
A Product Engine for Energy-Efficient Execution of
Binary Neural Networks Using Resistive Memories

João Vieira∗, Edouard Giacomin∗, Yasir Qureshi†, Marina Zapater†, Xifan Tang∗,
Shahar Kvatinsky‡, David Atienza†, and Pierre-Emmanuel Gaillardon∗

∗LNIS, University of Utah, USA
†ESL, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

‡Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Israel

Abstract—The need for running complex Machine Learning
(ML) algorithms, such as Convolutional Neural Networks (CNNs),
in edge devices, which are highly constrained in terms of
computing power and energy, makes it important to execute such
applications efficiently. The situation has led to the popularization
of Binary Neural Networks (BNNs), which significantly reduce
execution time and memory requirements by representing the
weights (and possibly the data being operated) using only one bit.
Because approximately 90% of the operations executed by CNNs
and BNNs are convolutions, a significant part of the memory
transfers consists of fetching the convolutional kernels. Such
kernels are usually small (e.g., 3×3 operands), and particularly
in BNNs redundancy is expected. Therefore, equal kernels can be
mapped to the same memory addresses, requiring significantly
less memory to store them. In this context, this paper presents a
custom Binary Dot Product Engine (BDPE) for BNNs that exploits
the features of Resistive Random-Access Memories (RRAMs). This
new engine allows accelerating the execution of the inference
phase of BNNs. The novel BDPE locally stores the most used
binary weights and performs binary convolution using computing
capabilities enabled by the RRAMs. The system-level gem5
architectural simulator was used together with a C-based ML
framework to evaluate the system’s performance and obtain
power results. Results show that this novel BDPE improves
performance by 11.3%, energy efficiency by 7.4% and reduces the
number of memory accesses by 10.7% at a cost of less than 0.3%
additional die area, when integrated with a 28 nm Fully Depleted
Silicon On Insulator ARMv8 in-order core, in comparison to
a fully-optimized baseline of YoloV3 XNOR-Net running in a
unmodified Central Processing Unit.

Index Terms—Machine Learning, Edge Devices, Binary Neural
Networks, RRAM-based Binary Dot Product Engine

I. INTRODUCTION

The role played by Internet of Things (IoT) in the advent of
Big Data [1], which requires the execution of complex Artificial
Intelligence (AI) algorithms in latest smart embedded systems
(also called edge devices [2]), has created the necessity of
developing new Machine Learning (ML) algorithms that can
target highly energy and computing power constrained systems.
Naturally, this led to the creation of new Convolutional Neural
Network (CNN) models capable of being executed efficiently
in such systems [3], and because approximately 90% of the
operations realized in CNNs are convolutions [4], convolutional
layers became the main targets for optimization. Consequently,
two main approaches aiming at optimizing the execution of such
layers were adopted: using dedicated hardware accelerators;
and reducing the precision of the operands.

The use of custom accelerators attempts to optimize the
execution of CNNs by exploiting hardware level parallelism

[5], [6] and offloading workload to near-data accelerators [7],
[8]. However, most of these solutions do not comply with the
limitations of edge devices since they require a significant
amount of hardware resources to be implemented, which
is hardly feasible in the context of such energy- and cost-
constrained systems. Furthermore, accelerators do not provide
performance benefits whenever the workload associated to
the dataset is not enough to overcome the communication
overhead with main memory [9]. For that, the datasets have to
be significantly big, and since edge devices are usually used
for processing rather small datasets, accelerators may also not
be suited for such systems.

CNN models using low-precision operands, such as Intel
bfloat16 [10], were also created to speed computation in
convolutional layers. Ultimately, Binary Neural Networks
(BNNs) [11], [12] only use one bit to represent the weights.
Moreover, in XNOR-Net BNNs [11] both the input and the
weights of the convolutional layers are binary, thus convolutions
are performed by simply executing the bit-wise XNOR of the
input and kernel followed by a bitcount. Although accuracy is
sacrificed to some level by such heuristics [11], the resultant
memory savings and performance improvements allow some
XNOR-Net CNNs to be executed by edge devices. This allows
such systems to execute complex workloads, such as facial
recognition, which is a real-time task that has to be performed
efficiently [13]. Moreover, in most BNNs, the convolutional
kernels are rather small (typically 3×3, 5×5 or 7×7), thus it is
expected that a significant part of their data is redundant.

Exploiting data redundancy in BNNs, this paper proposes a
Binary Dot Product Engine (BDPE) that locally stores the most
used kernels and efficiently implements binary convolution to
accelerate convolutional layers. Thus, whenever the kernels
are stored in the unit, there is no need for transferring them
from memory, reducing the overall memory accesses. Since
Resistive Random-Access Memories (RRAMs) excel by their
ability of enabling in-memory computing capabilities while
providing storage support [14], the novel BDPE uses a robust
and energy efficient RRAM-based convolutional block based on
[15]. Contrarily to previous analog proposals (e.g., [16]) whose
accuracy can be severely degraded due to process variation, this
block operates in the digital domain. Since the BDPE is meant
to be integrated into the pipeline of a Central Processing Unit
(CPU), it does not introduce communication overheads, which
is one of the main drawbacks of using dedicated accelerators.



Overall, the contributions of this paper are the following:
1) We propose a RRAM-based BDPE that efficiently per-

forms the dot product between an input and a kernel
stored in the RRAM array or between two inputs;

2) We integrate the devised BDPE with the pipeline of a
conventional ARMv8 CPU;

3) We present an ARMv8 Instruction Set Architecture (ISA)
extension to support the novel BDPE;

4) We evaluate the impact of the novel mechanism in the
execution of a state-of-the-art BNN using an optimized
ML framework, using the system-level gem5 architectural
simulator.

Results show that, even for a modest RRAM usage rate, the
BDPE allows a speedup of approximately 11.3% over a fully
optimized version of YoloV3 XNOR-Net running on an ARM
Cortex-A53, while reducing the number of memory accesses
during the inference phase by 10.7%. Additionally, the energy
spent during the execution of the BNN is reduced by 7.4%,
and the die area required to implement the BDPE is less than
0.3% of the total CPU.

The rest of this paper is organized as follows. Section II
provides insights on the necessary context for this work. Section
III details the devised architecture. Sections IV and V present
the evaluation methodology and the experimental results,
respectively. Sections VI and VII summarize the key point
of discussion and conclusions about the work, respectively.

II. CNN BACKGROUND

CNNs relate to a class of Neural Networks (NNs) that
are commonly applied to image analysis. Such networks
are dominated by convolutional layers, where the input is
convoluted by a kernel, and the produced output is passed to
the next layer. The operation of CNNs is divided into two
phases: the training phase and the inference phase. Although
the devised mechanism can be applied to both phases, the
computing power and energy required by the training phase
goes beyond edge devices. Therefore, only the inference phase
is targeted by this work.

In the image analysis domain, CNNs can be used for
multiple purposes, such as image classification [17], [18],
or object detection [19], such as pedestrians detection [20],
[21] or face recognition [22]. YoloV3 [23], [24] is a state-
of-the-art CNN for real-time object detection. It divides the
image into regions and predicts bounding boxes and associated
probabilities for each region. By sizing the network, YoloV3
also allows trading accuracy for performance by reducing the
number of network layers. This represents an advantage for
edge devices characterized by low computing power. When
binarized using the definitions in [11], the XNOR-Net version
of a given configuration of YoloV3 shows approximately the
same mean Average Precision (mAP) as the full-precision
network, while reducing the size of the weights approximately
32× and thus executing up to 58× faster. For the Street View
House Numbers (SVHN) dataset [25], the YoloV3 XNOR-Net
shows a mAP decrease of only 0.43%, while increasing the
number of detections by 75%. YoloV3 is a widely accepted
benchmark, thus we use it to evaluate the proposed BDPE.

From the same authors of YoloV3, Darknet [26] is a C-
based ML framework compatible with a large number of NN

models. When executed in Darknet, BNNs can be accelerated
using CPU primitives that can efficiently perform the binary
convolution of two 64-bit vectors. For that purpose, the
elements of the small kernels are shifted and combined in
vectors of 64 bits, thus reducing the data redundancy that can
be found between combinations. For the trimmed version of
YoloV3 XNOR-Net trained with the SVHN dataset, all the
generated combinations of small kernels are different, making
it impossible to take advantage of data redundancy. However,
as shown in Table I, a small percentage of combinations
is frequently used. For instance, 0.07% of the combinations
(designated from now on as kernels) are used in 9.74% of the
total number of convolutions. Thus it is possible to significantly
accelerate the total amount of convolutions only storing a small
percentage of kernels locally. Due to Darknet’s performance,
it is used in this work for evaluation purposes.

TABLE I: Profile of a trimmed version of YoloV3 regarding the frequency of
use of each convolutional kernel during the inference phase.

Execution frequency Kernels Total executions Percentage
169 115,200 19,468,800 45.64
676 18,432 12,460,032 29.21

2,704 1,152 3,115,008 7.30
10,816 320 3,461,120 8.11
43,264 96 4,153,344 9.74

III. SYSTEM ARCHITECTURE

In this section, the architectural details of the Binary Dot
Product Engine (BDPE) proposed in this paper are presented
alongside the modifications done to an ARMv8 to integrate
it as a new functional unit. Additionally, the operation of the
devised BDPE is demonstrated with a practical example.

A. Architecture of the Binary Dot Product Engine

The devised BDPE aims at improving the performance of
binary convolution while reducing the number of data transfers
by locally storing the most used kernels. Accordingly, the base
block used in this work, proposed in [15], implements the
binary dot product using the compute capabilities of RRAM,
while also providing storage. The operands involved in the
binary dot product are a constant binary kernel stored in the
RRAM array in the form of resistance values and a binary
vector supplied as an input. By selecting the appropriate kernel
local address and applying the input data to the RRAM array,
the XNOR phase of the convolution is performed as a memory
readout using custom XNOR sense amplifiers [15]. Then,
a fully-digital combinational circuit counts the number of
logic ones to determine the result of the binary dot product
operation. The block diagram of the proposed RRAM-based
convolutional block is depicted in Fig. 1b. Using the proposed
mechanism has two main advantages. First, by locally storing
the most used kernels (e.g., in YoloV3, 0.07% of the kernels
are used in 9.74% of the convolutions), the data movements
are substantially reduced, thus decreasing the overall energy
consumption. Second, since it is capable of performing a
dot product in one clock cycle, it also increases system’s
performance.

To use the devised engine in a CPU, a control path is added
to the original block, which also unlocks the possibility of



DATA
XNOR
KERNEL

DATA

K
E
R
N
E
L

L
O
C
A
L

A

D
D
R
E
S
S

XNOR
Sensing
Circuit

Bitcount
Circuit

RRAM

DATA

KERNEL

KERNEL

LOCAL

ADDRESS

CONTROL
BIT

OUTPUT

64
BITS256
ROWS

(a) (b)

Fig. 1: Block diagram of the proposed BDPE. Fig. 1a illustrates the control logic and the alternative mechanism to perform the bit-wise XNOR of the data and
the kernel (both supplied as an input), in case the kernel is not stored in the RRAM array. Fig. 1b depicts the RRAM-based convolutional block used in this
work inspired by [15].

FETCH DECODE

EXECUTE

MEMORY

ACCESS 

WRITE

BACK

  ALU

BDPE

Fig. 2: Simplified block diagram of a generic processor pipeline integrating
the Binary Dot Product Engine.

performing the XNOR of two inputs as an alternative to using
the primary RRAM-based XNOR mechanism. Fig. 1a illustrates
the block diagram of the BDPE.

The secondary XNOR mechanism is built from regular
CMOS gates. Depending on the control bit obtained from
the decoded opcode, the output of the alternative XNOR
mechanism can be used as input to the Bitcount Circuit. In
that case, the result is based on the kernel coming from
a processor register rather a kernel stored in the RRAM.
Such a functionality is particularly useful when the required
convoluting kernel is not stored in the RRAM array.

B. Integration with Central Processing Unit

The integration of the proposed BDPE with a conventional
ARMv8 core is divided into three phases: (1) the integration
of the new functional unit with the processor’s pipeline; (2)
the creation of new instructions in the ISA to use the BDPE;
(3) compiler support to use the new ISA instructions on the
software side.

31 21 20 16 15 10 9 5 4 0

opcode rm imm6 rn rd

Fig. 3: Format of the new instructions added to the ARMv8 ISA to allow the
processor to issue instructions to the BDPE. The opcodes 10000011000 and
11000011000 were re-purposed to specify the custom instructions. rm and
rn specify addresses of 64-bit registers; imm6 represents a 6-bit immediate;
and rd specifies the address of the destination 64-bit register.

The new functional unit is integrated into the processor’s
pipeline in the Execution stage. It receives the operands from
the Decode stage, similarly to the Arithmetic and Logic Unit
(ALU), and passes the result to the Execute/Memory Access
pipeline register, as shown in Fig. 2. According to the ARM
Architecture Reference Manual for the ARMv8-A architecture
profile [27], the ARMv8 ISA has unused opcodes that can
be re-purposed to expand the functionality of the CPU. Using
two of the unused opcodes, two instructions were created and
assigned to the novel BDPE.

Fig. 3 illustrates the format of the new instructions and
denotes the purpose of each distinct set of bits. Each of the
new instructions is decoded in the Decode stage such that the
content of the register specified by rm serves as input data
of the BDPE; the content of the register represented by rn
is the input kernel; imm6 specifies the address of the kernel
stored in the RRAM array; and the second Most Significant
Bit (MSB) of the opcode designates the control bit.

After determining which kernels to store in the RRAM and
the respective RRAM addresses, an additional phase is added
to the compilation workflow to replace regular binary dot
products using the processor’s ALU with the corresponding
instruction using the BDPE. By controlling the opcode (and



PROFILE BNN

Most

used

kernels

RRAM

EXECUTE BNN

NO YES

 

KERNEL

IN RRAM

?

FETCH

FROM

MEM.

USE ALT.

XNOR

USE

RRAM

XNOR 

Fig. 4: Simple example that illustrates the process of storing the most used
kernels inside the RRAM and running a BNN using the novel BDPE.

consequently the control bit), either the output of the RRAM
array or the output of the alternative XNOR mechanism is
used to calculate the final result of the binary dot product
operation. To be able to use imm6 to represent the kernel
address in the RRAM, some compiler-level work would be
required, specifically at Low Level Virtual Machine (LLVM)
level. However, for a careful validation of the BDPE, in this
work no modifications to LLVM have been made. Alternatively,
a procedure that produces similar results that can be applied in
a gem5 architectural simulation context was used (as described
in section IV-A).

C. Operation example

As shown in Fig. 4, the workflow for running a BNN using
the novel BDPE is divided into profiling and execution.

During the profiling, the BNN is used to perform a single
inference while the kernel space is profiled, selecting the most
frequently used kernels. The selected kernels are stored in the
RRAM, and a configuration file is generated containing the
information about the content of the RRAM. Then, the CNN
is recompiled, and the code responsible for implementing the
binary convolution is replaced by custom code that utilizes
the BDPE. If the kernel being used is stored in the RRAM,
the compiler inserts a special instruction to perform the binary
convolution using the RRAM array. Otherwise, the compiler
inserts a load instruction to fetch the kernel from memory,
followed by a special instruction that performs the binary
convolution using the two data inputs of the BDPE.

IV. EVALUATION METHODOLOGY

In this section, the tools used to evaluate the performance,
energy efficiency improvements and area requirements are pre-
sented alongside the methodology and considered assumptions.

A. Performance Evaluation

The Darknet framework and the gem5 architectural simulator
[28], together with gem5-X [29] (which allowed to reduce the
usual 10% error margin provided by gem5 to less than 4%),
were used to evaluate the performance of the modified ARMv8
architecture. Darknet was set to operate as a trimmed version
of the YoloV3 XNOR-Net CNN, and gem5 was configured to
emulate the ARMv8 Cortex-A53 with and without the devised
BDPE. Darknet was adapted to allow support for gem5 System
Emulation (SE) mode by compiling all the inputs of the network
(the configuration files, the previously trained weights for the
SVHN [25] dataset and the input image) into a single executable

binary file. Additionally, the Darknet framework was modified
at assembly level to use the custom BDPE instead of the
processor’s ALU when performing 64-bit binary convolutions.

To determine the most used kernels and populate the RRAM
array, the following two-step procedure was used: (1) Darknet
was ran using gem5 and the kernel space was profiled; (2)
The most used kernels were selected and stored in the RRAM.
After populating the RRAM, the gem5 module responsible for
emulating the BDPE was rebuilt. Because the framework was
not recompiled, gem5 in SE mode mapped the data structures
to the same addresses used in (1), and the application flow was
kept the same except for the binary convolutions involving the
most frequently used kernels stored in the RRAMs. In those
cases, the RRAM array was used instead of the alternative
XNOR mechanism to perform the XNOR operation. The
complete system featuring the modified ARM Cortex-A53
and four DRAM ranks of 1GB each operating at 2400MHz
was emulated and the entire workflow of Darknet was executed.

As a result of running the modified version of Darknet, gem5
produced timing results, statistics on memory accesses and
usage of the CPU’s several modules. Such results were used to
estimate the energy consumption, as described in Section IV-C.

B. Circuit-level Implementation

Circuit-level metrics were obtained through electrical sim-
ulations using a commercial 28 nm Fully Depleted Silicon
On Insulator (FD-SOI) design kit to assess the hardware
requirements and the power demand of the devised BDPE. The
detailed experimental procedure is described in [15]. Delay
and power results were extracted from Eldo simulations, to be
used in models for the architectural evaluation, as explained in
Section IV-C. These metrics were extracted for the two possible
cases (control bit=0 and control bit=1) to consider when the
XNOR is performed using a kernel locally stored in the RRAM
or a kernel coming from the processor’s registers, respectively.
In order to consider an average case, it was assumed that half
of the data inputs, as well as the kernels, are zeros and the
other half is ones. For the area estimation, the full-custom
layout of the RRAM array and its associated control path were
modeled using Cadence Virtuoso. The bitcount circuit was
generated with Synopsys Design from Register Transfer Level
(RTL) netlists and integrated into a Place & Route flow using
Cadence Innovus to obtain the complete layout of a 256×64
RRAM-based BDPE.

C. Power Models

For the energy efficiency and power assessment of the pro-
posed architecture, 28 nm FD-SOI power models for ARMv8
in-order cores were used, as proposed by [29] and [30]. The
power models include active core power, Wait-For-Memory
(WFM) power, and the static core power. They also include
the Last Level Cache (LLC) power consumption as well as
the power for memory accesses to the DRAM in the system.
These power numbers were combined with gem5 statistics to
calculate the overall energy consumed by the system, including
also the BDPE energy values, as explained in Section IV-B.
McPAT [31] was not used for the power estimation of the core,
as it does not have power models for 28 nm FD-SOI.



Fig. 5: Results showing the performance improvements due to using BDPE.
Figure 5a shows the relative reduction on memory accesses during the inference
phase of YoloV3 for five runs where the usage of the BDPE varies between
10% and 50%. Figure 5b depicts the execution time of the inference phase
of YoloV3 and the relative performance improvements varying the usage of
the BDPE. Figure 5c illustrates the total number of cache misses for the five
considered scenarios and the baseline system.

V. EXPERIMENTAL RESULTS

In this section, experimental results on performance, energy
savings, and hardware requirements are presented.

To better evaluate the impact of the BDPE in the performance
of the targeted ARMv8 CPU, five scenarios were considered
where the RRAM usage rate (percentage of convolutions that
use kernels locally stored in the RRAM) varies between 10%
and 50%, when executing YoloV3 XNOR-Net.

A. Performance Analysis
By offloading the execution of binary convolutions to the

BDPE, the kernels are not requested from the main memory
when they are locally stored in the RRAM array. Therefore, a
reduction in memory accesses equal to the RRAM usage rate
is observed, as shown in Fig. 5a. Moreover, over 99% of the
memory accesses reduction happens at the L1 cache. Thus, the
system counts with the maximum benefits of caching effects.

However, avoiding the transfer of sequential kernels to
the processor whenever the RRAM array is used produces
irregularities in the memory access patterns. This situation
leads to more evictions and cache collisions, thus causing
additional cache misses, as shown in Fig. 5c. Nevertheless, the
increase of the cache misses is lower than 0.01% relative to
the total number of memory accesses. Hence, this is negligible
and does not affect the overall performance.

All in all, as illustrated in Fig. 5, for a usage rate of 10%
the performance improvement is 11.3%. Also, the performance
gains show no significant variation with the RRAM usage rate.
This effect has two main causes: (1) both the data paths in the
BDPE take exactly one cycle to perform a binary convolution;
(2) due to caching effects, the convolutional kernels are stored
in the L1 cache 94% of the time, substantially reducing the
time required to fetch them. Consequently, using the alternative
method for performing the XNOR of the kernel and the input
data takes approximately the same time as using the RRAM
array and does not impact negatively the overall performance.

Fig. 6: Results showing the energy efficiency improvements due to using
BDPE. Figure 6a shows the total energy spent when executing the baseline
and five runs where the usage of the BDPE varies between 10% and 50%.
Figure 6b shows, for the same scenarios the energy spent by the system
excluding the main memory (DRAM).

B. BDPE Energy and Hardware Resources
Table II shows the hardware requirements, power demand

and delay for the BDPE obtained through simulation, as
described in Section IV-B. In practice, since a 10% RRAM
usage rate allows achieving the best trade-off between hardware
requirements, performance improvements and energy savings,
that scenario was used to obtain the results in this section.

The die area required to implement the novel mechanism
is only 3.845 µm2 per CPU core, using a FD-SOI 28 nm
process, while a dual-core ARM Cortex-A53 in an equivalent
process requires 2.8mm2 [32]. Therefore, the BDPE represents
less than 0.3% of the total CPU area. The energy spent
for a single operation when using the RRAM array (control
bit=0) is reduced by 37% comparing to using the alternative
mechanism (control bit=1). This is allowed by the intrinsic
energy efficiency of the RRAM array [15]. Although this
advantage comes at a cost of a delay overhead at circuit level,
the maximum operating frequency allowed is still 2.5GHz.
Thus, as the target platform is the ARM Cortex-A53 with an
operating frequency of 2GHz, the BDPE can be integrated
with the system without constraining its overall frequency.

C. Energy Efficiency Analysis
The total energy spent by the baseline system (ARM

Cortex-A53) and the five scenarios using the BDPE is illus-
trated in Fig. 6a. Then, Fig. 6b shows the energy consumption
for the same circumstances subtracted by the energy spent by
the DRAM. As shown in Table III, the total energy spent by the

TABLE II: Hardware resources and average power demand of the BDPE
considering the two possible paths data paths considering a RRAM usage
rate of 10%. When control bit=0, the RRAM array is used to implement the
XNOR operation. Otherwise, the alternative XNOR mechanism is used.

Area/Hardware
resources [µm2] Power [mW] Delay [ps]

control bit=0 3,845 1.24 408
control bit=1 3.23 214



TABLE III: Total energy spent by the BDPE and the CPU during the inference
phase of YoloV3 XNOR-Net.

RRAM usage
rate [%] Baseline 10 20 30 40 50

BDPE [µJ] 0 0.870 0.279 0.271 0.263 0.255
CPU [µJ×106] 0.542 0.502 0.501 0.501 0.501 0.502

BDPE is negligible when compared with the rest of the system,
and so the energy savings are mostly due to the reduction in the
execution time. As the execution time is approximately constant
regardless of the RRAM usage rate, so are the energy savings.
When considering only the processing system (excluding the
DRAM main memory), the use of the BDPE allows for average
energy savings of 7.4%.

VI. DISCUSSION

The advantages allowed by the devised BDPE are tightly
coupled with the considered baseline CPU and the used CNN
model. Since this work uses an ARM Cortex-A53, which is a
high-efficiency CPU, the compute power and energy efficiency
enabled by the baseline puts it among the most efficient new
edge devices. Nevertheless, the use of the devised BDPE
allows achieving significant performance improvements and
energy savings at the cost of a minor area overhead. It is also
worth saying that should the baseline be a more rudimentary
processing system (e.g., an ultra-low power embedded system),
the novel BDPE would allow for bigger improvements.

The ML framework Darknet, optimized to achieve the best
performance on CPUs, eliminated the possibility of taking ad-
vantage of kernel redundancy, which would increase the RRAM
usage rate and consequently allow for higher performance
improvements and energy savings. To circumvent this and
increase redundancy among kernels, the use of techniques such
as weight clustering are proven to be efficient, while sacrificing
little accuracy [16]. Nevertheless, since YoloV3 XNOR-Net
uses a small subset of the kernels in most convolutions,
significant data redundancy was still achieved.

VII. CONCLUSIONS

This paper presented a novel RRAM-based BDPE suited for
accelerating the inference phase of BNNs meant to be integrated
within the pipeline of a CPU. The power demand, hardware
resources and propagation delay of the devised mechanism
were modeled, and its impact on the considered base system
was comprehensively evaluated using the Darknet framework
and gem5, together with gem5-X. Results showed that even
for a modest RRAM usage rate the novel BDPE achieved
performance improvements of 11.3% and 7.4% energy savings.
Furthermore, the integration of the novel mechanism requires
only few modifications to the baseline CPU, while representing
less than 0.3% of the total die area, and does not lower the
operation frequency of the system.

ACKNOWLEDGEMENTS

This work was supported by the grants 2016016 from
the United States-Israel Binational Science Foundation, ERC
Consolidator Grant COMPUSAPIEN (GA No. 725657), ERC
starting grant Real-PIM-System (GA No. 757259), and partially
by the EC H2020 EUROLAB4HPC2 project (GA No. 800962).

REFERENCES

[1] U. Ahsan and A. Bais. A Review on Big Data Analysis and Internet of
Things. In MASS, pages 325–330. IEEE Computer Society, 2016.

[2] M. Ammar et al. Internet of Things: A survey on the security of IoT
frameworks. J. Inf. Sec. Appl., 38:8–27, 2018.

[3] A. Howard et al. MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications. CoRR, abs/1704.04861, 2017.

[4] J. Cong et al. Minimizing Computation in Convolutional Neural Networks.
In ICANN, volume 8681 of Lecture Notes in Computer Science, pages
281–290. Springer, 2014.

[5] W. Chen et al. An Asynchronous Energy-Efficient CNN Accelerator
with Reconfigurable Architecture. In A-SSCC, pages 51–54. IEEE, 2018.

[6] B. Sun et al. Ultra Power-Efficient CNN Domain Specific Accelerator
With 9.3TOPS/Watt for Mobile and Embedded Applications. In CVPR
Workshops, pages 1677–1685. IEEE Computer Society, 2018.

[7] M. Mao et al. A Versatile ReRAM-based Accelerator for Convolutional
Neural Networks. In SiPS, pages 211–216. IEEE, 2018.

[8] K. Guo et al. RRAM Based Buffer Design for Energy Efficient CNN
Accelerator. In ISVLSI, pages 435–440. IEEE Computer Society, 2018.

[9] A. Prakash et al. Modelling communication overhead for accessing
local memories in hardware accelerators. In ASAP, pages 31–34. IEEE
Computer Society, 2013.

[10] Intel. BFLOAT16 – Hardware Numerics Definition, 2018.
[11] M. Rastegari et al. XNOR-Net: ImageNet Classification Using Binary

Convolutional Neural Networks. In ECCV (4), volume 9908 of Lecture
Notes in Computer Science, pages 525–542. Springer, 2016.

[12] M. Courbariaux and Y. Bengio. BinaryNet: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1. CoRR,
abs/1602.02830, 2016.

[13] Y. Shen et al. CS-CNN: Enabling Robust and Efficient Convolutional
Neural Networks Inference for Internet-of-Things Applications. IEEE
Access, 6:13439–13448, 2018.

[14] Haitong Li et al. Resistive ram-centric computing: Design and modeling
methodology. IEEE Trans. on Circuits and Systems, 64-I(9):2263–2273,
2017.

[15] E. Giacomin et al. A Robust Digital RRAM-Based Convolutional Block
for Low-Power Image Processing and Learning Applications. IEEE
Trans. on Circuits and Systems, 66-I(2):643–654, 2019.

[16] S. Gupta et al. NNPIM: A Processing In-Memory Architecture for
Neural Network Acceleration. IEEE Transactions on Computers, 2019.

[17] J. Guérin et al. CNN features are also great at unsupervised classification.
CoRR, abs/1707.01700, 2017.

[18] U. Chester and J. Ratsaby. Machine Learning for Image Classification
and Clustering Using a Universal Distance Measure. In SISAP, volume
8199 of Lecture Notes in Computer Science, pages 59–72. Springer,
2013.

[19] Z. Zhao et al. Object Detection with Deep Learning: A Review. CoRR,
abs/1807.05511, 2018.

[20] E. Ohn-Bar and M. Trivedi. To boost or not to boost? On the limits of
boosted trees for object detection. In ICPR, pages 3350–3355. IEEE,
2016.

[21] P. Dollár et al. Pedestrian Detection: An Evaluation of the State of the
Art. IEEE Trans. Pattern Anal. Mach. Intell., 34(4):743–761, 2012.

[22] K. Sung and T. Poggio. Example-Based Learning for View-Based Human
Face Detection. IEEE Trans. Pattern Anal. Mach. Intell., 20(1):39–51,
2002.

[23] J. Redmon et al. You Only Look Once: Unified, Real-Time Object
Detection. In CVPR, pages 779–788. IEEE Computer Society, 2016.

[24] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement.
CoRR, abs/1804.02767, 2018.

[25] Y. Netzer et al. Reading Digits in Natural Images with Unsupervised
Feature Learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, 2011.

[26] J. Redmon. Darknet: Open Source Neural Networks in C. http://pjreddie.
com/darknet/, 2013–2016.

[27] ARM. ARM Architecture Reference Manual, 2018.
[28] N. Binkert et al. The gem5 simulator. SIGARCH Computer Architecture

News, 39(2):1–7, 2011.
[29] Y. Qureshi et al. Gem5-X: A Gem5-Based System Level Simulation

Framework to Optimize Many-Core Platforms. In Spring Simulation
Conference (SpringSim’19). IEEE/ACM/SCS, 2019.

[30] A. Pahlevan et al. Energy proportionality in near-threshold computing
servers and cloud data centers: Consolidating or Not? In 2018 Design,
Automation Test in Europe Conference Exhibition, pages 147–152, 2018.

[31] S. Li et al. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO, pages
469–480. ACM, 2009.

[32] F. Abouzeid et al. 30% static power improvement on ARM Cortex®-A53
using static biasing-anticipation. In ESSCIRC, pages 37–40. IEEE, 2016.

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

	Introduction
	CNN Background
	System architecture
	Architecture of the Binary Dot Product Engine
	Integration with Central Processing Unit
	Operation example

	Evaluation Methodology
	Performance Evaluation
	Circuit-level Implementation
	Power Models

	Experimental Results
	Performance Analysis
	BDPE Energy and Hardware Resources
	Energy Efficiency Analysis

	Discussion
	Conclusions
	References

