY PROCESSING UNIT (MMPU) 
The mMPU consists of a memristive memory and a CMOS controller. The structure is identical 
to a standard memristive memory; the only circuit modifications exist in the controller and the 
peripheral circuits (the row decoder and the voltage drivers). Hence, the advantages of a memris-
tive crossbar array, such as density and nonvolatility, are maintained. Furthermore, because the 
mMPU can function as a standard memory, it is completely backward-compatible with von Neu-
mann architecture and can operate either as a hybrid memory processing unit or as a standard 
memory. The structure of the proposed mMPU architecture is illustrated in Figure 3. 

To support MAGIC NOR gates in the mMPU, only three modifications to the conventional 
RRAM architecture are required: (1) The on-chip memory controller must be made aware of 
MAGIC functionality to activate multiple MATs simultaneously and support the mapping of an 
application to MAGIC NOR gates, (2) the voltage drivers must include the voltages required to 
perform MAGIC, and (3) the row decoder of each bank should allow the simultaneous activation 
of multiple subarrays. For small datasets, the first two modifications might suffice, although only 
a single subarray (and its MATs) inside each bank could be activated in this case. These modifi-
cations allow us to perform MAGIC in multiple banks, subarrays, and MATs simultaneously in a 
SIMD scheme. Further modifications are also required to support PIM operations. For example, 
a new data mapping is necessary to maintain persistence and coherence, and the memory access 
protocol must be modified to handle the PIM operations. 

Since parallel operations benefit most from the mMPU, they will mostly consist of simple SIMD 
operations, where a single operation requires only a few MAGIC cycles. One example is image 
convolution, which consists of many parallel additions and multiplications. To support in-
memory applications, optimized algorithms can be manually or automatically developed. Manual 
optimization is ideal for relatively complex tasks or for delivering the last drop in performance.  
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Figure 3. The mMPU chip architecture. The only modifications to conventional RRAM chip 
architecture (dark red) are in the controller, row decoders, and voltage drivers. A conventional 
RRAM chip typically has multiple banks. Banks in the same chip share the I/O. Each bank has 
several subarrays, each containing MATs. Each MAT has its private multiplexers (muxes) and 
sense amplifiers. Several adjacent BLs share one sense amplifier by a mux due to its large size. 
The sense amplifiers are also shared between two adjacent MATs by a mux. 

For example, we have developed algorithms6 that efficiently execute fixed-point (FiP) multipli-
cation using MAGIC NOR gates and allow many such multiplications to be performed inside 
each MAT simultaneously, enabling the support of image-processing tasks.7 For automatically 
generated algorithms, we use a framework8 that allows optimal implementation of arbitrary logi-
cal functions within the memory by defining an optimal sequence of MAGIC NOR operations. 
Automatic mapping is great for simpler tasks. We believe that such automatic tools will ulti-
mately serve as the basis for the mMPU operations, with manual mapping left for specific tasks 
requiring complex optimizations under different constraints, such as the number and size of 
available MATs, dataset size, and the complexity of the operation. 

To make the rest of the system as oblivious as possible to the mMPU and avoid the burden of 
optimization tasks, a programmer will only have to determine the desired operation and the loca-
tions and sizes of the inputs and outputs (at least in the general case). We are exploring two ap-
proaches for activation of our PIM scheme. The first requires extending the ISA with additional 
instructions supported by the mMPU. In the second, we plan to use a library, which will include 
functions that support the different tasks the mMPU can perform (similar to CUDA in Nvidia 
GPUs). The parts of the program that could benefit from execution within the memory will be 
written using these functions, which initiate mMPU operations encapsulated as a write command 
to a reserved memory address; thus, they could be sent to the memory using the standard 
memory interface. Other portions will be executed in conventional von Neumann style (in the 
CPU with load and store operations for memory access). Figure 4 shows an example of a possi-
ble execution scheme of such functions. 

THE CHALLENGES OF THE MMPU 
There are several known challenges to overcome when building a system like the mMPU. Pro-
cessing operands in the mMPU is constrained by the operands’ physical addresses having to 
share the same WLs/BLs, since they serve as circuit connections among the inputs and outputs. 
If two operands that need to be processed are present in different WLs/BLs, they first must be 
aligned, meaning copied to addresses that share WLs/BLs with the other operands in the same 
MAT. Ideally, operands involved in MAGIC NOR operations should be initially mapped to the 
same WLs/BLs. This can be done using mMPU driver hints indicating that the data should be 
mapped to the same WLs/BLs. To the same end, if such mapping was not achieved, we also pro-
pose three data-transfer techniques for organizing the data after it was already stored, depending 
on the physical addresses of the input and output operands.9 If the operands need to be trans-
ferred within the same MAT, one operand can be aligned to the other using MAGIC NOT opera-
tions. If the operands need to be transferred between different MATs in the same bank, a single 
operand can be read from one MAT using the sense amplifiers to the bank I/O and written to the 
other MAT. Finally, if the operands need to be transferred from one bank to another within the 
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same chip, we read one operand to the bank’s I/O through the sense amplifiers, transfer it to the 
bank I/O of the destination bank through the internal bus of the chip, and write it to the desired 
memory location juxtaposed to the other operand. Data organization using these techniques 
could increase the execution time by up to 1.5×. MAGIC also requires modifying the memory 
controller to support MAGIC-based operations and modifying the peripheral circuits to support 
additional voltage levels, consequently increasing the area of the memory. 
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Figure 4. Example of functions supported in the mMPU. The function calls are converted by the 
compiler to an instruction for in-memory computing. The instruction contains a write operation to a 
reserved address mapped to a dedicated register within the mMPU controller. The payload data 
contains the relevant information for execution, such as the required operation, operands and result 
location, and size. The mMPU controller identifies such operations and performs the equivalent 
sequence of MAGIC NOR operations that results in the desired function. 

Power and endurance limitations are crucial challenges. MAGIC incurs the overhead of writing 
multiple output memristors, which might result in high power consumption and memristor wear-
out that decreases the memory lifetime. We analyzed the impact of power and endurance limita-
tions in previous works.7,9 Alleviating their impact is possible but might limit the performance or 
require technological improvements. For example, we achieved a worst-case (when all the 
MATs are simultaneously performing MAGIC gates in all the rows) lifetime of 0.8 years by us-
ing wear leveling.7 
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THE VIRTUES OF THE MMPU 
Since the early 1990s, researchers have sought to scale the memory wall by bridging the gap be-
tween where data is stored and where it is processed. Although the term PIM is used to refer to 
processing the data closer to where it resides, true in-memory processing is possible only if the 
computation is carried out directly by the memory cells themselves. Hence, we argue that all pre-
vious PIM approaches are in fact near-memory approaches. Reducing the data-movement over-
head is possible by processing data close to where it resides (such as in the periphery connected 
to the MAT rather than in off-chip computational units). This, however, will have no bearing on 
the fundamental cause of the problem: the very necessity for data movement between the 
memory and processing units. 

By using the memory cells for computation, the mMPU overcomes the von Neumann bottleneck, 
eliminating the problem at its source. As such, the mMPU performs in-memory processing in 
practice and not in name alone. Furthermore, the added logic for supporting MAGIC in the 
mMPU has relatively low area overhead. By contrast, the conventional PIM approaches require 
considerable area overhead for the computational blocks added to the memory. MAGIC’s natural 
parallelism can be put to full advantage within the mMPU, making it the ideal candidate for par-
allel data-intensive applications. Ultimately, any desired operation could be translated to a se-
quence of MAGIC NOR gates, which gives broad flexibility to the mMPU. 

EXPLORING THE POTENTIAL OF THE MMPU 
The massive parallelism and the elimination of data movement in the mMPU could be leveraged 
in many applications—for example, in digital image processing, which requires the same instruc-
tion on multiple data in parallel. Image manipulation requires data-intensive computations, often 
in real time, and the necessity for data movement only intensifies as image resolution becomes 
higher. Therefore, image-processing applications suffer from high energy consumption and a 
long processing time. They would thus benefit naturally from the mMPU, since many pixels are 
processed in place and in parallel, and the parallelism improves as the image dimensions in-
crease. 

As an initial step to demonstrate the potential of the mMPU, we compare its performance and 
energy-efficiency on three bitwise operations and two synthetic image-processing tasks (the 
Hadamard product and image convolution) with the recently published, state-of-the-art 
Pinatubo.10 Pinatubo extended the capabilities of RRAM periphery to support bitwise XOR, 
AND, OR, and NOT operations. The inputs are read to the CMOS periphery, computed, and 
written back to the memory array. Thus, the computation in Pinatubo is very similar to that in the 
mMPU, except that Pinatubo performs the bitwise operations in the periphery while the mMPU 
performs them in the memory cells themselves. For the image-processing tasks, we use the 
CIFAR-10 image classification benchmark dataset, a test set of 10,000 images, where instances 
are 32×32 color (RGB) images representing airplanes, automobiles, birds, cats, deer, dogs, frogs, 
horses, ships, and trucks. For image convolution, we run a layer of 3×3 filters used for sharpen-
ing and edge detection on the dataset. The filters are slid over the images, and their values are 
multiplied by the corresponding pixel values. For the Hadamard product, we perform element-
wise multiplications between the images and 32×32 matrices used for pattern recognition and 
lossy compression algorithms such as JPEG. 

We extended the MAGIC NOR-based FiP multiplication algorithm6 to implement image convo-
lution (and the Hadamard product)7 in the mMPU by aligning the filters (or matrices) in the same 
WLs/BLs with the images and performing multiply-accumulate (or multiply) operations. We use 
similar algorithms in Pinatubo by replacing the MAGIC NOR gates with the optimal combina-
tion of XOR, AND, and OR gates; the multiplication is done using the sum of the partial prod-
ucts algorithm. We generate the partial products using AND gates, and each 1-bit full adder is 
implemented using two XOR gates, two AND gates, and a single OR gate. All the algorithms are 
verified using an in-house functional simulator that performs the logic gates cycle by cycle until 
the final result is obtained. The simulator starts the execution from a state in which the data is 
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already stored properly in the mMPU and Pinatubo, since this overhead is equal in the two de-
signs. 

Each MAT is 512×512. To model the memristor, we use the VTEAM11 model in which the de-
vice parameters fit the HfOx-based bipolar memristor.12 The parameters for MAGIC NOR gates 
and read and write operations are extracted from SPICE simulations. The ratio of read, write, and 
MAGIC latencies is, respectively, 1:2.5:3.25, and the read latency is 8.9 ns.10 For an apples-to-
apples comparison, we exclude the overhead of the CMOS logic in the Pinatubo periphery. Note 
that the latency and energy of Pinatubo are higher in practice (when the CMOS logic overheads 
are included); our results are conservative in that they give Pinatubo an advantage. The RRAM 
capacity required to fit and compute the entire CIFAR-10 dataset is slightly lower than 1 Gbyte. 

Figure 5 shows the speedup and normalized energy-efficiency of the mMPU on bitwise opera-
tions and image processing as compared to Pinatubo. Note that the latency and energy for per-
forming MAGIC NOR in the mMPU is higher than that of the read and write operations in 
Pinatubo. However, the mMPU improves the performance by 65× and energy-efficiency by 4.6× 
in bitwise operations, on average, over Pinatubo. This improvement is primarily attributed to the 
higher parallelism enabled in the mMPU, where 512 MAGIC NOR operations can be performed 
simultaneously in each MAT. By contrast, in Pinatubo, since the bulky sense amplifiers are 
shared for every 32 BLs in every two adjacent MATs, the bandwidth for moving the data to and 
from the periphery is limited, consequently limiting overall system performance and energy-effi-
ciency. Bitwise NOR operations improve the most, since they are the supported operation in the 
mMPU; supporting them in Pinatubo requires an OR followed by a NOT operation. 

 
Figure 5. Speedup (left) and normalized energy-efficiency (right) of mMPU as compared to 
Pinatubo. 

The improvements in the image-processing tasks are substantially lower than in the bitwise NOR 
operations because the mMPU can only perform NOR operations. In contrast to Pinatubo, which 
can perform the addition and multiplication operations more efficiently using fewer gates, the 
mMPU must serialize a sequence of NOR operations to perform the other logic functions. Per-
forming image-processing tasks using only NOR gates is apparently not the most efficient 
method. However, the massive intrinsic parallelism and absence of data movement in the mMPU 
results in significantly higher performance and energy-efficiency for these tasks than state-of-
the-art Pinatubo. 

Both the mMPU and Pinatubo require activating multiple WLs and BLs. The mMPU, on the 
other hand, requires supporting additional voltage levels in the voltage drivers—support that is 
not necessary in Pinatubo. Therefore, the area overhead of the mMPU might be higher than that 

19September/October 2018 www.computer.org/micro



  

 IEEE MICRO 

of Pinatubo. This area overhead could be reduced if necessary, but doing so might require limit-
ing the space in the memory that supports PIM operations or using 1S1R arrays. 

This comparison offers only a first glimpse into the potential of the mMPU. Both Pinatubo and 
the mMPU rely on the same technology and have similar performance overheads in the control, 
wires, peripheral circuits, and so on. Therefore, we could focus only on the differences between 
these architectures in our evaluation. Recently, we have shown that the mMPU can improve the 
performance in these tasks by 200× over APIM, which uses a combination of MAGIC gates and 
partial product generators in the periphery to speed up the multiplication.7 However, a deeper 
exploration of performance and energy is still required, in addition to a comparison with funda-
mentally different architectures such as CPUs, GPUs, and FPGAs. Considering these overheads 
in such a whole system comparison will eventually be necessary. 

CONCLUSION 
In this article, we present the mMPU, a real PIM system that gives 
computational capabilities directly to the memory cells and thus dif-
fers fundamentally from all previous PIM techniques. With its elimi-
nation of data movement, massive innate parallelism, high 
performance, and energy-efficiency, the mMPU tackles the von Neu-
mann bottleneck at its source. We look forward to unleashing the full 
potential of the mMPU by exploring additional applications, program-
ming models, data mapping, and design of a new memory controller to 
support PIM. 
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