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Adaptive Programming in Multi-Level Cell ReRAM
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aAndrew and Erna Viterbi Faculty of Electrical Engineering, Technion –- Israel Institute of Technology, Haifa, Israel, 3200003.

Abstract

Resistive memory (ReRAM) is an attractive technology to replace Flash technology and/or serve as a new memory tier.
When a fixed programming voltage is applied to the resistive cell (memristor), its resistance changes logarithmically
in time. This is undesirable for using the memristors as a multi-level cell (MLC) memory. We present Adaptive
Programming (AP) – a feedback-based programming circuit and method that improve process variation tolerance
and uniformity of MLC levels, by effectively linearizing the memristive behavior. An appropriate sneak-path current
mitigation has been identified as well. AP requires fewer programming steps than other programming methods,
resulting in 46% faster programming and 95% energy reduction. AP reduces the frequency of errors (FoE) by 50% as
compared to other writing schemes. Furthermore, AP enables using the memristors as a multi-level counter facilitating
multi-valued computing arrays for non-von Neumann machines.

Keywords: MLC, storage, flash, ReRAM, memristor, memristive systems, non-von Neumann

1. Introduction

Resistive Random-Access Memories (ReRAMs) are
memory technologies where data is stored within a re-
sistive switch element (namely, a memristor) as the re-
sistance of the device. Storing data as resistance rather
than electric charge (as in DRAM) allows longer data
retention. Since no charge is stored within the cell, there
is no leakage. Numerous materials have shown mem-
ristive behavior (i.e., varying resistance). These ma-
terials include many oxides and other dielectric mate-
rials, which can therefore be used to design ReRAM
in the back-end-of-the-line (BEOL) CMOS process,
as a crosspoint between metals. ReRAM therefore
has the potential to be extremely dense, low power,
with high endurance, making it an attractive technology
for secondary storage and storage class memory tiers.
The change in memristor resistance is continuous and
can therefore be programmed to different values [1–4],
which allows the design of multi-level memory cells
(i.e., cells that store more than a single bit) to further
increase memory capacity.
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In nanoscale memristive devices, high electrical
fields and elevated temperatures lead to significant non-
linearities in ionic transport [5]. These nonlinearities
are mostly observed at the thin film edges of a mem-
ristor [6–8]. Therefore, considering the nonlinear na-
ture of memristor dynamic behavior, resistance levels
of the device cannot be uniformly distributed while us-
ing identical fixed programming voltage pulses to pro-
gram a MLC, namely, while using identical pulse pro-
gramming (IPP). Thus, the transition between different
resistance levels requires several different programming
steps with different voltage pulses for each step [9]. Var-
ious ReRAM programming techniques, some of them
presented in sub-section 3.2, have been reported in the
literature, including staircase programming [4], [10],
program and verify [4], [11], self-controlled program-
ming [12], and time-domain state control [13]. These
techniques suffer from increased latency, energy, area
and complexity. Furthermore, potential comparator-
based memristor state tuning methods [14] might dra-
matically increase area and energy as well if they were
adopted in ReRAM.

Using constant voltage pulses to program the memris-
tive devices while uniformly distributing the resistance
levels of MLC ReRAM would improve process varia-
tion tolerance and decrease programming steps. Hence,
constant pulse programming would reduce latency and
complexity as compared to other programming tech-
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niques. In this paper, we present Adaptive Programming
(AP), where only fixed voltage pulses are used to pro-
gram the memristor to different resistance values, while
effectively linearizing the behavior of the memory cell
using feedback peripheral circuits. The feedback mech-
anism transforms the fixed voltage pulse into the re-
quired applied voltage according to the current and the
desired resistance levels in a simple and elegant man-
ner. AP improves the speed of programming and its
process variation tolerance by achieving uniformity in
the distribution of memristor resistance as compared to
previously proposed identical pulse programming (IPP)
methods [15]. While AP simplifies the write mecha-
nism for memory applications, this technique can also
be used as a building block for in-memory multi-valued
computing [16]. This novel writing scheme is evaluated
using HfO2 memristors, which are used as memory cells
in memristive crossbars.

The rest of the paper is organized as follows. Mem-
ristive technologies are introduced in Section 2. Related
work and motivation behind uniformly distributing re-
sistance levels and its impact on process variation toler-
ance and latency are described in Section 3. In Section
4, the Adaptive Programming method is presented. The
applicability of AP within a resistive crossbar memory
array is demonstrated in Section 5. Evaluation of adap-
tive programming and comparison to other program-
ming techniques is presented in Section 6 and in Sec-
tion 7 different approaches to overcoming operational
amplifier offset-voltage are discussed. In-memory com-
puting using AP and related challenges are discussed in
Section 8, followed by concluding remarks in Section 9.

2. Memristive Technologies

Memristive devices are non-volatile programmable
resistors that can be fabricated in intersection point be-
tween rows and columns of a metal grid (i.e., cross-
bar). Nowadays, there are different memristive tech-
nologies and among the most mature of them are, Phase-
Change Memory (PCM) [17], Spin-Transfer Torque
Magnetic RAM (STT-MRAM) [18], and Resistive
RAM [19]. The ReRAM structure is composed of
resistance-changeable materials, usually metal-oxides
such as TiO2, HfO2 [19], sandwiched between two-
terminal metal electrodes. The change of the resistance
can be achieved by passing current or applying voltage
on these electrodes, which can lead to the formation
or rupture of conductive laments (metallic or decom-
posed sub-oxide) between the electrodes that decreases
or increases the resistance, respectively. The switching
in most ReRAM devices is bipolar, i.e., by applying
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Figure 1: (a) RESET switching of tuned TEAM model (blue line) [20]
that mimics the physical behavior of an HfO2 memristor [21] (red
line) under CVS. The tuned parameters are listed in Table 1. The
TEAM model is also fitted by f (t) = 1325.1 · ln(107t − 900) − 5627.7
for t ∈ (0.1 ms, 0.6 ms). (b) Resistance levels are distributed in a non-
uniform manner when using identical pulse programming with 3Vrst
pulses of length Trst/3.

positive or negative voltages across the cell terminals
the cell switches from low-resistive state (LRS, RON)
to high-resistive state (HRS, ROFF), or from HRS to
LRS, respectively, while possibly achieving HRS/LRS
ratio >10 [19]. Since HfO2 is used as a high-k dielec-
tric for the gate insulator in MOSFET, the device can
be easily integrated to the CMOS fabrication process.
Furthermore, since the fabrication temperature is BEOL
compatible, ReRAM can be stacked in a three dimen-
sional fashion with an effective memory area of 4F2/n,
where n is the number of stacked layers [19].

Compared to other memristive technologies, ReRAM
presents a better endurance than PCM (>109) and lower
writing latencies [22]. STT-MRAM exhibits better en-
durance but has lower ROFF/RON ratios, and it is not
possible to program multiple levels in one cell. Hence,
ReRAM technologies are attractive candidates to re-
place current FLASH technologies, and furtherly ex-
tend their features. ReRAM technologies can achieve
high-performance operations, in the order of nanosec-
onds for both read and write operations, compared to

2
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hundreds nanoseconds for reads and microseconds for
writes in FLASH [23], while retaining relatively low
programming voltages as compared to FLASH (∼12-
22 V [24]). Also ReRAM can substantially extend
FLASH endurance from approximately 103 erase oper-
ations [25] to approximately 108 program cycles [26],
while featuring non-volatility and multi-level capabil-
ity [1] by applying programming pulses to control in-
termediate resistant levels and maintaining the memory
structure.

3. The Need for an Accurate Resistive-Level Control
Mechanism

Different programming methods are used to accu-
rately program the memory cells, while dealing with the
impact of process variations on resistance level distri-
bution in MLC. Studies of the effect of programming
operations on the resistance of the cell show that the
switching of memristors is nonlinear in a logarithmic
manner [6–8], as depicted in Fig. 1(a) for a RESET op-
eration of an experimental bipolar HfO2 memristive de-
vice, reported to have a gradual RESET behavior but an
abrupt SET behavior.

Cells are programmed in ReRAM by applying a con-
stant voltage stress (CVS) [27] across the cell, for a suf-
ficient amount of time. In Single Level Cell (SLC), two
programming operations can be performed, RESET and
SET, which program the cell, respectively, from a low
resistance state (LRS) to a high resistance state (HRS)
and vice versa. Both RESET, and SET are performed
using a CVS of Vrst and Vset for a sufficient length of
time, namely, Trst and Tset. Alternatively, for MLC
ReRAM, the levels are represented by different resis-
tances of the cell in addition to the two boundary re-
sistance levels, LRS and HRS. Hence, programming
operations in MLC rely on using finer voltage pulses
that achieve multiple resistance levels. Due to the log-
arithmic transition of the memristive device, applying
identical voltage pulses changes the resistance in a non-
uniform manner across the resistance range, as shown
in Fig. 1(b). Closely located levels might result in in-
creased sensitivity to process variations and erroneous
reading of cells. Section 3.1 discusses the effect of
non-linearity on process variation tolerance of the MLC
ReRAM. Previously proposed programming methods
and their effect on programming latency and energy are
discussed in Section 3.2.

Table 1: Parameters of the TEAM Model
Physical Device TiN-HfO2-Pt

Parameters
of TEAM
model [20]

OFF Region
(RESET)

ON Region
(SET)

Ro f f 5.63 kΩ Ron 460 Ω

ko f f 0.0035 m/s kon -10 m/s
αo f f 1 αon 1
io f f 0.202 mA ion -0.14
xo f f 0 m xon = D 10−6 m

3.1. Impact of Non-linearity and Process Variations on
Level Distribution

Process variation in memristors results in resistance
variation of the cells across the memory array. Con-
sider an N-level cell enabling N different levels of resis-
tance, thereby storing N different values (equivalently, k
bits, 2k = N). Due to process variation, each resistance
level is distributed over a certain range, as illustrated in
Fig. 2(a). The range of level i is characterized by the
slowest and fastest cells in the entire ReRAM array, RS

i
and RF

i . A reference resistance value Ri,i+1
re f is used to

differentiate between distributions of level i and level
i + 1. Hence, a read operation determines the resistance
level of a cell by performing multiple comparisons. For
example, a cell is at level i if its resistance (i.e., Rcell)
fulfills the following:

Ri−1,i
re f ≤ Rcell ≤ Ri,i+1

re f . (1)

In N-level ReRAM, N − 1 reference resistors are re-
quired to differentiate between the N levels. Neverthe-
less, since each level is defined by a resistance range,
some level ranges might overlap when using identical
pulses to program a cell, namely,

∃ i,RS
i < RF

i−1, (2)

which may lead to an erroneous read of the overlapping
cells, as illustrated in Fig. 2(b). Linearizing the memris-
tor time-to-resistance programming function while tak-
ing process variations into account can result in uni-
formly distributed levels across the resistance range,
thus reducing the overlapping regions, as shown in
Fig. 2(c). Linearization of that function can therefore
increase the capacity of an MLC (i.e., the number of
stored bits per cell) and reduce the redundancy of the
ReRAM by using fewer bits for error correcting codes
(ECC) [28], required for reliable delivery of the digital
data.
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Figure 2: (a) Each level i range is defined by the fastest and slowest
cells, respectively, RF

i and RS
i . Whether the resistance transition of a

memristor is (b) nonlinear, or (c) linear, determines whether the lev-
els are distributed non-uniformly or uniformly when using identical
pulses for programming.

3.2. Programming Techniques and Their Effect on La-
tency, Energy, and Complexity

Different programming techniques have been pro-
posed to overcome the impact of non-linearity on MLC
level distribution and increase the tolerance to pro-
cess variation. Two intuitive techniques to compen-
sate for the slowdown in the resistance transition rate
under CVS are to increase the applied voltage mag-
nitude (Incremental Magnitude Pulse Programming,
IMPP, Fig. 3(a)) and to increase the duration (Incremen-
tal Length Pulse Programming, ILPP, Fig. 3(b)) [15].
Both ILPP and IMPP require a read operation prior to
programming to adjust the applied pulses to the cur-
rent and desired states of the memristor. Hence, both
are state-dependent pulsing techniques. The extra read
operation increases programming latency, complicates
the voltage generators, and requires a controller. Fur-
thermore, state-dependency restricts in-memory multi-
valued computing, as further discussed in Section 6.

Another programming method to control uniform
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Figure 3: Programming multi-level memristor cell using (a) IMPP, (b)
ILPP, and (c) P&V

level distribution is Program and Verify (P&V) [3, 11,
27]. The P&V method relies on applying narrow volt-
age pulses with progressively increasing magnitude,
combined with read pulses between each programming
pulse to verify whether the cell has reached the desired
state, as illustrated in Fig. 3(c). Thus, P&V takes vari-
ations into account. In ReRAM, programming opera-
tions are usually initiated on a word line [4], and the
controller is responsible for connecting or disconnect-
ing the cells when the desired state is achieved. Hence,
P&V allows selective programming of cells while con-
trolling tighter resistance level distributions, possibly al-
lowing higher capacity. However, P&V requires more
programming iterations as compared to ILPP and IMPP,
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and enhanced interference from the controller, which in-
creases latency of the programming operation. Hence,
it would be beneficial to develop a programming tech-
nique with fewer programming iterations and voltage
generators (ideally, a single applied voltage) for less en-
ergy and lower latency. To achieve uniform level dis-
tribution by applying identical pulses that correspond to
the desired level, the memristor should respond linearly
under CVS, as in Fig. 2(c). For example, for an N-level
cell with linear transition under CVS of length T , a level
i can be programmed using i identical pulses of length
T/(N − 1). As shown in the next section, Adaptive Pro-
gramming enables such a linear response.

In [12], a bank of resistors is used to control the
voltage of the device to achieve a defined level. The
cell forms a voltage divider with the bank of resistors,
thus adapting the voltage drop on the cell according to
the resistor value. Unlike most of the MLC program-
ming methods, the Self-Controlled Multilevel Writing
(SCMLW) intends to control the abrupt SET operation.
Since the maximum voltage is constrained by the volt-
age divider, a constant width and constant amplitude
pulse is enough to guarantee the proper voltage drop on
the device. This method suffers from large area over-
head as large resistor values are required (≥10 kΩ). For
instance, a 1 MΩ polysilicon resistor in the 180 nm
technology node has an approximate length of 500 µm.
Thus, an increment in the number of levels, implies ad-
ditional area overhead. Furthermore, the well-known
the large process and cycle-to-cycle variations of the
resistors from flash analog-to-digital converters under-
mines the reliability of this approach.

4. Adaptive Programming

Adaptive Programming (AP) adapts identical volt-
age pulses into variable pulses to induce a linear time-
to-resistance programming response. AP is illustrated
in Fig. 4 and operates as follows. Depending on the
present and desired resistance levels, a controller ap-
plies k pulses of constant voltage. The resulting re-
sistance level is continuously monitored by the feed-
back circuit and an appropriate compensation voltage
is added to the input constant voltage pulses. At the end
of the k-pulse sequence, the desired linearly-mapped re-
sistance level is achieved. The AP circuit comprises an
inverting operational amplifier with the memristors in
the negative feedback, as shown in Fig. 4(a). Assume
an ideal operational amplifier. Then, the voltage across
the memristors is

Vmem(t) = Vout(t) = −Vin
Rmem(t)

Rin
, (3)
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Figure 4: Adaptive programming consists of a (a) memristor con-
nected in the negative feedback of an operational amplifier in inverter
configuration. (b) To avoid saturation of the amplifier, the proposed
Adaptive Programming technique consists of an additional resistor
Rp. (c) Using AP allows identical pulses to be amplified adaptively,
leading to a more linear-like transition and better level distribution as
compared to identical pulses programming.

where Vin is an input voltage that consists of identical
voltage pulses. During programming, the voltage across
the memristor is greater than the device threshold [15],
i.e.,

|Vout(t)| =
∣∣∣∣∣Vin

Rmem(t)
Rin

∣∣∣∣∣ > |Vth|. (4)

In practice, the circuit shown in Fig. 4(b) is em-
ployed. To ensure (4), Vin may need to be increased to a
level that might saturate the operational amplifier. The
bounding case is when Rmem(t) is at its minimal value,
LRS. With Vin sufficiently high given Rmem(t) = LRS
(i.e., the resulting Vout is greater than Vth), then, when
Rmem(t) = HRS , the resulting Vout may exceed the satu-
ration voltage of the operational amplifier. To mitigate
that issue, an additional resistor Rp is connected in par-
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allel with the memristors. The resistances of Rin and Rp

are selected to achieve voltage compensation across the
entire LRS to HRS range as follows.∣∣∣∣∣∣Vin

LRS ||Rp

Rin

∣∣∣∣∣∣ > |Vth|, (5)

∣∣∣∣∣∣Vin
HRS ||Rp

Rin

∣∣∣∣∣∣ ≤ |VDD|. (6)

To achieve a full transition across the entire resistance
range, Rin and Rp are set after solving the pair of equa-
tions (5) and (6) in their equality form, given Vin, LRS,
HRS, VDD, and Vth as constants, and the pair Rin and
Rp as variables. After selecting Rin and Rp, a linear-
like transition is achieved under CVS as depicted in
Fig. 4(c).

The proposed circuit for adaptive programming al-
lows the controller to apply identical Vin pulses at the
input. The circuit adaptively amplifies them according
to the state of the memristors. The adaptive amplifi-
cation eliminates the state-pulse dependency between
resistance levels and voltage pulses. Furthermore, AP
with identical pulses distributes the resistance levels
uniformly across the resistance range and improves the
tolerance to process variation, while maintaining sim-
plicity of the programming mechanism. Given the LRS-
HRS range of memristor resistance, the solution se-
lects appropriate parameters Vin, Rin, Rp and appropriate
ranges of operation that lead to Rmem(t) being approx-
imately linearly time-dependent within the LRS-HRS
range, with a bounded diversion from exact linear de-
pendence. As seen in Fig. 4(c), the rate of change of the
memristor resistance is higher than that of Vout(t). This
behavior is due to the damping effect of Rp in

Vout(t) =
|Vin|

Rin

(
Rmem(t) || Rp

)
. (7)

5. Crossbar Compatibility

The design of Adaptive Programming using opera-
tional amplifiers is compatible with the crossbar array,
the basic topology underlying ReRAM, and can be fea-
sibly embedded within the ReRAM peripheral circuitry.

In crossbar architecture, each memory cell (i.e.,
memristor) is placed in column-row intersection as de-
picted in Fig. 5. A cell can be accessed either for reading
or programming by accessing the corresponding column
and row of the cell within the crossbar. The cell located
in row i and column j is read by applying a read volt-
age, lower than the memristor threshold, on row i and
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Figure 5: 3 × 3 ReRAM crossbar array supporting adaptive program-
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chooses WL2. (c) Functional circuitry when performing parallel pro-
gram operation of BLs 1 and 2 within WL2 using adaptive program-
ming. In this operation, PrgEn and both BL1 and BL2 are set and the
left WL decoder chooses WL2.

sensing the current flowing through column j. Write
operations are performed by applying a program volt-
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age on column j and connecting row i to the ground. To
change the device resistance, the programming voltage
should be greater than the memristor voltage threshold.
In bipolar memristors, the voltage polarity (negative or
positive) indicates whether the resistance will increase
or decrease.

To enhance ReRAM performance, operations can be
performed simultaneously on the entire row (wordline,
WL). An entire wordline is read by applying a read volt-
age on it and sensing the currents in all columns (bit-
lines, BLs). Programming operations, SET and RESET
are performed separately in WL granularity, by applying
a program voltage to all bitlines within a selected WL,
and connecting the corresponding WL to the ground.
The opamps needed to enable the AP method are in-
cluded one per column, rather than per cell (Fig. 5).
The read circuitry is similar to conventional ReRAM
array topology and supports reading of an entire WL
(Fig. 5(b)). Writing (programming), however, employs
the operational amplifiers (Fig. 5(c)), as follows. First,
SET is applied to an entire row. Next, a sequence of
RESET operations is performed over the entire row, se-
lectively to cells enabled by their respective BLs. Note
that all BLs share the same feedback connection; the
number of activated BLs is the same as the number of
connected Rin resistors (Fig. 5(a)).

6. Design and Evaluation

In this section, the operational-amplifier-based adap-
tive programming (AP) circuit is presented and evalu-
ated in simulations, and our method is compared to pre-
viously proposed circuit programming techniques. Two
types of simulations are used, SPICE circuit simulation
and MATLAB Monte Carlo simulation for a 3×3 cross-
bar.

6.1. Circuit Simulations

A ReRAM circuit based on a 180 nm CMOS pro-
cess is designed in Cadence Virtuoso. The opamp and
the sense amplifier are modeled using the parameters
listed in Table 2. The TEAM model [20] is fitted [29] to
the switching dynamics of an HfO2-based bipolar mem-
ristor, which reportedly has a gradual RESET opera-
tion while exhibiting a sub-nanosecond SET operation.
TEAM, with its fitted parameters listed in Table 1, mod-
els the logarithmic response of that memristor to CVS as
demonstrated in Fig. 1. Since the parasitic capacitance
of the memristive device was not characterized, it is ap-
proximated to that of a parallel plate capacitor for a 4F2

device in 180 nm process leading to CP = 1.15 fF. The
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Figure 6: Sneak path (red arrows) during (a) a read operation of a
cell (green circle), and during (b) a program operation of a cell (green
circle). (c) Sneak path of length 3 in a 1S1R crossbar, (d) First order
I-V characteristics of a selector.

switches were implemented using a wide PMOS tran-
sistor (W = 10 µm). Since the timing is not critical, in
this work a slow rise time was used to remove issues re-
lated to clock feedthrough. Charge injection noise was
not considered in this work and is left as future work.
These issues can be solved using a bootstrapping tran-
sistor and bottom plate sampling [30].

In crossbar arrays, current can sneak into different
paths other than the desired paths for read and pro-
gram [31, 32]. These sneak path currents can cause
write disturbances (changing cell states undesirably
along the sneak path) or cause an erroneous read op-
eration due to the increased currents sensed by the
sense amplifiers, as illustrated in Fig. 6. Several solu-
tions have been proposed to solve the sneak path prob-
lem, such as unfolded crossbar architecture [31] , diode
gating (1D1M) [31], transistor gating (1T1R, 2T1R,
4T1R) [31], selectors [33, 34], complimentary resis-
tive switching (CRS) [35, 36] , half-selected cells [1],
and coding [37]. However, if we consider the dif-
ferent programming schemes used to program MLC
ReRAM by increasing magnitude voltage pulses, some
of the proposed methods for sneak-path mitigation will
not work as effectively for MLC ReRAM as they do
for SLC ReRAM. For example, half-selecting cells [1]
need to adapt to the change in programming voltage to
keep other cells half-selected and not cause write dis-
turbances. Providing variable voltage requires complex
voltage regulators and peripheral circuitry. CRS is only
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Table 2: Simulation Parameters for AP
Parameter Symbol Value

Read voltage VREAD -0.6 V
Operational Amplifier

Supply voltage VCC 5 V
Gain G 60 dB

Gain-bandwidth product GBW 10 MHz
Intrinsic input resistance Rinput 1 MΩ

Slew Rate SR 0.5 V/µs
Output Resistance Rout 80 Ω

In resistance Rin 332 Ω

Feedback resistance RP 1.687 Ω

Sense Amplifier
Gain Au 60 dB

Settling time τ 0.2 µs

compatible with SLC ReRAM, while unfolded architec-
ture increases power, latency, and area overhead [38].
Nevertheless, transistor gating methods increase area
dramatically, and thus, might be less suitable to adopt
AP programming methods. Furthermore, coding re-
quires extra bits for its implementation, increasing the
footprint of the memory array [37].

We consider an asymmetrical selector [39] (see I-
V characteristics in Fig. 6(d)) to mitigate sneak paths
during program and read operations with minimal den-
sity and fabrication overhead. The selector exhibits a
forward voltage threshold of VF , and a backward volt-
age threshold of VB. Therefore, considering the worst-
case sneak path of length three in the 3×3 crossbar (see
Fig. 6(c)), the operational voltage for reading should
fulfill the following constraint,

VF < Vread < 2VF + |VB|, (8)

meaning sufficiently high to make one selector conduc-
tive, but low enough not to open the remaining selectors.
For programming the operational voltage should allow
current flow in the desired path for operation, while sup-
pressing sneak path currents. These constraints are

VF + Vth ≤ Vop ≤ 2VF + |VB|+
Ro f f

Ro f f + 2Ron
Vth,Vop > 0,

(9)

|VB|+Vth ≤
∣∣∣Vop

∣∣∣ < 2|VB|+VF +
Ro f f

Ro f f + 2Ron
Vth,Vop < 0,

(10)
where Vop is the operational voltage for either reading
or programming a cell, and Vth is the threshold voltage
of the memristor.

However, for selectors with symmetric characteris-
tics, the constraints become

VS +Vth ≤ Vop ≤ 3VS +
Ro f f

Ro f f + 2Ron
Vth,Vop > 0, (11)

VS +Vth ≤
∣∣∣Vop

∣∣∣ < 3VS +
Ro f f

Ro f f + 2Ron
Vth,Vop < 0, (12)

where ±VS is the breakthrough voltage of the selec-
tor. Hence, with symmetrical selectors, and considering
Ro f f >> Ron, the required operational voltage range is
|Vmax

op |− |V
min
op | = 2VS to ensure correct read and program

operations. The operational voltages when using asym-
metrical selectors are, however, restricted to the range of
|Vmax

op |−|V
min
op | = VF +|VB|, when |VB| >> |VS |. Asymmet-

rical selectors enable a wider range of operational volt-
ages for programming operations as compared to sym-
metrical selectors. Therefore, we have chosen to use
asymmetrical selectors in 1S1R topology for their feasi-
bility with the different programming methods and their
compatibility with high programming voltages. The
SPICE model for the asymmetrical selector we used in
our simulations can be found in the appendix. The se-
lector is modeled as a Zener diode in series with a reg-
ular diode, the parameters were fitted to match those
in [39].

Simulation results of AP in a 3×3 memory array for
a whole WL are shown in Fig. 7. Prior to programming,
a SET operation is applied to the entire WL. Subse-
quently, identical pulses at the input are applied and are
adaptively amplified. The number of identical pulses is
determined by the controller according to the desired
level, and the BL of each cell is disconnected when
reaching the desired number of pulses (as per Fig. 5).

We compare different programming methods (cf.
Section 3) by SPICE simulations, optimizing the volt-
age pulse magnitude and length of each method, as
listed in Tables 2 and 3. For IPP, voltage pulses are
chosen to achieve the optimal programming latency at
the expense of programming energy, while in ILPP and
IMPP, the voltage pulse length and magnitude (within
the operational voltage range Vop ∈ [−5V, 5V]) are se-
lected to achieve the best level distribution of a four-
level cell resistance.

In the P&V method, the voltage pulse amplitude or
duration trades off the controlled resolution of the re-
sistance levels. Higher or wider voltage pulses increase
the resistance steps more rapidly and as a result lower
the resolution control. The voltage pulses therefore
have been chosen to achieve sufficient accuracy with the
aforementioned trade-off. In AP, Rin and Rp resistors are
selected to achieve an appropriate voltage pulse ampli-
fication.
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Table 3: Simulation Parameters for Different Programming Methods
Programming

Method
Programming Voltage Pulses Needed for Each Level

Level 0 (SET) Level 1 Level 2 Level 3

IPP In all methods SET
voltage and duration

are VS ET = −5 V
T 0

pulse = 8.49 ns

V1
pulse = 4.9 V

T 1
pulse = 1.7 µs

V2
pulse = 4.9 V

T 2
pulse = 1.7 µs

V3
pulse = 4.9 V

T 3
pulse = 1.7 µs

IMPP
V1

pulse = 1.75 V
T 1

pulse = 2.65 µs
V2

pulse = 3.4 V
T 2

pulse = 2.65 µs
V3

pulse = 4.9 V
T 2

pulse = 2.65 µs

ILPP
V1

pulse = 1.75 V
T 1

pulse = 2.65 µs
V2

pulse = 1.75 V
T 2

pulse = 10 µs
V3

pulse = 1.75 V
T 3

pulse = 30 µs

P&V

Each programming pulse is increased by 0.2 V starting from
Vinit = 1.75 V . Each verify / read pulse is Vread = −0.6 V . All
pulses are of length Tpulse = 0.5µs. The number of pulses used

to program a cell to level 1, 2, and 3, where 5, 11, and 17,
respectively.

AP To program a cell to level i, i identical pulses are applied
Vpulse = 1.25 V Tpulse = 1.9 µs.

Figure 7: Programming WL2 using AP. The pattern ‘01’, ‘11’, ‘10’
is written, respectively, to the cells at BL1, BL2, and BL3. (a) First
a SET operation is performed to SET all cells within WL2 and then
identical pulses are applied (Vin), which are adaptively amplified ac-
cording to the cell’s resistance (Vmi describes the voltage dropping on
the memristor at BLi). (b) The resistance of memristor Rmi (i.e., the
memristor at BLi).

Energy and latency (per cell) results for different pro-
gramming methods are listed in Table 4. Adaptive pro-
gramming achieves the lowest latency as compared to
other programming methods except IPP, improving pro-
gramming speed by 29% as compared to IMPP. For IPP,
voltage pulses have been chosen to achieve the lowest
programming latency possible (i.e., pulses have been
chosen with high magnitudes) at the cost of program-
ming energy; however, IPP still suffers from reliability
issues much more than AP, as discussed in the following
sub-section.

Note that the P&V method also causes energy dis-
sipation during the verify pulse (i.e., read pulse) after
each programming pulse. Since many optimizations can
be applied to the read circuitry, we took the best known
case of read energy and latency (1.41 nJ and 1.61 ns
in a 22 nm CMOS process [11]) and multiplied those
values by the number of verify pulses required for the
programmed cells to reach levels 1, 2, and 3 (×5, 11,
and 17, respectively). The energy and latency figures
are extrapolated for a 180 nm CMOS process accord-
ing to the scaling estimates of [40], as listed in Table
4. Simulations show that AP reduces energy dissipation
up to 95% and reduces programming latency by at least
46% as compared to P&V.

6.2. Statistical Analysis

We performed MATLAB based statistical analysis to
evaluate the improvement of the AP method under pro-
cess variations while considering Frequency of Error
(FoE) among ReRAM cells as a figure of merit. We
evaluated the impact of process variation on the level
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Table 4: Energy and Latency Comparison of the Different Programming Methods
Programming

Method
Level 0 (SET)a Level 1b Level 2b Level 3b

Energy
(fJ)

Latency
(ns)

Energy
(nJ)

Latency
(µs)

Energy
(nJ)

Latency
(µs)

Energy
(nJ)

Latency
(µs)

IPP

8.5

17.89 1.7 26.72 2.4 33.67 3.1
IMPP 4.2 2.7 12.7 5.3 24.4 7.9
ILPP 5.9 2.7 14.2 12.7 25 42.7
P&V 146.2c 3.51 348.8c 7.7c 516c 11.9c

AP

106.6

10.6 1.9 19.6 3.8 27.2 5.7
a Energy and latency of SET operations are calculated according to the worst case, which is setting the device from level 3 to level 0.
b Energy and latency calculated after SET operation.
c Values including reading (verify) energy and latency reported in [10] (for a 22nm CMOS process) and
extrapolated to a 180 nm process according to [26].

distribution of MLC in different programming tech-
niques. First, the impact of process variations on mem-
ristors using the TEAM model was studied. To add
process variations, we adopted the methods used to
determine the influence of variations in the linear ion
drift memristor model [6] from [41, 42]. The TEAM
model [20] consists of the two following expressions,

dx
dt

=


kon

(
i(t)
ion
− 1

)αon
fon(x), i < ion < 0,

0, ion < i < io f f ,

ko f f

(
i(t)
io f f
− 1

)αo f f

fo f f (x), 0 < io f f < i,
(13)

R(t) = Ron +
Ro f f − Ron

D
x, (14)

where x ∈ [0,D] is an internal state variable, D, ko f f ,
αo f f , and αon are positive constants, kon is a negative
constant, io f f and ion are current thresholds, and Ron and
Ro f f are, respectively, the LRS and HRS. The current
and resistance of the device are, respectively, i(t) and
R(t). The resistance of the TEAM model can exhibit,
among other I-V relationships, a linear I-V relationship
as described by (14), similar to the I-V relationship in
the linear ion drift model. Therefore, the same process
variation models in [41, 42] for modeling parameter dis-
tribution under process variations can be adopted for the
TEAM model. In this model, the parameters Ro f f , Ron,
and D vary in a normal distribution,

Ro f f ∼ N
(
µRo f f , σ

2
Ro f f

)
, (15)

Ron ∼ N
(
µRon , σ

2
Ron

)
, (16)

D ∼ N
(
µD, σ

2
D

)
, (17)

where µRo f f , µRon , and µD are, respectively, the desired
values of Ro f f , Ron, and D without process variations
(i.e., 5.63 kΩ, 460 Ω, and 10−6 m). Their values are
σRo f f , σRon , and σD are the standard deviations of, re-
spectively, Ro f f , Ron, and D.

To perform process-variation aware simulations, we
built a MATLAB-based Monte Carlo (MC) simulation
environment. As a figure of merit, we chose the Fre-
quency of Error (FoE), which is the frequency of oc-
currence of different ReRAM chips suffering from the
same number of bit errors, while an error refers to an
erroneous read operation of a cell that was intended to
be programmed to level i, but whose resistance is lower
than RF

i−1 (i.e., lower than the fastest cell of the next
lower level) or higher than RS

i+1 (i.e., greater than the
slowest cell of the previous lower level). Other possible
metrics are mean-time between failures (MTBF) and bit
error rate (BER).

We compared AP to identical pulse programming
(IPP) as they both have state-pulse independency and
the same underlying programming mechanism, which
is identical pulses. We sampled 10,000 MC samples
and wrapped them in 100 iterations (i.e., simulating 100
ReRAM chips) to induce the frequency of bit errors,
while considering different deviations for the distribu-
tions and the possibility of increasing the cells’ capac-
ity. For process variation with standard deviation of 2%,
adaptive programming completely eliminates the bit er-
rors, as shown in Fig. 8(a). When process variations
are more severe, the frequency of errors of adaptive
programming is approximately 50% lower (better) than
IPP, as shown in Fig. 8(b). Note that the other program-
ming techniques (i.e., IMPP, ILPP, and P&V) achieve
better uniformity with process variations as compared to
the proposed AP design, and their FoE is negligible in
practice. Since AP outperforms these methods and has
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Figure 8: Frequency of bit error for IPP (red) and AP (green) with
standard deviation of (a) σ = 2% and (b) σ = 5%, and the (c) Cumu-
lative Distribution Function of bit errors.

a simpler mechanism, we believe that an upgraded cir-
cuit design of AP with better linearity will also improve
the uniformity, while maintaining the superior perfor-
mance. Furthermore, IPP and AP enable in-memory
computing since the identical pulse programming mech-
anism is an important block in some of those architec-
tures, as discussed in the following section. Our results
show that AP has a clear advantage over IPP in terms of
performance, energy and reliability (FoE).

6.3. Area Analysis
An important figure of merit when discussing AP,

is the area overhead of adding opamps to the periph-
eral circuitry. Adding any additional components to
the peripheral circuitry will decrease the area efficiency
of the memory module. The area efficiency is defined
as the (array area)(total area), while the total area in-
cludes the peripheral circuits. In the case of ReRAM,
each memory cell can be fabricated in 4F2 area [43] (F
is the feature size of the technology), which allows to
build very dense memories. However, such memories
can suffer from relatively low area efficiency due to the
extreme dense memory cell fabrication in comparison
to CMOS transistors. Therefore, the larger the memory
crossbar is, the higher the area efficiency of the memory,
since more cells share the same peripheral circuits.

To evaluate the area overhead of adding opamps,
NVSim [43] is used. The tool allows dividing the mem-
ory into three main components, as depicted in Fig. 9(a).
Each memory module is divided into banks that work
separately, while each bank is composed of several
memory mats that can work simultaneously. Each mat
includes several resistive sub-arrays, that each one of
them can grant access to a single cell (either for read

or write). Therefore, to embed AP in such memories,
an additional opamp should be added to the peripheral
circuits of each sub-array, which will increase the pe-
ripheral area of the sub-arrays and the memory module
in general.

A memory module including a single bank, com-
prised of 4× 8 mats with 1× 8 active mats at each cycle
is simulated. Each mat includes 4 × 8 sub-arrays, while
1× 8 sub-arrays work simultaneously at each cycle. For
comparison, we considered a baseline circuit that ex-
hibits a switch per column to control constant voltage
pulses for programming, and we compared the area im-
pact of adding opamps as part of AP on different array
sizes from 32×32 to 1024×1024, while maintaining the
same peripheral circuits such as sense amplifiers. Fur-
thermore, the read and write latency of accessing the
cells in the different sub-arrays and the impact of wire
capacitance, resistance, and impact the different periph-
eral circuits on these parameters are measured. Also, the
area impact of adding several opamps to the same array
of size 512 × 512 is determined. The area and latency
results are presented in Fig. 9(b) and Fig. 9(c), respec-
tively, and the results of adding opamps shared among 2,
4, 8, 16, 32, and 64 columns are presented in Fig. 9(d).
As can be noticed from Fig. 9(b), the area efficiency
increases with sub-array size, and the reason for that
is for small sub-array dimensions the dominant compo-
nents of the total area are the peripheral circuit compo-
nents. However, for read and write latency, the opamps
almost has no effect (less than 1%) as can be seen in
Fig. 9(c), but, the numbers increase with sub-array di-
mensions due to the increase in capacitance and resis-
tance of the wires and the increased number of periph-
eral circuit components. As for adding several opamps
in the same array, we can notice a more obvious impact
on area, which decreases with the increase of the num-
ber of columns sharing the same opamp, as depicted in
Fig. 9(d).

7. Overcoming Opamp Voltage Offset

The design of CMOS operational amplifiers
(opamps) can be challenging when trying to achieve
identical behavior between the different opamps due
to mismatch between the transistors, and regularly
results in variations in the offset voltage between these
almost-identical opamps [44]. The offset voltage of an
opamp is the voltage difference between the positive
and negative inputs. In an ideal opamp, the offset
voltage is zero, which means that the output voltage in
open loop is zero. Denote by ∆vi the offset voltage of
the opamp residing in BLi and shown in Fig. 6(a). All
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Figure 9: (a) Memory micro-architecture. The memory is divided to
banks, mats, and sub-arrays. (b) Area simulation results comparing
memory arrays with and without opamps, including area efficiency
and additional area of opamps in percentages. (c) Comparing read
and write latency of memory arrays with and without opamps. (d)
Area overhead of adding opamps shared among several columns.

opamps in the proposed circuit share the same positive
input, as well as the negative input,

vi,+ = 0 and vi,− = v− → 0∀i, (18)

where vi,+ and vi,− are, respectively, the voltage of the
positive and negative inputs of opamp i, and v− is the
common voltage value of all negative inputs. On the
other hand, the output voltage of an ideal opamp can be
expressed by

Vi,out(t) = Ai
(
vi,+ − vi,−

)
, (19)

where Ai is the open-loop gain of the i-th opamp, and
Vi,out(t) is the output voltage (also the voltage across
the memristor in AP) of opamp i. In ideal opamps, the
open-loop gain Ai is sufficiently large to drive the off-
set voltage to zero for output voltages smaller than the
saturation voltage driving the opamps, i.e.,

Vi,out(t) = Ai︸︷︷︸
→∞

(
vi,+ − vi,−

)︸       ︷︷       ︸
→0

< Vcc. (20)

Therefore, each opamp i tries to converge to the equilib-
rium point where vi,− → −∆vi. Nevertheless, due to the
physical connection of the opamps in Fig. 6(a) all neg-
ative inputs will be kept at the same potential, hence,
not allowing a common equilibrium point. This in turn
causes at least one output voltage of the opamp to al-
ways be at the saturation value Vcc, preventing proper
functionality of the circuit.

In this section, we propose two solutions for adaptive
programming with voltage offset to linearize the non-
linear switching of memristors using identical program-
ming pulses. The first solution is based on changing the
crossbar circuit topology. The second solution is to use
current sources rather than opamps for the peripheral
circuitry.

7.1. Semi-Crossbar Architecture
One possible solution to the offset voltage variation

problem is to change the crossbar circuit from having a
common feedback connection for all opamps to a sep-
arate feedback connection for each opamp. However,
to achieve such a connection, the crossbar architecture
should be modified into a Semi-Crossbar architecture
with separate WLs for each BL, as depicted in Fig. 10.
In the Semi-Crossbar architecture, read and program
operations can still be performed simultaneously on a
single cell per BL. However, in this architecture, the
number of WLs is higher since every BL has its own
WLs. Hence, the number of supported WLs in the mem-
ory array is #WLs × #BLs, which increases complexity
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Figure 10: Semi-Crossbar architecture that exhibits separate WLs for
each BL in order to allow separate feedback connections. Each BL-
Module can be used for either programming or reading a single cell
within the corresponding BL, and all BL-Modules operate simultane-
ously to allow parallel program or parallel read operations.

and limits the memory capacity. Although the capac-
ity is lower, the semi-crossbar architecture completely
eliminates sneak-path related issues. The semi-crossbar
architecture is therefore more suitable for in-memory
computing modules than large NVM, as discussed in
Section 7.

7.2. Current Programming

Current programming techniques for ReRAM cells
has been previously proposed [45]. Considering the
proposed circuit for adaptive programming in Fig. 5(a)
that translates identical voltage pulses to adaptively
amplified voltage pulses, a similar behavior can be
achieved using current programming circuits that use
current pulses to program a cell consisting of a mem-
ristor and a selector in series, and a resistor connected
in parallel to them both.

Assume ideal opamps, where each opamp has a vir-
tual short, i.e., V+ = V− = 0, and zero current flowing
into either of its inputs. Additionally, the current flow-
ing into Rin in Fig. 4(b) is constant, and it is equal to
the current flowing in the feedback, which consists of
a memristor and a resistor Rp. This current can be ex-
pressed as

IRin =
Vin

Rin
= IRp (t) + Imem(t), (21)

where IRin is a constant current flowing into the resis-
tor Rin, IRp (t) and Imem(t) are, respectively, the currents
in the resistor Rp and the memristor. Therefore, adap-
tively amplified voltage pulses can be also achieved by
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Figure 11: (a) Current programming circuit using multiple ideal cur-
rent sources and a parallel resistor Rp. (b) Current mirroring-based
adaptive programming circuit that uses PMOS transistors [37] and a
parallel resistor Rp. Both circuits effectively amplify voltage pulses by
maintaining constant current programming with the increasing mem-
ristance while programming.

using identical current pulses of Vin/Rin to program a
memristor connected to a resistor Rp in parallel. A pos-
sible implementation of current programming is shown
in Fig. 11(a), where each opamp is replaced with an
ideal current source IPRG = Vin/Rin. The circuit shown
in Fig. 11(a) was designed and tested in SPICE sim-
ulations, with results similar to those in Fig. 6. An-
other possible modification is to use simple current mir-
roring techniques [46], including fewer transistors and
less complicated modules for current mirroring to re-
duce area overhead and complexity of multiple current
sources. Current-mirroring-based adaptive program-
ming can be implemented using PMOS transistors as
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presented in Fig. 11(b). However, the voltage driving
the current mirroring PMOS transistors, VDD, must be
sufficiently high to keep the PMOS in the saturation re-
gion, i.e.,

VS iDi ≥ VDD − VGi −
∣∣∣VTi

∣∣∣,VS iDi = VDD − VDi , (22)

where VDD is the voltage driving the current mirroring
circuits, VS i , VDi , and VGi , are respectively, the source,
drain, and gate voltages of memristors Mi as presented
in Fig. 11(b), and VTi is the threshold voltage of PMOS
transistor Mi. Note that all gates of the transistors are
connected and the gate voltage of each one equals the
source voltage of the reference transistor Mre f ,

VGi = VGre f = VS re f = VDD. (23)

Substituting equation (23) into (22), we can formulate
the demand on the PMOS transistors to be in saturation
mode as

VDi ≤ VDD −
∣∣∣VTi

∣∣∣. (24)

Since VDi is the voltage dropping on a memory cell (i.e.,
memristors and a selector in series), and since the pro-
gramming current is constant, VDi will increase with the
increase of the memristance. Therefore, VDD must be
high enough to ensure that VDi can reach the required
voltage amplification (the level necessary to perform
adaptive programming), while keeping the PMOS Mi

in the saturation mode according to (24), i.e., VDD =

max
(
VDi

)
+

∣∣∣VTi

∣∣∣.
Different factors can be considered for the design of

the peripheral circuits of either of the suggested im-
plementations. The architecture in Fig. 11 eliminates
sneak-path currents, and therefore requires no addi-
tional components such as transistors (i.e., in 1T1R ar-
chitecture) to mitigate sneak-paths. Hence, it might
be suitable for building fast memory modules, and for
embedding in-memory computing, which is discussed
in the following section. However, such architectures
are limited in capacity due to the increased complex-
ity of routing an increased number of parallel WLs.
On the other hand, for large-scale memory modules,
the architectures in Fig. 11 might be more appropri-
ate. Moreover, programming structures such as 2TG1R
and 4T1R [47], could potentially be applied in MLC
ReRAMs for controlling tighter intermediate resistance
distributions for high-density modules.

8. AP for In-Memory Computing

Modern applications are limited by the bandwidth be-
tween the memory and the processor. To increase per-
formance with this limitation and reduce the need to

Figure 12: Adding operand B to operand A that is stored in cell Ci, j.

transfer data between memory and the processor, dif-
ferent architectures have been proposed, including non-
von Neumann architectures with in-memory compu-
ting [16, 48]. One example is the GP-SIMD architec-
ture, where multi-valued logic operations are performed
within MLC ReRAM [16]. Assume an operand A is
stored in cell Ci, j. Then, by applying a number of iden-
tical pulses that correspond to the value of operand B
on cell Ci, j we can store the addition result of the two
operands (A + B) in cell Ci, j, as illustrated in Fig. 12.

Since AP allows identical pulse programming in
MLC ReRAM, while eliminating the state-pulse depen-
dency and improving FoE, it enables such an architec-
ture. However, logic and architectural challenges should
be addressed. These include carry handling, defining a
new Instruction Set Architecture (ISA), coherency is-
sues, and other control issues of such memories. In fu-
ture work, we plan to investigate AP in the context of
in-memory computing.

9. Conclusions

Memristors can be programmed to intermediate lev-
els, and not only to HRS and LRS, allowing the design
of MLC ReRAM. Due to imperfections in the fabrica-
tion process, memory cells deviate from each other and
thus limit the number of logical levels stored in each
cell. Hence, it is crucial to control the uniformity of
level distribution in MLC ReRAM, to increase process
variation tolerance and memory capacity.

Adaptive programming (AP) relies on a feedback cir-
cuit that amplifies identical voltage pulses according to
the current level of the memory cell. AP decreases la-
tency and energy as compared to other programming
schemes, with a simpler mechanism. Furthermore, AP
reduces the frequency of errors by approximately 50%
as compared to other identical pulse programming tech-
niques. Not only does AP improve the memory, but
it also has the potential to add computing capabilities
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to multi-valued operations, which are useful for in-
memory computing.

Acknowledgements

This work was supported by the Viterbi Fellowship
at the Technion Computer Engineering Center. The au-
thors would like to thank Chung Wei Hsu and Philip
Wong from Stanford University for sharing their exper-
imental results.

Appendix - Selector SPICE Model

.SUBCKT SEL MODEL 1 2
D1 1 2 DF
DZ 3 1 DR
VZ 2 3 2.19
.MODEL DF D ( IS=43.8p RS=35.2 N=1.10
+ CJO=1f VJ=0.750 M=0.330 TT=50.1n )
.MODEL DR D ( IS=8.77f RS=15.1 N=3.00 )
.ENDS
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