mMPU - a Real Processing—in-Memory
Architecture to Combat the von Neumann
Bottleneck

Nishil Talati, Rotem Ben Hur, Nimrod Wald, Ameer Haj Ali, John Reuben, and
Shahar Kvatinsky

Abstract Data transfer between processing and memory units in modern comput-
ing systems is their main performance and energy-efficiency bottleneck, commonly
known as the von Neumann bottleneck. Prior research attempts to alleviate the prob-
lem by moving the computing units closer to the memory that have had limited suc-
cess since data transfer is still required. In this chapter, we present mMPU - mem-
ristive Memory Processing Unit, which relies on a memristive memory to perform
computation using the memory cells and therefore, directly tackles the von Neu-
mann bottleneck. In mMPU, the operation is controlled by a modified controller and
peripheral circuit without changing the structure of the memory cells and arrays. As
the basic logic element, we present Memristor Aided loGIC (MAGIC), a technique
to compute logical functions using memristors within the memory array. We further
show how to extend basic MAGIC primitives to execute any arbitrary Boolean func-
tion and demonstrate the micro-architecture of the memory. This process is required
to enable data computing using MAGIC. Finally, we show how to build the com-
puting system using mMPU, which performs computation using MAGIC to enable
a real processing-in-memory machine.

1 Introduction

Contemporary general-purpose computing systems use von Neumann architecture,
or an ameliorated version of it, which separates the processing units (or CPUs) from

Nishil Talati - Rotem Ben Hur - Nimrod Wald - Ameer Haj Ali - John Reuben - Shahar Kvatinsky
Technion — Israel Institute of Technology, Haifa 3200003, Israel

e-mail: nishil.t@campus.technion.ac.il

e-mail: rotembenhur @ campus.technion.ac.il

e-mail: nimrodw @campus.technion.ac.il

e-mail: ameerh@campus.technion.ac.il

e-mail: johnreuben @technion.ac.il

e-mail: shahar@ee.technion.ac.il

2 Talati et al.

CPU

(a) Processing B/W Storage (b)

%]
. . J <
Only Limited Only £ Performance
Bus E Gap
S
St
&~ emory

Time

Fig. 1 (a) Abstract model of von Neumann architecture, where two separate units (CPU and mem-
ory) are dedicated for data processing and data storage. These elements are connected through a
bandwidth(B/W)-limited bus for data transfer [35]. (b) Performance scaling of CPU and memory
with respect to time.

the memory system. Due to this separation, data has to travel between the processor
and memory through a bandwidth-limited bus, which causes a massive overhead of
performance and energy. This is called the von Neumann bottleneck. For years, re-
searchers have been attempting to devise possible replacements for this computation
model. Furthermore, with the scaling in the size of the transistor, the performances
of both CPUs and memory have scaled; however, the performance of the CPU dou-
bles every two years, while the performance of the memory doubles every ten years,
as shown in Fig. 1(b). This is the reason for today’s large performance gap between
between CPU and memory. As a result, the processor has to wait for multiple clock
cycles in order to receive data from the memory, which is known as the memory
wall.

Some previous approaches to alleviate the von Neumann bottleneck [16, 33, 15,
36] try to move the processing units (PUs) closer to the memory. While doing so,
these methods use the DRAM technology for the memory system. Although DRAM
is a mature and commercial memory technology, conventional DRAM cells, which
are used to store data, are incapable of processing data, and as a consequence, data
must still be transferred to closely placed PUs. Hence, these approaches only allevi-
ate the von Neumann bottleneck to a limited extent. An attractive way to completely
solve the von Neumann bottleneck is to give computation capabilities directly to the
memory cells, thereby eliminating the need for transferring data.

Emerging memory technologies, such as Resistive RAM (RAM), Phase-Change
Memory (PCM), Spin-Transfer Torque Magnetoresistive RAM (STT-RAM), etc.,
are considered to be potential candidates for replacing the conventional memory
technologies, i.e., DRAM and Flash. Unlike conventional memory technologies that
represent data in terms of presence/absence of charge, emerging memories store
the logical value in terms of difference in the value of the cell resistance. Hence,
we collectively call them memristors (i.e., memory + resistors) [25]. Apart from
data storage, the variable resistance property can also be exploited to employ the
memristor cells directly for data processing, which has the potential to resolve the
von Neumann bottleneck completely.

mMPU - a Real Processing—in—-Memory Architecture 3

A memristor is a two-terminal passive circuit element with variable resistance
that can be controlled by applying voltage across it. The resistance of the mem-
ristor is confined between minimum and maximum resistance values, commonly
represented as a low-resistance state (LRS or Rpy) and a high-resistance state (HRS
or Rorr). The execution of various logical functions is carried out by assembling
memristors with/without other components in different circuit connections and by
applying different voltages across them [24, 26, 27, 43, 46, 17, 34, 30, 29].

In this chapter, we present the memristive Memory Processing Unit (mMPU),
which directly tackles the von Neumann bottleneck by giving the processing ca-
pabilities to the memristive memory elements. We first present Memristor-Aided
loGIC (MAGIC), which is a technique to execute logical operations. Specifically,
we present MAGIC NOR, which is a technique to perform computation within the
memristive memory array, by adding a voltage level to the regular memory opera-
tion, and without changing the memristive memory crossbar architecture. The inputs
and outputs of the MAGIC gate are the resistance values of the memristors. Hence,
it can be used to process data already stored within the memory without reading the
inputs, and the output is inherently stored at the desired location inside the memory,
obviating the need for a write operation. Furthermore, the MAGIC NOR execution
is non-destructive in terms of inputs. Hence, logic execution within the memristive
memory enables a true processing-in-memory (PiM) architecture.

We further show how to extend MAGIC execution from a single gate to mul-
tiple gates in parallel to the implementation of a Single-Instruction Multiple-Data
(SIMD) machine. We describe the microarchitecture of the mMPU that is required
to enable true PiM. Specifically, we show the design of an mMPU controller that
receives the regular read/write as well as processing commands from the CPU. The
write instruction is executed by applying voltage across the memristors through
wordlines/bitlines and the read instruction is executed by applying voltage and mea-
suring the current through the memristor using a sense amplifier. Processing instruc-
tions are broken down by the mMPU controller into a sequence of MAGIC NOR
operations, which can be performed using the memristors. We also present SIMPLE
MAGIC, which can synthesize any arbitrary Boolean function into a sequence of
MAGIC operations, which can be used within the mMPU controller. Finally, we
show the implications of the system integration of mMPU in two different modes
— (a) mMPU as an accelerator, and (b) mMPU as a processing unit that is also the
system memory. Data-intensive and massively parallel applications, such as deep
learning and image processing, which suffer the most from the von Neumann bot-
tleneck, can be efficiently executed on the mMPU.

2 PiM: Prior Art and Its Impact

Early efforts in investigating PiM date back to the *90s. Some famous proposals
include a configurable PiM chip that can operate as a conventional memory or as
a Single Instruction Multiple Data (SIMD) processor for data processing [16]. The

4 Talati et al.

authors of Active pages [33] have proposed placing the CPU and configurable logic
elements next to the DRAM subarrays to speed up the processing. In Computational
RAM [15], the sense amplifiers of the random access memory are connected directly
to the SIMD pipelines. The Berkeley IRAM project [36, 35] advocated widening the
bandwidth between CPU and memory by designing them on the same die.

Early adaptation of PiM failed to gain widespread adoption because of four ma-
jor challenges [6]. The first challenge was inadequate implementation of technol-
ogy. Although prior proposals tried to integrate the memory and CPU on the same
die, the incompatible fabrication technologies of DRAM and CPU made it difficult
to incorporate these approaches in practical computing systems. The second was
the processor architecture that can use the high bandwidth enabled by proximity to
memory. Early PiM research required custom architectures, requiring considerable
design efforts and significant advancement in the developer community. The third
challenge was the development of interfaces that allowed PiM computing units as
well as external processing units to access memory. Early efforts required the design
and adoption of custom memory interfaces. The fourth challenge was the program-
ming models. Early approaches had to develop the programming abstractions from
the bottom up.

Today, the aforementioned challenges are being overcome by modern age with
the advancement in technologies and methodology involved in building comput-
ers. For example, thhe first challenge has be overcome by the emergence of 3D
die stacking, enabling heterogeneous integration of logic and memory, and emerg-
ing memory technologies, facilitating 3D fabrication of memory arrays on top of
CMOS substrates [1]. The evolution of various other processing platforms, e.g.,
GPGPUs, custom accelerators efc., have solved the second problem by efficiently
utilizing the high bandwidth offered by the memory within the thermal constraints
of the memory modules [14]. Recent die-stacked memory interface standards (such
as High Bandwidth Memory [2]) and off-chip memory interfaces that expose load-
store semantics (such as Hybrid Memory Cube [3]) meet nearly all the memory
interface requirements of PiM, which surmounts the third challenge. Recent frame-
works such as Heterogeneous System Architecture [7] and the associated software
tools for accelerators have addressed the fourth challenge to widespread adoptation
of PiM.

Although the advancement in technologies solve most of the aforementioned
problems, the current state-of-the-art technologies and future PiM proposals should
address the new set of issues such as workload heterogeneity (different algorithms
present various memory layouts, access patterns, and involve computations with dif-
ferent degrees of parallelism and complexity) and fabrication challenges in memory
that can enable PiM.

One current state-of-the-art PiM concept is Micron’s Automata Processor (AP)
[13], as shown in Fig. 2. The AP natively implements the non-deterministic finite
automata (NFA) paradigm in hardware. Thus, the AP is an accelerator designed
specifically for symbolic pattern matching. In this architecture, the input symbol
is provided to multiple memory arrays by decoding it, instead of the row address.
Automata operations are invoked through a routing matrix structure exploiting the

mMPU - a Real Processing—in—-Memory Architecture 5

e e e e —
Pl | !
& 1 STE - 1
1 1
1 (Sta_t? @-1) 1
.. 1 Transition Mb 1
© 1 (2"-2) 1
£ | Element) o b
Input . é ! (2"-3) :
. 1
Symbo . g h |
! @ '
: Mb .
\ (0) |
State Transition 1 STE |
Clock ISTE E"ab'e—u’ utput !
1 Inputs |
S State 1
ARE Clock 1

Automata Routing Matrix

Fig. 2 Modern PiM architecture — Micron’s Automata Processor (AP) [13], which exploits the in-
herent bit-parallelism in DRAM for symbolic pattern matching by performing multiple operations
on a single data and by that reducing the number of memory accesses.

inherent bit-parallelism of traditional DRAM, enabling Multiple Instruction Sin-
gle Data (MISD) architecture. This architecture provides the flexibility to program
independent automata on a single silicon device [40]. Apart from the AP, several
other recent proposals for PiM enable the transition from DRAM to resistance-based
emerging non-volatile memory technologies (NVRAM). These approaches include
the accelerators for enhancing artificial neural networks [8, 11], DDR3-compatible
interface with dual in-line memory modules (DIMM), capable of performing con-
tent addressable searches [18], associative computing [19, 45], etc.

All of the previous approaches for addressing the von Neumann bottleneck using
PiM have relied on reducing the distance between the processing and the conven-
tional memory system, i.e., DRAM. Although DRAM has been exploited to its best
capabilities, these approaches still suffer from a fundamental problem — the need
to transfer data between the CPU and the memory. Because DRAM cells are inca-
pable of performing logical operations, systems with DRAM as a memory require a
separate resource to perform computation. Emerging memristive technologies, such
as Resistive Random Access Memory (RRAM or ReRAM) [41, 42, 28], enable a
new approach, where the computation of logical functions is done directly using the
memory cells, without any need to instantiate additional CMOS blocks for process-
ing. In this chapter, the von Neumann bottleneck is solved by giving computational
capabilities directly to the memristive memory cells. Thus, the proposed approach
is fundamentally different than all the previously proposed techniques in PiM and
tackles the data movement issue directly.

6 Talati et al.

I
Voltage * * Virite * * *t Viead Sense

C ontrollers Written Amplifiers
; ; Cell; ; : ; ; /
] Read >_

ﬁﬁﬁ B2
#8814

Fig. 3 Crossbar structure of memristive memory array. Voltage controllers and sense amplifiers
are used to perform read, write, and logic operations. Example of a write operation by applying
Viwrite across the target memristors, and a read operation by applying V,.,s across the memristor and
measuring the current using a sense amplifier. Note that reads and write operations are performed
in time-multiplexed fashion.

RN
RN

vy

3 Computation with Memristors

In this section, we first describe the operation of the memristor crossbar array as
memory. Then, we present Memristor Aided loGIC (MAGIC), a logic family that
enables the performing of logical operations within the memristive memory. We
further show how to integrate the MAGIC circuit within the memristive memory
array without requiring major modifications in the crossbar structure and techniques
to perform vector operations using MAGIC.

3.1 Memristive Memory

The memristor stores the logical value in terms of its resistance, in contrast to con-
ventional memories, which use a charge to represent data. This resistance is con-
trolled by applying voltage across the memristor. Memristors can be fabricated be-
tween two metals, which act as the top and the bottom electrodes of a switching di-
electric material. Hence, memristors can be fabricated in the metal layers as part of a
standard CMOS Back End of Line (BEOL) process. Memristive memory generally
utilizes a crossbar structure, which enables an extremely dense memory array with
memory cell area of 4F2, where F is the technology feature size. Fig. 3 shows one
such design of a memristive memory crossbar array. Voltage drivers, row/column
decoders, and sense amplifiers are used as a part of the peripheral circuit to support
write and read operations, similar to other memory technologies. To perform a write
operation, a write voltage V,.ir., higher than the threshold voltage (v,, and vysy,
which switches the memristor to LRS and HRS, respectively), is applied across the
target memristor through the wordlines and bitlines. For a memristor with asym-

mMPU - a Real Processing—in—-Memory Architecture 7

metric switching characteristics (i.e., Vou 7# Vory), two different write voltages are
applied for writing logic 1 (i.e., Vsgr) and O (i.e., Vreser). Since during the write
operation, the voltage is applied through wordlines and bitlines, even the memris-
tors adjacent to the target memristors are partially influenced by this voltage, which
may disturb the state of the unselected memristor; this is known as the write disturb
problem [4]. Half-select voltages (typically Viyrite/2 0r Viprire/3 [5]) are applied to
isolate the non-target memristors.

Read operations are performed by applying a voltage V,..q, With a magnitude
lower than the threshold voltage for switching, and measuring the current passing
through the device using a sense amplifier (SA), as shown in Fig. 3. A primary
challenge for the read operation for memristive memory is the sneak path current
phenomenon [47, 9, 31, 38], which is due to the resistive nature of the memory cells:
the read voltage also creates additional current paths, different than the desired path,
and this additional current flow adds resistance in parallel to the selected memristor,
which depends on the stored data in the unselected memristors. There are several
ways to overcome this challenge [47, 9, 20], including modification of the memory
cell structure (i.e., using a diode/transistor/selector in series with the memristor)
and using different biasing schemes for the unselected lines (i.e., ground/half-select
biasing schemes).

Although the memristive memory crossbar structure is symmetrical, accessing
memory cells in a conventional memristive memory array is possible only from one
direction. Access from the other direction is blocked since only specific voltages
can be applied in each row/column, and the decoding and sensing circuits are con-
nected to a single edge of the array. To enable the access to memory cells from all
sides, voltage controllers and sense amplifiers can be added on both sides of the
memristive memory crossbar, constituting a memory called transpose memory [39].
Additional peripheral circuitry would provide more flexibility to the memory array
and would capabilities to the memory system. Fig. 4(a) illustrates the difference in
peripheral circuitry between k X m conventional and transpose memory crossbars.
Fig. 4(b) shows the comparison of the ratio of total area utilized at CMOS and mem-
ristive layer for different values of array sizes (i.e., k X k). The comparison shows
that the ratio is almost equal (which implies the area utilization) for large array sizes
(i.e., k > 100). Note that this is a general comparison irrespective of the memristor
technology used, i.e., without considering the maximum allowed array size.

All operations (read, write, and half-selecting cells) are performed in transpose
memory by application of similar voltages as in conventional memory, with the
added freedom of applying these voltages from both horizontal and vertical direc-
tions. Furthermore, as described later in Section 3.2, transpose memory offers the
additional feature of transposing the logic execution in the columns of the array,
whereas in conventional memory, this is only possible over a memory row.

kxm Conventional Kxm Transpose 0.25 ; .
Memristive Menmristive — Conventional Memory
memory memory 0.2 — Transpose Memory 1

Talati et al.

Voltage Sense
Driver Amplifier D

(a) (b)

Hardware Overhead
in Transpose Memory

200 400 600 800 1000
K

Fig. 4 (a) Comparison of additional supporting CMOS circuitry to facilitate logic implementa-
tion at nanocrossbar layer for k x m conventional and transpose memories, and (b) Ratio between
CMOS area (Acmos) and memristor area (Apep) for different array sizes (i..e., different & for k x k
arrays) for conventional and transpose memory crossbars. The area utilization at nanocrossbar
layer improves for larger arrays.

(@) (b) IN,
Memristor =8
I
Resistance Resistance 0
Increases Decreases

I

IN,

Fig. 5 (a) Desired switching characteristic of a memristor, schematic of a (b) two-input MAGIC
NOR gate and a (c) MAGIC NOR gate within a memristive memory array. I/N; and IN, are the
input memristors and OUT is the output memristor. A single voltage Vj is applied to perform the
NOR operation [24].

3.2 MAGIC - Memristor Aided loGIC

MAGIC is a stateful logic family [37], compatible for computation within the mem-
ristive memory [24]. In MAGIC, n input memristors and a single output memristor
are used to execute n-input Boolean functions (e.g., NOR, NAND, OR, AND, and
NOT). Some MAGIC gates, such as NOR and NOT, can be implemented within the
memristive memory crossbar array, not requiring any modification of the crossbar or
the memory cells. An additional voltage level is required, apart from read and write
voltages, in order to support the MAGIC execution within the memory. Fig. 5(b)
shows the schematic of a two-input MAGIC NOR gate, where IN; and IN, are the
inputs of the NOR gate, and OUT is the output. The input memristors and the output
memristor are always connected in the reverse polarity as shown in Fig. 5(b).

To execute the MAGIC NOR operation, the output memristor is initialized to
Ron. A voltage Vp, higher than the threshold voltage for switching, is applied to the

mMPU - a Real Processing—in-Memory Architecture 9

input memristors, and the output memristor is grounded from the other terminal as
shown in Fig. 5(c). Due to the resistive nature of memristors, the voltage is divided
between the input and output memristors. Consequently, the output switches from
Ron to RorF, only if both the inputs are logic 1, i.e., the voltage across the output
memristor is high. The value of the MAGIC execution voltage Vj has to be within a
certain interval to ensure that the MAGIC gate works as expected. The value of Vj
should be high enough to switch the output memristor during the MAGIC execution,
when all the inputs are logic 1, which sets the lower bound on Vjy. Furthermore, the
value of V) should be sufficiently low to prevent switching of the input memristors.
This sets the higher bound on Vj. Hence, the constraints on an n-input MAGIC NOR
gate execution voltage V should be

Voff R
it o+ (5258) lIRow < o (1)
R R
V0<min[voff~ <1+n;;1;),|1/on' (1“!‘20?]\:)}7 2

which ensures that the gate executes a NOR operation, and the input data is never
destroyed. Note that the aforementioned constraint is constructed neglecting the par-
asitic effects of wires. In a more realistic scenario, where a unit interconnect resis-
tance of r,, is considered between two adjacent wordlines/bitlines, (1) becomes

Voff { / Rorr / }
AR+ Ry < Vo, 3
Roy LoV (n—l ||Ron 0 (3)

RI
OFF
(k)

Ron

(Ropr +1Roy) .
RorF

Vo < min [vgff- s [Von! - %)
where R}, and Ry denote the effective resistances and are equal, respectively, to
(Ron +iRyy) and (RorF +iR,,). Note that these expressions are similar to (1, 2).

It is possible to further extend the execution of a MAGIC NOR operation from a
memory row to a memory column in the transpose memory [39]. Fig. 6(a) shows the
schematic of a MAGIC NOR gate on a memory column. In this case, the MAGIC
execution voltage (Vp) is applied to the output memristor, and the parallel combina-
tion of the input memristors is grounded from the side, which is not connected to
the output memristor. This is the only difference between them, and the range of Vj
is the same as in the previous case of NOR logic execution, which is non-destructive
in terms of its inputs. The steps involved in MAGIC execution over both rows and
columns are summarized in Table 1.

The parallelism of MAGIC within crossbar arrays is limited; two indepen-
dent MAGIC NOR gates cannot be executed simultaneously in the same row, as
illustrated in Fig. 6(b). If Vj is applied to two different sets of input memris-
tors ({IN},IN}} and {IN? IN?}), and output memristors ({OUT',0UT?}) are
grounded, the equivalent circuit becomes as shown in Fig. 6(c). Due to the con-

10 Talati et al.

Fig. 6 (a) MAGIC NOR execution over a memristive memory column. (b) Attempt to execute two
distinct MAGIC NOR operations over the same row simultaneously, and (c) its equivalent circuit
schematic, demonstrating the wrong operation.

Step # Operation Application of Voltages
1 Initialize output memristor at Roy out <+ VwRrITE
2 Apply Vp to the input (output) memristor(s), and | inl,in2,... + Vo (GND) and
ground to the output (input) memristor(s) out < GND(Vy)
for execution over a memory row (column)

Table 1 Steps involved in MAGIC NOR execution across a row (column) of a memristive memory.

nection pattern between the input and the output memristors, two output memristors
are actually connected in parallel, leaving the equivalent resistance at the output as
Ron /2, rather than Roy, resulting in a wrong operation.

3.3 Vector Operation using MAGIC

While the MAGIC execution voltages are applied to wordlines or bitlines (for trans-
pose MAGIC operation), the influence of these voltages is spread throughout the
whole data line, and not limited to the particular memory row/column. As shown in
Fig. 7, if V,y is applied to the first two columns, and the third column is grounded,
all the memristors situated in the first column perform the MAGIC NOR operation
with its neighboring cell on the second column and produce the output on the corre-
sponding cell in the third column. This situation can be exploited to perform vector
operations [39]. Note that the latency to perform this vector operation is indepen-
dent of the size of the vector, as long as the entire vector can fit inside an array, and
the voltage drivers can provide the required currents for proper behavior.

If the vector operation is restricted to few rows in the array, it is possible to
isolate a particular row from the MAGIC execution. This is achieved using isolation
voltages, which are similar to half-select voltages for write operations. While in
write operations, half of the voltage is applied (i.e., Ve /2) to prevent the unwanted

mMPU - a Real Processing—in—-Memory Architecture 11

Vo GND

A

Vo GND Vis0Viso

Parallel
MAGIC NOR
Execution

|

|

|

|

|

| 1solated
| Row
|

|

|

|

(@) (b)

Fig. 7 (a) Intrinsic parallel MAGIC NOR execution over for data present in all the rows, and (b)
isolation of a row using an isolation voltage applied to that row (i.e., Vjsp) to prevent execution of
MAGIC NOR.

logic operations, applying Vy/2 in a MAGIC NOR operation would disturb the input
memristors. Hence, we propose ranges of voltages that can be applied to isolate
rows/columns, thus preventing them from executing a MAGIC NOR operation as
shown in Fig. 7(b). When a MAGIC operation is performed over the rows, Viso
must fulfill

Vo
0<Visol <lvosrl < 7 5)
and when a MAGIC operation is performed over columns, V;so should carry out
Vo — vorrl < Visol < [Vonl, (6)

where v,, and v, 7 are the SET and RESET switching thresholds for the memiristor,
and Vj is the MAGIC execution voltage. The voltage levels that should be supported
by the peripheral circuit in order to perform conventional memory operations and
execute MAGIC logic within the memristive memory are listed in Table 2. Fig. 8
shows the design of the peripheral circuit needed to support these operations and the
voltage levels inside the memristive memory. Analog multiplexers, as shown in Fig.
8(b), can be designed to assert different voltage levels to support write and MAGIC
operations, and a sense amplifier can be used to perform read operations.

3.3.1 Limitations on the Performance of Vector Operations using MAGIC

While MAGIC NOR operations can be performed in every row (column) in parallel,
the length of the SIMD that can be implemented within a memristive crossbar is re-
stricted by the size of the array. The size of the array is further dependent on various
circuit and technological parameters. The circuit parameters crucial for deciding

12

Talati et al.

Operation Voltages Applied
Write Viwrite = Vser and VRgser
for writing logic 1 and 0
Read Viead
Ground GND
Half-select Viritel2
MAGIC Execution Vo
MAGIC Isolation Viso

Table 2 Voltage levels supported by the peripheral circuit to perform conventional memory oper-
ations and execute MAGIC NOR gates within the memory.

Vz V4 VG VB
V3 Vs V7
V1= Veer
V2 = VReser
= V3 = Vreap
V,=GND
Vs = Vser
Vs = VReseTr2
V7= Ve Logic
4L Vg = Veuiz Operation
4l_
'S:A. : I-l . To

: WL/BL

Memory
Operation

Il

r

I

il

SA= Sensei [log 2K] (b)

(a) WL = BL =
Wordlines Bitlines Amplifiers

Fig. 8 (a) Peripheral circuit around memory. (b) Structure of an analog mux.

the size of the array are the MAGIC execution voltage Vj, and the technological
parameters include memristive properties (Ron,RorF,Von, and v,ry) and parasitic
effects of the CMOS process (i.e., interconnect resistance and capacitance). To be
able to support MAGIC NOR operations in all the rows (columns) of the crossbar,
the MAGIC execution must be supported in the worst case configuration at the row
(column) farthest from the voltage drivers, since the voltage across it would be the
lowest. Worst case configuration occurs when all the resistance values in the array
are Roy and it is required to execute MAGIC over all the rows (columns). This is
because lower memristor resistance would require higher current to be drawn from
the drivers, and as a consequence, the IR drop across the parasitic resistances would
be high, lowering the voltage drop across the farthest memristor. Hence, given fixed
Wo and other technological parameters, a finite number of MAGIC NOR operations
will be supported, which will limit the size of the memristive crossbar.
Furthermore, to support the execution of multiple MAGIC NOR operations in
parallel, the voltage drivers would require a large current inside the array, which has
two consequences. First, to supply a current large enough to support several MAGIC
NOR operations, the drivers must also be large, which will increase the area of the
chip. Second, since Vp has a higher voltage level than write voltage, performing
many MAGIC NOR operations in parallel will increase the energy consumption.

mMPU - a Real Processing—in—-Memory Architecture 13

Hence, while the goal is parallel execution of MAGIC NOR gates, this parallelism
will be limited by the area and power budget of the chip from the point—of—view of
the peripheral circuit.

4 mMPU Microarchitecture

The primary difference between a memristive memory and an mMPU is their con-
trol mechanism. In addition to supporting regular memory operations (i.e., read
and write), the mMPU controller also handles logic operations within the mem-
ory, and in practice its implementation determines the performance of the mMPU.
We now present the modifications that must be made to the on-chip controller of
the mMPU [21]. We further show SIMPLE MAGIC [23], an automatic synthesis
tool we have developed that receives any arbitrary Boolean function as input and
proposes an optimal (in terms of latency, energy, or area) sequence of MAGIC NOR
gates to implement that function using the mMPU.

4.1 mMPU Controller

The mMPU controller is responsible for generating the control signals for the mem-
ory to perform read, write, and logical operations within the mMPU. As shown in
Fig. 9, the CPU sends the instruction to the mMPU controller. This instruction is
received by a CPU-in block, where it is decoded. Then, this instruction is broadcast
to the arithmetic, read, and write blocks, and a block suitable for the instruction type
is selected using the memory out mux. For example, if the CPU sends an arithmetic
instruction, the control sequence from the arithmetic block would be selected to be
sent to the memristive memory.

Whereas reads and writes in the mMPU are performed in a conventional way
[21], across the memristor over the target wordlines and bitlines, executing logical
instructions is more complicated since they require a sequence of logical steps. The
arithmetic block is a sophisticated finite state machine, the role of which is to effi-
ciently break the instruction down into a series of MAGIC operations, and to select
the memristive cells to perform the operations within the memory array. For exam-
ple, the CPU sends an instruction to add two numbers (i.e., ADD) within the mem-
ory. The instruction is received by the CPU-in block, which identifies the instruction
as ADD and generates the memory out mux select signal. Then, the instruction is
sent to the arithmetic block, where an appropriate, pre-synthesized execution se-
quence is selected for this instruction. This execution sequence is then executed on
the memristive memory. The mMPU controller pipelines this operational sequence
to the memory, changing the applied voltages on each memory clock cycle. Effi-
cient pipelining maximizes the processing efficiency in terms of speed and energy.

14 Talati et al.

g Opcode N

WL = Wordlines
BL = Bitlines

Arithmetic
Block

Write
Block

Memristive
Memory

XN 1IN0 A1ows N

- Data Out

Fig. 9 Detailed block diagram of the mMPU controller, where an arithmetic block is added to
support computation within the memristive memory [21].

To optimize the throughput of the arithmetic instruction execution, different consid-
erations should be taken into account [22], as detailed below.

4.1.1 Algorithms for Processing-in-Memory

To enable efficient data processing using the mMPU, novel algorithms (e.g., algo-
rithms based solely on MAGIC NOR operations) need to be developed. Exploit-
ing the parallelism offered by the mMPU as described in Section 3 is essential
to optimize these algorithms in terms of energy, performance, and area. For ex-
ample, multiplying K-binary matrices, each of which is of size M x N, requires
SNK — 5K +2M + 1 steps when optimizing the algorithm for MAGIC NOR exe-
cution within the mMPU [21]. This algorithm has a quadratic time complexity of
O(NK), while in standard von Neumann architecture, a cubic time complexity of
O(NKM) is required. This instance exemplifies the potential performance benefits
of processing data within the memory. Hence, design of a correct algorithm is the
key for efficient processing using the mMPU.

4.1.2 Processing Area

Logic execution within the mMPU requires utilization of memory cells for compu-
tation. This utilization must maintain the integrity of the data stored in the mem-
ristive memory. For example, while calculating complex Boolean functions, several
MAGIC NOR/NOT operations must be performed, and the intermediate values of

mMPU - a Real Processing—in—-Memory Architecture 15

Static Dynamic

0 ! - : :

P IS | I

Jels -l
Storage (S) P!S S|P s
0 O tob—— L.
o || ot
T R Processing (P) / | ¢, | _~_4 " 1 .

| Storage (S) i i

Time Time
(@) (b)

Fig. 10 (a) Static processing area, where a portion of the memory space is dedicated for processing
(in blue), (b) dynamic processing area, where a portion of memory space, variable in location
and size, is allocated for processing or storage (in blue, purple, and orange), and allocation of
processing (P) and storage (S) areas with respect to time. The tables next to the figures denote the
time multiplexing of processing and storage space for both the schemes. Symbols S and P mean
storage and processing, respectively.

these operations are also stored within the memristors, which we call functional
memristors [22, 39]. The functional memristors must be separated from the mem-
ristors where valid data is stored, and the Operating System (OS) has to make sure
that no data is destroyed. One straightforward solution to this problem is to allo-
cate a fixed amount of memory space for processing; this is known as the static
processing area [21] as shown in Fig. 10(a). A more complicated solution is to dy-
namically allocate the processing area based on the availability of the memory cells
and required amount of functional memory space for processing; this is known as
the dynamic processing area, as shown in Fig. 10(b).

Fig. 10 shows the difference between static and dynamic processing areas. It
also shows how the dynamic technique time-multiplexes the different portions of
the available memory for processing and storage, while the static technique uses
the dedicated areas for processing and storage. While the dynamic processing area
scheme efficiently allocates the memory space without any wastage, it requires a
costly memory management. In contrast, the static processing area scheme does not
require any memory management since the area is committed at design time, but it
suffers from lower memory utilization.

4.2 Automatic Logic Synthesis using SIMPLE MAGIC

The state machine of the mMPU controller is designed to execute the sequence
of required NOR and NOT operations within mMPU. Wisely exploiting the par-
allelism capabilities described in Section 3 to execute numerous NOR operations
simultaneously on different rows or columns may significantly improve the com-
putation performance. To maximize the efficiency of the computations performed

16 Talati et al.

In-Memory
Customized [Computation Address
standard cell | Constraints Constraints
library (.genlib) &
| Performance
: N kil S
netlist (.v) execution sequence 2 ion sequence
Logic function Syithesblicol ’ y Mapping
(-blif)
Fig. 11 The desired logic function is synthesized using ABC [32] for NOR and NOT gates and then
optimized specifically for MAGIC within memory, generating a general mapping and a sequence of

operations. The general execution is mapped to specific cells in real-time, based on the temporary
state of the mMPU and its available cells [23].

by the mMPU, the controller has to be designed to perform an optimized NOR and
NOT sequence that is optimized in terms of either latency, energy, area, or a com-
bination of the three. The optimized algorithm is determined automatically using
SIMPLE MAGIC [23], a tool we recently developed. SIMPLE receives any logic
function, and performs the following flow, as illustrated in Fig. 11:

1. The function is converted into a netlist of NOR and NOT gates using a modified
ABC synthesis tool [32].

2. The netlist is mapped into a memristive memory, by solving an optimization
problem, using the z3 SMT solver [12]. Thus, for every gate j, the variables of
the problem are:

e The coordinated wordline and bitline of the inputs A;, B; and output E; of the
gate:

<{RA_/7CA_/}7 {Rs;,C;}, {RE_,-,CE,}) :
e The number of the clock cycle in which the gate is executed is 7;.

The mapping is done while taking into account the following constraints of in-
memory processing:

o Inputs and outputs of each MAGIC gate have to be mapped to a legal memory
cell (when the size of the memory is ROW,,,,, X COL,,,):

Vx; € {Aj,Bj,E;}: (0 < Cy; < Colyum) N (0 < Ry, < Rowpum). (7)
e The execution time of each gate is positive:
Vgate j:T; > 0.)
e Outputs of different gates have to be mapped to different memory cells:

VE,E;: (Cg; # CE,) U(RE; # RE,)- 9

mMPU - a Real Processing—in—-Memory Architecture 17

e Inputs and output of each MAGIC NOR gate have to be mapped to the same
column or the same row (as described in Section 3.2):

Weate j: [(Ca, = Ci, = Ci,) N (Ra, # Ry, # Re,)| U[(Ca, # Ci, # C,)
N(Ra; = Rp; = Re)].
(10)
o To perform several MAGIC gates in parallel, the inputs and outputs have to
be aligned (as shown in Fig. 7):

Vgate j.k:T; #T; U
{{[(CA/- = CAk ﬁCB./ = CBk) @] (CAj = CBk ﬂCBj = CAk)] N (CEj = CEk)}ﬂ
(RA_,- :RBj = RE]. ﬂRAk :RBk :REk)}U
{{[(RA/' = Ry, mRB/‘ = RBk) U (RAj = Rp, mRBj = RAk)] n (REj = REk)}m

(CAj = CB_/- = CE./. ﬂCAk = CBk = CEk)}'
(1)
e A MAGIC gate can be executed only when its inputs were produced previ-
ously and each input has to be located in the same memory cell as the output
of the gate connected to it.

VEy,xj € {Aj,B}} that are connected :

12)
[(Cr, = Co)) N (R, = Re)] N (Ti < Ty).

The optimization problem can be solved for minimizing the latency, area, energy,
or a combination of them. For example, the optimization function for minimizing
latency is:

Latencypes mapping = min{maxT}}, where 0 < j < #gates. (13)
j

3. The mapping is reshuffled in real-time, according to the occupancy of the mem-
ory at the moment the computation is done.

Automation of the process promises optimal results and reduces the time required
to design the mMPU controller. The first two steps are performed to design the state
machine of the arithmetic block of the mMPU controller, and the third step is per-
formed by the mMPU controller during run-time. Fig. 12 presents the performance
speedup of SIMPLE of 1.9x on average as compared to a NOT and NOR netlist
prior to optimization with SIMPLE (also before synthesizing the netlist with ABC).
Additionally, SIMPLE yields performance speedup of 1.94 x compared to previous
work [10]. Two major factors contribute to the performance benefit of SIMPLE.
SIMPLE tries to exploit the intrinsic parallelism offered by MAGIC NOR execu-
tion within the memristive memory. Furthermore, while exploiting this parallelism,
SIMPLE rearranges the netlist in such a way that the copy operations of data within
the array are not required between the successive steps of execution. Current and
future improvements of SIMPLE may further increase performance.

18 Talati et al.

= Chakraborti et al. [10] ®Original Netlist ©ZABC ®SIMPLE [23]

Ps

N W

a o

o O
y

<200 +
o

Computati
2 e

[o [l

o o o

o
I

5xpl clip cml50a cml62a cml63a misexl parity X2
Benchmarks

Fig. 12 Performance comparison of SIMPLE [23] (dark green) with other synthesis approaches,
which include Chakraborti ez al. [10] (green), the original netlist without synthesis (blue), and the
netlist synthesized with ABC (yellow).

5 System Design using mMPU

Introducing an mMPU to a computing machine requires that new aspects of sys-
tem design be considered. First, the appropriate computation model for exploiting
mMPU capabilities must be chosen. Using the mMPU as a standalone accelerator,
as shown in Fig. 13(a), allows us to exploit the existing knowledge about accelera-
tor operation. In this usage model, the mMPU address space is separated from that
of the main memory. Any data that is to be processed within the mMPU needs to
be transferred (via direct R/W operations or DMA transactions) from its original
location in the main memory to a dedicated processing location within the mMPU.
Once the processing is completed, the result needs to be copied back to a location
reserved for it in the main memory for later use.

Another optional computation model is to incorporate the mMPU address space
as a part of the (or as the entire) main memory address space, as shown in Fig. 13(b).
Combined with careful data allocation, this usage model may avoid most of the data
transfers and further speedup computation. This enhancement, however, comes at
the cost of more complicated control (discussed later in this section), and with the
need to reserve parts of the available memory space (otherwise used to store data)
for intermediate results of the computation.

Data coherency also must be addressed. Using the mMPU allows data to be mod-
ified in its location within the main memory and without modifying any instances of
the same data down the memory hierarchy (i.e., in caches). Therefore, maintaining
data coherency requires an added capability to invalidate data in caches if the data
was changed by the mMPU. When the mMPU is used as an accelerator, data that
is processed needs to be locked against changes (by using an atomic operation or
some other means) to avoid it being changed while the mMPU is processing. The
concepts of data redundancy and memory reliability also need to be addressed in
order for a system containing the mMPU to be seamlessly compatible with existing
SW and data correction mechanisms.

A programming model must be suited for each usage model for efficient utiliza-
tion of the mMPU. Because the rest of the system should be as oblivious to the

mMPU - a Real Processing—in-Memory Architecture 19

: R/W Data
GPU [DMA . ‘= GPU | DMA
CPU : CPU
Compute Cry- | bsp ' Cry-| bep
CMD pto ' pto

A Accelerators : Compute| Accelerators
' CMD

< e System Bus > ' < v System Bus >

R/W Data v ' Argument and Results

‘ DRAM
DRAM : (optional)
Memory Sub-System ' Memory Sub-System
(@) (b)

Fig. 13 Illustration of the possible mMPU usage models. When using the mMPU as (a) an acceler-
ator, data to be processed is copied from the main memory to the mMPU and computing commands
are sent from the CPU. When using the mMPU as (b) a part of the main memory, the data meant
for processing is stored beforehand in the mMPU address space, allowing the commencement of
processing with a single command from the CPU.

mMPU as possible, standard interfaces should be adopted, and the mMPU should
be designed so that minimal changes to the rest of the system are required. Fur-
thermore, apart from using mMPU for data processing, it can also be selectively
used as the system memory, making it compatible with the von Neumann comput-
ing model. Rather than being burdened with challenging optimization tasks as in the
case of conventional architectures, for the general use case the programmer only has
to determine the desired operation, the addresses of the inputs and outputs, and the
size of the inputs. Such an accelerator is addressed with software support, i.e., addi-
tional libraries with specific functions that the mMPU will support, such as CUDA
[44] in NVIDIA GPUs. In this case the CPU will offload the code to the mMPU
directly without the need to modify the ISA or the current conventional systems.

Two approaches are proposed for utilizing the mMPU as a memory capable of
computing. The first requires extending the ISA with additional commands that the
mMPU supports. These commands will be successively dispatched by the CPU to
the mMPU so that computation tasks are performed on specified locations in the
memory (i.e., addresses). In the second approach, the mMPU will have a reserved
address, which when written to, will initiate the equivalent command. Thus, an in-
struction for in-memory computing contains a write operation to a reserved address
that is mapped to a dedicated register within the mMPU controller. The instruction
must contain all the relevant information for execution, such as the required oper-
ation, operands and result location, and size. An example of such an instruction is
shown in Figure 14.

20 Talati et al.

‘l Address || Data “ “IH R:s:::ig ‘H Field1 || Field2 || Field3 [ooo[Fieldn \”

() (b)

Fig. 14 Examples of the structure of an mMPU instruction. In a conventional memory access
instruction (a) the instruction is composed of a direction (Read/Write) bit, an address field and a
data field. An instruction for in-memory computing (b) is always in the Write direction, and written
to an address which is reserved by the controller for computing instructions. The rest of the bits
are used to transmit any information needed for the execution of the command and may specify
the operation to be carried out, the input/output location and size, etc.

6 Conclusions

Data transfer between processing and memory units is the major performance and
energy-efficiency bottleneck of modern computing systems, commonly known as
the von Neumann bottleneck. Whereas prior art has tried to reduce the distance be-
tween processing and memory units to solve this problem, we propose the mMPU,
an entirely different solution that can tackle the von Neumann bottleneck even more
efficiently. In the mMPU, we rely on employing memristive memory cells directly
for processing, which largely eliminates the necessity for data transfer. We also
present MAGIC, a technique to execute logical operations within the memristive
memory crossbar without any modification of the memory structure. We further
show how to extend execution of a single MAGIC gate to a parallel execution of
several MAGIC gates within the memory crossbar. We present our recent works
on the mMPU microarchitecture design, which includes the mMPU controller and
an automatic logic synthesis tool. Finally, we describe implications of the system
integration of the mMPU while using it in two different ways, i.e., an accelerator
mode and in a main memory mode. Applications that will benefit the most from this
new architecture include includes deep learning, image processing, DNA sequenc-
ing, and matrix multiplication, which have a high degree of intrinsic parallelism and
large amounts of data.

References

1. HSA Foundation: Harmonizing the Industry Around Heterogeneous Computing. URL
http://www.hsafoundation.com/

2. JEDEC Solid State Technology Association: High Bandwidth Memory (HBM) DRAM. URL
http://www.jedec.org/standards-documents/results/jesd235

3. Hybrid Memory Cube Consortium: Hybrid Memory Cube Specification 1.0 (2013)

4. Lietal., H.: Write disturb analyses on half-selected cells of cross-point rram arrays. In: Proc.
IEEE Int. Rel. Physics Symp., pp. MY.3.1-MY.3.4 (2014)

5. Chen et al., Y.C.: An access-transistor-free (OT/IR) non-volatile resistance random access
memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device. In:
IEEE Int. IEDM ’03 Tech. Dig. Electron Devices Meeting, pp. 37.4.1-37.4.4 (2003)

6. Balasubramonian, R., Grot, B.: Near-Data Processing. IEEE Micro 36(1), 4-5 (2016). DOI
10.1109/MM.2016.1

mMPU - a Real Processing—in—-Memory Architecture 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Black, B.: Die Stacking is Happening! Proceedings of the International Symposium on Mi-

croarchitecture 2013

. Bojnordi, M.N., Ipek, E.: Memristive Boltzmann machine: A hardware accelerator for

combinatorial optimization and deep learning. In: 2016 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pp. 1-13 (2016). DOI
10.1109/HPCA.2016.7446049

. Cassuto, Y., Kvatinsky, S., Yaakobi, E.: Sneak-path constraints in memristor crossbar arrays.

In: Proc. IEEE Int. Symp. Inform. Theory (ISIT), pp. 156-160 (2013)

Chakraborti, S., Chowdhary, P.V., Datta, K., Sengupta, I.: Bdd based synthesis of boolean
functions using memristors. In: 2014 9th International Design and Test Symposium (IDT),
pp. 136-141 (2014). DOI 10.1109/IDT.2014.7038601

Chi, P, Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., Xie, Y.: PRIME: A Novel
Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based
Main Memory. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pp. 27-39 (2016). DOI 10.1109/ISCA.2016.13

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. Tools and Algorithms for the Con-
struction and Analysis of Systems pp. 337-340 (2008)

Dlugosch, P., Brown, D., Glendenning, P., Leventhal, M., Noyes, H.: An Efficient and Scalable
Semiconductor Architecture for Parallel Automata Processing. IEEE Transactions on Parallel
and Distributed Systems 25(12), 3088-3098 (2014). DOI 10.1109/TPDS.2014.8

Eckert, Y., Jayasena, N., Loh, G.H.: Thermal Feasibility of Die-Stacked Processing in Mem-
ory. Proceedings of the 2nd Workshop Near-Data Processing (2014)

Elliott, D.G., Stumm, M., Snelgrove, W.M., Cojocaru, C., Mckenzie, R.: Computational RAM:
implementing processors in memory. IEEE Design Test of Computers 16(1), 3241 (1999).
DOI 10.1109/54.748803

Gokhale, M., Holmes, B., Iobst, K.: Processing in memory: the Terasys massively parallel
PIM array. Computer 28(4), 23-31 (1995). DOI 10.1109/2.375174

Guckert, L., Swartzlander, E.E.: MAD gates: Memristor logic design using driver cir-
cuitry. IEEE Trans. Circuits Syst. II, Exp. Briefs 64(2), 171-175 (2017). DOI
10.1109/TCSI1.2016.2551554

Guo, Q., Guo, X., Bai, Y., Ipek, E.: A resistive TCAM accelerator for data-intensive comput-
ing. In: Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 339-350. ACM (2011)

Guo, Q., Guo, X., Patel, R., Ipek, E., Friedman, E.G.: AC-DIMM: Associative Computing
with STT-MRAM. ACM SIGARCH Computer Architecture News 41(3), 189-200 (2013)
Huang, J.J., Tseng, Y.M., Luo, W.C., Hsu, C.W., Hou, T.H.: One selector one resistor (1slr)
crossbar array for high-density flexible memory applications. pp. 31.7.1-31.7.4. IEEE (2011)
Hur, R.B., Kvatinsky, S.: Memristive memory processing unit (MPU) controller for in-
memory processing. In: 2016 IEEE International Conference on the Science of Electrical
Engineering (ICSEE), pp. 1-5 (2016). DOI 10.1109/ICSEE.2016.7806045

Hur, R.B., Talati, N., Kvatinsky, S.: Algorithmic Considerations in Memristive Memory Pro-
cessing Units (MPU). In: CNNA 2016; 15th International Workshop on Cellular Nanoscale
Networks and their Applications, pp. 1-2 (2016)

Hur, R.B., Wald, N., Talati, N., Kvatinsky, S.: SIMPLE MAGIC: Synthesis and In-memory
MaPping of Logic Execution for Memristor-Aided 1oGIC. Proceeding of the IEEE Interna-
tional Conference on Circuits Aided Design, November 2017

Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A.,
Weiser, U.C.: MAGIC — Memristor-Aided Logic. IEEE Transactions on Circuits and Systems
II: Express Briefs 61(11), 895-899 (2014). DOI 10.1109/TCSI1.2014.2357292

Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: The Desired Memristor for
Circuit Designers. IEEE Circuits and Systems Magazine 13(2), 17-22 (2013). DOI
10.1109/MCAS.2013.2256257

Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Memristor-
based material implication (imply) logic: Design principles and methodologies. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 22(10), 2054-2066 (2014). DOI
10.1109/TVLSI.2013.2282132

22

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Talati et al.

Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G.: MRL—-
Memristor Ratioed Logic. In: 2012 13th International Workshop on Cellular Nanoscale Net-
works and their Applications, pp. 1-6 (2012). DOI 10.1109/CNNA.2012.6331426

Lee, J., Jo, M., jun Seong, D., Shin, J., Hwang, H.: Materials and process aspect of cross-point
RRAM (invited). Microelectronic Engineering 88(7), 1113 — 1118 (2011)

Levy, Y., Bruck, J., Cassuto, Y., Friedman, E.G., Kolodny, A., Yaakobi, E., Kvatinsky, S.:
Logic operations in memory using a memristive akers array. Microelectronics Journal 45(11),
1429 — 1437 (2014)

Li, S., Xu, C., Zou, Q., Zhao, J., Lu, Y., Xie, Y.: Pinatubo: A processing-in-memory architec-
ture for bulk bitwise operations in emerging non-volatile memories. In: Design Automation
Conference (DAC), pp. 1-6 (2016). DOI 10.1145/2897937.2898064

Lynch, W.: Worst-case analysis of a resistor memory matrix. IEEE Trans. Comput. C-18(10),
940-942 (1969)

Mishchenko, A.: ABC: A System for Sequential Synthesis and Verification (2012). URL
http://www.eecs.berkeley.edu/ alanmi/abc/

Oskin, M., Chong, ET., Sherwood, T.: Active Pages: A Computation Model for In-
telligent Memory. SIGARCH Comput. Archit. News 26(3), 192-203 (1998). DOI
10.1145/279361.279387. URL http://doi.acm.org/10.1145/279361.279387

Papandroulidakis, G., Vourkas, 1., Vasileiadis, N., Sirakoulis, G.C.: Boolean logic operations
and computing circuits based on memristors. IEEE Trans. Circuits Syst. I, Exp. Briefs 61(12),
972-976 (2014). DOI 10.1109/TCSI1.2014.2357351

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas,
R., Yelick, K.: A Case for Intelligent RAM. IEEE Micro 17(2), 3444 (1997). DOI
10.1109/40.592312. URL http://dx.doi.org/10.1109/40.592312

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R.,
Yelick, K.: Intelligent RAM (IRAM): chips that remember and compute. In: 1997 IEEE In-
ternational Solids-State Circuits Conference. Digest of Technical Papers, pp. 224-225 (1997).
DOI 10.1109/ISSCC.1997.585348

Reuben, J., Ben-Hur, R., Wald, N., Talati, N., Ali, A.H., Gaillardon, P.E., Kvatinsky, S.: Mem-
ristive Logic: A Framework for Evaluation and Comparison. International Symposium on
Power and Timing Modeling, Optimization, and Simulation (PATMOS) 2017 (in press)

Shin, S., Kim, K., Kang, S.M.: Analysis of passive memristive devices array: Data-dependent
statistical model and self-adaptable sense resistance for RRAMs. Proc. IEEE 100(6), 2021—
2032 (2012)

Talati, N., Gupta, S., Mane, P., Kvatinsky, S.: Logic Design Within Memristive Memories
Using Memristor-Aided 1oGIC (MAGIC). IEEE Transactions on Nanotechnology 15(4), 635—
650 (2016). DOI 10.1109/TNANO.2016.2570248

Wang, K., Qi, Y., Fox, J.J., Stan, M.R., Skadron, K.: Association Rule Mining with the Mi-
cron Automata Processor. In: 2015 IEEE International Parallel and Distributed Processing
Symposium, pp. 689-699 (2015). DOI 10.1109/IPDPS.2015.101

Wong, H.S.P, Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, E.T., Tsai,
M.J.: Metal Oxide RRAM. Proceedings of the IEEE 100(6), 1951-1970 (2012). DOI
10.1109/JPROC.2012.2190369

Woods, W., Taha, M.M.A., Tran, S.J.D., Brger, J., Teuscher, C.: Memristor panic: A survey
of different device models in crossbar architectures. In: Proceedings of the 2015 IEEE/ACM
International Symposium on Nanoscale Architectures NANOARCH15), pp. 106111 (2015).
DOI 10.1109/NANOARCH.2015.7180595

Xie, L., Nguyen, H.A.D., Taouil, M., Hamdioui, S., Bertels, K.: Fast boolean logic mapped on
memristor crossbar. In: International Conference on Computer Design, pp. 335-342 (2015).
DOI 10.1109/ICCD.2015.7357122

Yang, C.T., Huang, C.L., Lin, C.F.: Hybrid cuda, openmp, and mpi parallel programming on
multicore gpu clusters. Computer Physics Communications 182(1), 266 — 269 (2011)

Yavits, L., Kvatinsky, S., Morad, A., Ginosar, R.: Resistive Associative Processor. IEEE Com-
puter Architecture Letters 14(2), 148—151 (2015). DOI 10.1109/LCA.2014.2374597

mMPU - a Real Processing—in—-Memory Architecture 23

46. Zha, Y., Li, J.: Reconfigurable in-memory computing with resistive memory cross-
bar. In: International Conference on Computer-Aided Design, pp. 1-8 (2016). DOI
10.1145/2966986.2967069

47. Zidan, M.A., Fahmy, H.A.H., Hussain, M.M., Salama, K.N.: Memristor-based memory: The
sneak paths problem and solutions. Microelectronics Journal 44(2), 176 — 183 (2013)

