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Abstract— A memristor is a nano-scale two-terminal 

stochastic electronic device. This paper proposes functional 

analogies between biochemical reactions and memristive 

devices. It shows that memristors can mimic biochemical 

reactions and gene networks efficiently and capture both 

deterministic and stochastic dynamics at the nano-scale level. 

We present different abstraction models and voltage-controlled 

resistive switching circuits that inherently model the activity of 

genetic circuits with low signal-to-noise ratio (SNR). These 

findings constitute a milestone for cell-inspired circuit design 

with noise-tolerance and energy-efficiency features, which can 

provide a fast and simple emulative framework for studying 

arbitrary large-scale biological networks in systems and 

synthetic biology.  
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I. INTRODUCTION  

 Scientists and researchers have long been inspired by 
biology and nature when designing novel electronic circuits 
and systems. An example of such bio-inspired electronic 
circuits are neuromorphic circuits, which are artificial 
intelligent systems that share organization principles with the 
nervous system. Such systems make it possible to integrate 
models such as the artificial neuron (perceptron) into 
electronic circuits [1]. Biological systems in living cells can 
also serve as a source of inspiration, as they perform real-time 
complex and highly sensitive tasks, and include phenomenally 
energy-efficient systems. For example, in one second, a cell 
performs about 10 million energy-consuming noisy chemical 
reactions, which altogether require about one pico-watt of 
power, which is much more energy-efficient than any nano-
scale digital transistor [1]. Moreover, living cells are fault-
tolerant to the highly inherent noise of imperfect and 
imprecise analog-digital processing parts on its inputs, such 
that reliable outputs are produced. Therefore, the architectural 
concepts and design principles of living cells serve as a 
promising model for novel electronic systems with features 
similar to those found in the living cells. These cell-inspired 
circuits are known as cytomorphic circuits [1]. 

 Researchers today are further motivated to create 
simulation and modeling tools which can provide new insights 
into understanding biological systems and diseases. 
Biological networks often contain multi-scale, noisy, non-
linear, non-modular, and dynamical feedback effects. As such, 
simulating them is a computationally intensive task. To 
overcome this challenge, researchers have developed various 
hardware acceleration techniques that leverage parallelism 
[2]. However, these techniques have a common drawback: the 
simulation time inevitably increases as the molecular 
population size or network scale increases. Hence, new 
approaches for efficient and high-performance computation 

are needed to quickly and flexibly simulate and model 
biological systems. Cytomorphic circuits can abstract the 
dynamics of biological cells and interpolate their functional 
properties into electronic systems. Recently, cytomorphic 
circuits have been used to capture the nonlinearities and 
stochastic dynamics of biochemical systems to discover 
pathway parameters, gene regulatory networks, and cell 
signaling pathways. They have likewise been used to analyze 
intricate cell functions and to design synthetic circuits [3-5].  

 In this paper, we propose a novel approach for modeling 
deterministic and dynamic fluctuations of biochemical 
reactions and genetic circuits within the cell using memristor-
based circuits. Memristive devices are electrical non-linear 
passive elements that can retain a state of internal resistance 
based on the history of applied voltage and current. These 
devices can store and process information by their own 
conductance [6]. Memristive devices have potential in a wide 
range of applications, e.g., non-volatile memory, 
programmable logic, analog computations, and neuromorphic 
computing, where memristors mimic artificial synapses [7]. 
Our approach avoids using artificial noise generation circuits, 
which are normally used to capture the random fluctuations of 
molecular and genetic circuits that involve a small number of 
proteins, such as those in DNA-protein binding reactions [1] 
[3-4]. Noise generation circuits often include analog and 
digital circuits, which complicate the scaling of cytomorphic 
integrated electronics.  

II. MEMRISTORS MIMIC BIOCHEMICAL REACTIONS 

 To better understand the motivation for modeling 
biochemical reactions with memristors, we should begin by 
examining these reactions in terms of their biophysical 
dynamics and energy levels. To derive an expression for the 
reaction rate of a simple biochemical reaction, suppose that 𝑃 
denotes the free chemical species taken to be a protein in this 
model, 𝑁𝑇 is the total number of binding sites, 𝑁𝑓𝑟𝑒𝑒   is the 

number of free binding sites, and 𝑃∗  is the newly formed 
complex. Such complex formation through a simple binding 
reaction can be seen as analogous to the ON and OFF states in 
a memristive device, as illustrated in Fig. 1(a). The dynamics 
of such binding reactions depend upon the flow (diffusion) of 
proteins toward the active (free) binding site. As a first order 
approximation, the reaction rate can be given as: 

 𝑑𝑃∗/𝑑𝑡 = 𝑘𝑓 ∙ 𝑁𝑇 ∙ 𝑃,   (1) 

 𝑁𝑓𝑟𝑒𝑒 + 𝑃∗ = 𝑁𝑇 , (2) 

where Eq. (1) describes the chemical kinetics rate of complex 
production with rate  𝑘𝑓 , and Eq. (2) can be viewed as a 

molecular balance law. The rate coefficients of such 
biochemical reactions are exponential in free energy 
difference and are often described by the Boltzmann statistic 
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[1]. Therefore, an increase in enzyme concentration decreases 
energy barriers, as shown in Fig. 1(b). This process can be 
seen as analogous to ionic species flow in a memristive device. 
A simple solution of (1) and (2) shows that the concentration 
of the new complex 𝑃∗  can be viewed as two logic levels 
(zero-ON, and 𝑁𝑇-OFF) [5]. Thus, the biochemical reaction 
consists of free and occupied binding sites, which can be 
viewed as time-dependent internal state variables whose sum 
is constant and which are controlled by protein concentration.  

 A memristive device built in a metal-insulator-metal 
structure (Fig. 1) can be generally viewed as two-terminal 
resistance switches based on ionic motion. The semiconductor 
thin film within the insulation region has a certain length 𝐿 
and consists of a doped and undoped region [6]. The internal 
state variable of the memristor 𝑤 represents the length of the 
low resistance, doped region (filament length). If the doped 
region extends to full-length L, the total resistivity of the 
device will be dominated by a low resistivity region, with a 
value measured to be 𝑅𝑂𝑁 . Similarly, when the undoped 
region, which is represented by 𝑤𝑢𝑛𝑑𝑜𝑝𝑒𝑑 , extends to the full-

length 𝐿, the total resistivity of the device will be dominated 
by a high resistivity, denoted as 𝑅𝑂𝐹𝐹 . Switching between the 
two logic states (𝑅𝑂𝑁/𝑅𝑂𝐹𝐹) is initiated by applying external 
bias current or voltage across the memristor [6]. The applied 
current or voltage initiates vacancy migration towards the 
undoped region, causing the formation of conductive filament 
as shown in Fig. 1(a). As a first order approximation, the 
change in the doped region can be described by a linear model:  

 𝑑𝑤/𝑑𝑡 = (𝜇/𝐿) ∙ 𝑅𝑂𝑁 ∙ 𝐼(𝑡) , (3) 

 𝐿 = 𝑤 + 𝑤𝑢𝑛𝑑𝑜𝑝𝑒𝑑 ,   (4) 

where μ is the mobility of ionic species. Analogous to the rate 
coefficients in biochemical reactions, the rate of switching in 
memristive devices follows the Boltzmann statistic and is 
determined by bias-dependent activation energy [8]. 
Moreover, an increase in the applied voltage decreases energy 
barriers (Fig. 1(b)). Therefore, programming pulses and 
enzyme concentration have similar contributions to the state 
of memristor and the biochemical reaction, respectively.  The 
equivalency of the equation sets (1,2) and (3,4) reveals the 
analogy between biochemical reactions and memristor 

devices in terms of their dynamics. Both systems involve the 
motion of charged atomic or molecular species, including 
state variable dependency on time. In addition, the time it 
takes to form a new complex (binding of protein to binding 
site or substrate to enzyme) and the delay time of switching 
memristors both follow a Poisson distribution. Therefore, the 
stochastic dynamics of biochemical reactions are analogous to 
the stochastic dynamics of memristor switching. The above-
mentioned analogies suggest that large-scale genetic-
processing systems in biological networks can be efficiently 
modeled by hybrid memristor-CMOS electronic circuits.  

III. MODELING MICHAELIS–MENTEN WITH MEMRISTORS 

The kinetics governing biochemical reactions between 
enzyme 𝐸 and substrate 𝑆 is typically given by the Michaelis–
Menten equation; this equation is also applicable to a range of 
other biochemical reactions, such as the binding of proteins to 
their binding sites within a DNA strand [9]. For 
thermodynamic reasons, all biochemical reactions proceed in 
both directions [9], and hence, the kinetics of the complex 
formation is formulated as: 

 𝑑𝑃∗/𝑑𝑡 = 𝑘𝑓 ⋅ 𝑃 ⋅ 𝑁𝑓𝑟𝑒𝑒 − 𝑘𝑟 ⋅ 𝑃∗, (5) 

with 𝑘𝑓 and 𝑘𝑟 denoting the forward and reverse rate constant, 

respectively. An illustration of such a reaction between a 
protein 𝑃 and a binding site is shown in Fig. 2(a). If the reverse 
reaction is slow compared to the forward reaction, it is often 
ignored, and only the primary direction is displayed by (1). 
Assuming that 𝑃 ≫ 𝑁𝑓𝑟𝑒𝑒, a solution for (5) and (2) in steady 

state is:  

 
𝑃∗ = 𝑁𝑇 ∙

𝑃

𝑃 + 𝐾𝑑

, 
(6) 

where 𝐾𝑑 = 𝑘𝑟/𝑘𝑓 is known as the dissociation constant and 

has units of concentration.  

Equation (6) can be modeled simply by basic circuit 

components using Kirchhoff’s laws. To model (6) by a KCL 

circuit, as proposed in [10], one can use a resistive current 

divider between a memristor with value 𝑃 and a resistor with 

a value of 𝐾𝑑  , where 𝑁𝑇 is the current source and 𝑃∗ is the 

current that is passed through the resistor (Fig. 2(c)). 

Alternately, (6) can be modeled by a KVL circuit, where 

current dividers are replaced by voltage dividers. 

Consequently, 𝑁𝑇  becomes a voltage source and 𝑃∗ is the 

measured voltage on the memristor 𝑀𝑃  (Fig. 2(d)). In both 

configurations, the memristor operates in the analog mode 

with multiple resistance levels. The memristance is 

controlled by programming voltage pulses with a constant 

width. For simplicity, we use a voltage-threshold model to 

express the memristance [11], which is given by,  
 

𝑀𝑃 = (𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁) ∙
𝑤 − 𝑊𝑂𝑁

𝐿 − 𝑊𝑂𝑁

+ 𝑅𝑂𝑁 , 
(7) 

 𝑑𝑤/𝑑𝑡 = (𝜇/𝑉𝑇) ∙ (𝑉(𝑡) − 𝑉𝑇),   (8) 

where 𝑊𝑂𝑁 is the length of the doped region, 𝜇 is a constant 
with units of nm/sec, and 𝑉𝑇  is the threshold voltage. For  
𝑁𝑝 programming pulses with pulse period 𝑇𝑊, and amplitude 

𝐴𝑉 > 𝑉𝑇, the memristance is approximately:  

 𝑀𝑃 = 𝑅𝑂𝑁 + 𝑅0 ∙ 𝑁𝑝, (9) 

where 𝑅0 = (𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁) ∙ (𝜇/𝐿) ⋅ (𝑇𝑊/𝑉𝑇) ∙ (𝐴𝑉 −  𝑉𝑇) .  
The memristance as in (9) enables us to set the stochasticity of 

 
   (a) 

 
(b) 

 

Fig. 1. (a) Analogies between biochemical binding reactions and 

memristive devices at the nano-scale and biophysical level. (b) 
Analogies between molecular flux in chemical reactions and ionic 

species flow in memristive devices.  
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the memristor by applying a controlled number of pulses 
following Poisson statistics. This model can be easily 
extended or replaced by any threshold-based model. 

By substituting (9) in the current/voltage divider expressions, 
the current/voltage passed through the memristor 𝑀𝑃 is 

 𝑃𝑉/𝐼
∗ = 𝑁𝑇 ⋅

𝑁𝑝

𝑁𝑝+𝐾𝐷
+ 𝑁𝑇 ⋅

𝑅𝑂𝑁

𝑁𝑝+𝐾𝐷
,  (10) 

where 𝐾𝐷 = 𝑅𝑂𝑁/R0 + 𝑅𝛾/R0  is analogous to the 

dissociation constant, and 𝑁𝑝 is analogous to 𝑃 in (5), which 

denotes the number of proteins available. The value of  𝐾𝐷 can 
be easily modified by changing the resistor 𝑅𝛾, or by replacing 

it with a memristor that is controlled by programming pulses 
to any desired value. The complex 𝑃∗ and the total binding 
sites 𝑁𝑇 can be taken as the current or voltage, depending on 
the circuit. The left-hand term in (10) fits the model of the 
biochemical binding reaction (6), and the right-hand term is a 
leakage current/voltage, denoting that even when 𝑁𝑝 = 0 ,  

𝑃𝑉/𝐼
∗  is not zero. This is known as the basal level inherent in 

biochemical binding reactions [5]. 

IV. GENETIC ACTIVATION AND REPRESSION FUNCTION   

 Transcription is the process of converting DNA to mRNA, 
and it is initiated with the binding of the RNAp enzyme to a  
specific region in the DNA, also known as the promoter region    
(Fig. 5). This binding is activated or repressed by biological  
complexes (proteins), termed activators and repressors, 
respectively [9]. Activation is modeled by (6), and realized  by 
the KCL and KVL circuits shown in Fig. 2(c-d). Repression is 
modeled by the concentration of the free binding sites 𝑁𝑓𝑟𝑒𝑒  

and is expressed as 

 𝑁𝑓𝑟𝑒𝑒 = 𝑁𝑇 − 𝑃∗ = 𝑁𝑇 ⋅
𝐾𝐷

𝑃+𝐾𝐷
 .  (11) 

Equation (11) can be determined by the difference between 
the total current and the current that is passed through the 𝑅𝛾 

resistor in the KCL circuit, or by exchanging the positions of 
the resistor and the memristor in the KVL circuit. Simulation 
results for both activator and repressor binding reactions using 
the KVL model are shown in Fig. 3, while simulation results 
using the KCL model can be found in [10].  

 

V. THE MEMRISTOR CAPTURES COOPERATIVITY 

A positive “cooperative binding” is known as the ability 
of proteins to enhance their binding affinity to binding sites by 
forming a complex that includes identical units [9].  
This phenomenon affects the steepness of the protein-DNA 
transfer function (Eq. (6)). Cooperative binding can be 
modeled by the Hill coefficient 𝑛 as 

 
𝑃∗ = 𝑁𝑇 ⋅

𝑃𝑛

𝑃𝑛 + 𝐾𝑑

 . 
(12) 

If the binding of a protein increases the binding site's apparent 
affinity, the Hill coefficient will be larger than one (positive 
cooperativity), and smaller than one if the binding of a protein 
decreases the apparent affinity (negative cooperativity). 
Typical values for the Hill coefficient range from 𝑛 = 0.5 to 
𝑛 = 4 . For 𝑛 > 2 , (12) can be described by a digital 
approximation, using only two states representing a high or 
low concentration of the formed complex [1]. The digital  
approximation can be modeled by a memristor operating in 
the digital mode with only two states: high resistance (𝑅𝑂𝐹𝐹), 
representing a high concentration (𝑃∗ ≈ 𝑁𝑇) , and low 
resistance (𝑅𝑂𝑁),  representing low concentration ( 𝑃∗ ≈
basal level). To model cooperativity with 𝑛 < 2, we use the    
KVL circuit with a memristor exhibiting an exponential 
dependence on the internal state variable, as follows:  

 
Fig. 2. (a) Simple biochemical reaction between protein 𝑷 and binding 

sites 𝑵𝒇𝒓𝒆𝒆 . (b) Cooperative binding between two proteins X and 

binding site. (c) Memristor based KCL circuit with current mirror. The 

current through 𝑹𝜸  models complex 𝑷∗  production. (d) Memristor 

based KVL circuit with buffer. The voltage on the memristor 𝑴𝑷 

models complex  𝑷∗ production. The current mirror and the buffer allow 

chaining with other stages. Both circuits were designed using the 

VTEAM memristor model in 0.18um CMOS process. 

 
(a) 

 
(b) 

 
Fig. 3. SPICE simulations of protein binding (activator and repressor), for 

different values of 𝑲𝑫 using the circuit shown in Fig. 3. In this model, the 

number of pulses 𝑵𝒑 is equivalent to the available proteins. (a) Activator 

concentration and (b) repressor concentration versus 𝑵𝒑.  Circuit and 

memristor parameters are summarized in Table I. 

TABLE I – CIRCUIT PARAMETERS FOR MICHELES MENTEN MODEL 

Type Parameter Type Parameter 

Memristor 

𝑅𝑂𝐹𝐹 = 100𝐾Ω   
𝑅𝑂𝑁 = 100Ω 

𝐿 = 10𝑛𝑚 

𝜇 = 1𝑚𝑚/𝑠𝑒𝑐  
𝑉𝑇 = 1𝑉 

Dissociation-

coefficient 

𝐾𝑑[𝑀] 

𝐾𝑑 = 1𝑀, 𝑅𝛾 = 1𝐾Ω 

 

𝐾𝑑 = 5𝑀, 𝑅𝛾 = 5𝐾Ω 

 

𝐾𝑑 = 10𝑀, 𝑅𝛾 = 10𝐾Ω 

 

𝐾𝑑 = 15𝑀, 𝑅𝛾 = 15𝐾Ω 

  

Pulses 
𝐴𝑉 = 2 𝑉 

𝑇𝑊 = 10 𝑛𝑠𝑒𝑐 
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𝑀𝑝 = 𝑅𝑂𝑁 ⋅ exp (

𝜆

𝑊𝑂𝐹𝐹−𝑊𝑂𝑁
⋅ (𝑤 − 𝑊𝑂𝑁)),  

(13) 

where 𝜆  is a fitting parameter maintaining 𝑒𝜆 = 𝑅𝑜𝑓𝑓/𝑅𝑜𝑛 . 

The exponential dependence allows us to control the 
memristance slope by changing the duty cycle of the 
programming pulses with reference to a programming pulse 
representing 𝑛 = 1. Changing the duty cycle is analogous to 
multiplying the programming duration by a factor of 𝑛 ∈ ℛ, 
which sets the steepness of the activation function. 
Examples of such reference and programming pulses are 
shown in Fig. 5(a). These controlled duty cycle pulses set the 
memristance 𝑀𝑝 in (13), as follows: 

 𝑀𝑝 = 𝑅𝑂𝑁 ⋅ (𝑒𝐾⋅𝑁𝑝)𝑛,  (14)  

where 𝐾 =
𝜆⋅𝜇

𝑤𝑂𝐹𝐹−𝑤𝑂𝑁
(

𝐴𝑉− 𝑉𝑇

𝑉𝑇
) ∙ 𝑇𝑟𝑒𝑓 . Simulation results 

representing the change in the 𝑀𝑝 slope are shown in the inset 

of Fig. 4(b). The complex concentration according to the 
cooperativity model using (6) and (13) is:  

𝑃∗ = 𝑁𝑇 ⋅
𝑀𝑝

𝑀𝑝 + 𝐾𝐷

= 𝑁𝑇

𝑅𝑂𝑁 ⋅ (𝑒𝐾⋅𝑁𝑝)𝑛 

𝑅𝑂𝑁 ⋅ (𝑒𝐾⋅𝑁𝑝)𝑛  + 𝐾𝐷 
, 

(15) 

where 𝑀𝑝  is analogous to 𝑃𝑛  in (12). Fig. 4(b) shows the 

simulation results of (15), using the exponential VTEAM 
memristor model.  The slope of the aforementioned curves is 
typically examined by plotting a graph of 𝑙𝑜𝑔(𝑃∗/(1 − 𝑃∗)) 
versus 𝑙𝑜𝑔(𝑀𝑝), where 𝑀𝑝 represents the memristance when 

the reference programming pulse is used. The graph yields a 
linear plot with a programmable slope that is proportional to 
the Hill coefficient. A slope greater than one indicates a 
positive cooperative binding (𝑛 > 1), while a slope less than 
one indicates a negative cooperative binding (𝑛 < 1)  as 
illustrated in Fig. 4(c) for different values of 𝑛. 

VI. TRANSCRIPTION-TRANSLATION PROCESS  

Biological and electronic systems are inherently stochastic 
in their behavior. In both systems, the transportation of 
discrete random carriers is accompanied by collisions and 
probabilistic arrival, which generate random fluctuations. 
These fluctuations are known as intrinsic noise through 
networks and can be described as a Poisson process, 
generating shot noise (scales as the square-root of the 
molecular count) [12]. Transcription and translation processes 
are an example of such stochastic behavior in biology. The 
expression of mRNA in the transcription process can 
approximately be viewed as the rate of RNAp arrival at the 
promoter with variance that is equal to the mean; hence, 

∆𝑚𝑅𝑁𝐴2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑚𝑅𝑁𝐴̅̅ ̅̅ ̅̅ ̅̅  [12]. Therefore, we can capture the 
stochastics of such a process with a pulse counter. Equation 
(9) shows that a linear memristor under specific conditions can 
act as an analog counter of  the arrival pulses during the 
programming process. The second stage in Fig. 5 shows a 
circuit that counts programming pulses arriving to the 
memristor and represents these programming pulses as the 
output voltage of a buffer circuit, implemented as a common 
drain amplifier. In steady state, the buffer output voltage is 

 𝑉𝑜𝑢𝑡𝐶𝐷
= 𝐼𝑀 ∙ (𝑀𝑅𝑁𝐴𝑝 + 𝑅𝑎) − 𝑉𝑇0 − √𝐼𝐵  /𝐾0 . (16) 

We define the output 𝑣𝑚𝑅𝑁𝐴 , which is analogous to the 
mRNA concentration, as the difference between the voltage 
for any number of pulses 𝑁𝑅 and the voltage for 𝑁𝑅 = 0 is 

 𝑣𝑚𝑅𝑁𝐴 = 𝑉𝐶𝐷(𝑁𝑅) − 𝑉𝐶𝐷(𝑁𝑅 = 0) = 𝐼𝑀𝑅0𝑁𝑅 . (17) 

Additionally, we define the noise power 𝜓  as the ratio 
between the variance 𝜎𝑣𝑚𝑅𝑁𝐴

2  and the mean 𝑣𝑚𝑅𝑁𝐴̅̅ ̅̅ ̅̅ ̅̅ , and the 

signal-to-noise ratio SNR as the ratio between 𝑣𝑚𝑅𝑁𝐴̅̅ ̅̅ ̅̅ ̅̅  and the 
standard deviation 𝜎𝑣𝑚𝑅𝑁𝐴

. If the programming pulses 𝑁𝑅 are 

controlled by a “random clock” exhibiting pure Poisson 

characteristics with mean 𝑁𝑅
̅̅̅̅  that is equal to the variance 𝜎𝑁𝑅

2 , 

the noise power of mRNA production can be expressed as: 

 𝜓𝑚𝑅𝑁𝐴 = 𝐼𝑀 ⋅ 𝑅0, (18) 

and the SNR can be expressed as: 

 
𝑆𝑁𝑅𝑣𝑚𝑅𝑁𝐴

= 𝑣𝑚𝑅𝑁𝐴̅̅ ̅̅ ̅̅ ̅̅ /√∆𝑣𝑚𝑅𝑁𝐴
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = √𝑁𝑃

̅̅̅̅ .  
(19) 

In this configuration, the number of programming pulses is 
analogous to the promoter activity, which is controlled by the  
binding of RNAp to DNA [5]. The formation of mRNA  
usually begins after some transcription delay time 𝑇𝐷 [3]. The 
delay is a result of the finite velocity at which RNAp moves 
along the gene during transcription. This delay can be easily 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 4. Simulation results for different Hill coefficients. Circuit and 
memristor parameters are summarized in Table II. (a) An example of 

different programming pulses. (b) Simulation results of cooperativity 

model using the KVL circuit for 𝑲𝒅 = 𝟏. The inset shows simulation 

results of the memristance with different Hill coefficients. The slopes 

indicate the effect of different duty cycles. (c) A typical graph to 
examine the cooperative binding. The slope of the curves represents the 

Hill coefficient 𝒏. 

TABLE II - CIRCUIT PARAMETERS FOR COOPERATIVITY MODEL 

Type Parameter Type Parameter 

Memristor 

𝑅𝑂𝐹𝐹 = 100𝐾Ω   
𝑅𝑂𝑁 = 100Ω 

𝐿 = 10𝑛𝑚 

𝜇 = 1𝑚𝑚/𝑠𝑒𝑐  
𝑉𝑇 = 1𝑉 

Reference 

Pulse 
𝐴𝑉 = 2 𝑉 

𝑇𝑅𝐸𝐹 = 10 𝑛𝑠𝑒𝑐 

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 = 50% 
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incorporated into the proposed circuit by lagging the first 
arrival of programming pulse 𝑁𝑅 (Fig. 5). In an analogy to the 
transcription process, the translation process can be viewed as 
counting the number of ribosomes that arrive at mRNA 
molecules, whose stochastic dynamics follows Poisson 
statistics. Biological experiments and biophysical models 
show that the noise power in protein production is higher than 
in mRNA production (𝜓𝑝𝑟𝑜𝑡𝑒𝑖𝑛 > 𝜓𝑚𝑅𝑁𝐴). This relation can 

be described by stating that the variance of protein is larger 

than the Poisson statistic (∆𝑃𝑟𝑜𝑡𝑒𝑖𝑛2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (1 + 𝑏) ∙ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 
[12]. The parameter b in  biology is known as the burst size 
and is equivalent to the number of proteins synthesized from 
a single mRNA transcript [12]. The burst size can be viewed 
as the molecular gain from mRNA to protein, which amplifies 
the mRNA noise content in the protein signal. The third stage 
in Fig. 5 shows a circuit that amplifies the noise of the second 
stage through a common source (CS) amplifier and captures 
the burst size and the stochastics of protein production. 
Similarly, we define the output of the CS amplifier as the 
difference between the voltage for any number of pulses 𝑁𝑅 
and the voltage for 𝑁𝑅 = 0 . Thus, the output 𝑣𝑝𝑟𝑜𝑡𝑒𝑖𝑛 

represents the protein concentration as:   

 |𝑣𝑝𝑟𝑜𝑡𝑒𝑖𝑛| = (𝑔𝑚1/𝑔𝑚2) ∙ 𝐼𝑀 ∙ 𝑅0 ∙ 𝑁𝑅 . (20) 

According to (20), the noise strength in protein production can 
be expressed as: 

 𝜓𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝐼𝑀𝑅0 ⋅ (1 + 𝑏), (21) 

where  1 + 𝑏 ≡ 𝑔𝑚1/𝑔𝑚2 and can be changed by changing 
the transistor’s width. Simulation results of SNR and noise 
power for both processes are shown in Fig. 6. 
Although the transcription process initiates with RNAp 
binding to the promoter site, the rate of transcription is 
regulated by other complexes (proteins) that promote or 
repress the action of RNAp. The first stage in Fig. 5 models 
the binding of such complexes to the DNA site. The KVL 
circuit controls and sets the current 𝐼𝑀  through a PMOS   
transistor, thus changing the mRNA and protein signal 
according to (17) and (20). 

VII. CONCLUSION 

 We demonstrated the functional analogies between 
biochemical reactions and memristive devices. We also 
proposed the adoption of memristors as mimickers of 

biochemical reactions in cytomorphic systems. Furthermore, 
we modeled the deterministic and stochastic behaviors of 
highly noisy genetic systems using memristor-based circuits. 
These circuits lead towards the design of cell-inspired, energy-
efficient electronic circuits that emulate large-scale stochastic 
biological systems. In our future research, we expect to  
compare the memristor-based circuits with biological 
experimental data, and extend the networks to better capture 
the biological behaviors.  
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Fig. 5. Memristor based circuit to capture the stochastic behavior of the 
transcription-transcription process. Stage-1 models the complex binding 

to a specific binding site by a simple KVL circuit.  Stage-2 models the 

transcription process in which a segment of DNA is copied 
into mRNA by the enzyme RNA polymerase (RNAp). The arrival of 

RNAp is modeled by a pulse counter and mRNA production is modeled 

by a common drain stage. Stage-3 models the translation process by 

which mRNA is decoded in a ribosome to produce protein. The common 

source stage models the protein production, while the amplification 

captures the noise and the burst size in the translation process.  

 
 

Fig .6. SPICE simulations of SNR versus molecule concentration 
(𝒗𝒎𝑹𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅ , 𝒗𝑷𝒓𝒐𝒕𝒆𝒊𝒏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) accordingly, for different gains 𝐀 (1, 4 and 5) of the 

circuit from Fig. 5 with constant 𝐼𝑀. The inset shows simulation results 

of noise power versus the number of pulses which set the desired SNR. 


