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The decline of Moore’s law and the end of Dennard scaling 
signal the need to develop computing approaches beyond 
traditional von Neumann architectures. Recently, there has 

been a renewed interest in neuro-inspired computing1–6. Such 
neuromorphic systems are designed to accelerate data-intensive 
applications and handle large amounts of data by mimicking the 
adaptivity, interconnectivity, noise tolerance and energy efficiency 
of the human brain. The building blocks of these architectures are 
synapses, which can be trained to store weights, and neurons, which 
collectively interact to transmit information. Deep neural networks 
are modularly constructed using many massively interconnected 
layers trained to perform inference7. A layer is an atomic neural 
entity comprising trainable synapses (matrix) and neurons (vec-
tor), abstracted by vector-matrix multiplication (VMM). This dot 
product is a typical computational bottleneck in artificial neural 
networks (ANNs). Training commonly relies on machine learn-
ing (ML) optimization techniques, such as stochastic gradient 
descent, or neuro-inspired heuristics, such as spike-time-dependent  
plasticity (STDP).

Unfortunately, even in custom-designed digital hardware, data 
movement between the memory and processing units impedes the 
computationally intensive arithmetic operations2. One alternative is 
to use integrated circuits based on analogue non-volatile memory 
devices. These analogue devices possess adjustable conductance, 
which could mimic synaptic transmission by multiplying the input 
neuron signal (encoded, for example, as the applied voltage to the 
device) by the corresponding weight (conductance) and passing 
the multiplication product (the resulting current) to the output 
neuron. Dense, fast and power-efficient VMM computation would 
thus be inherently enabled at the physical level (using Ohm’s and 
Kirchhoff ’s laws).

Non-volatile memories in analogue and mixed-signal neuromor-
phic networks, which were first implemented 30 years ago8, relied 
mostly on floating-gate ‘synapse transistor’ technology. However, 
the technology used devices with relatively large area and low 
retention time, which led to long time delays and high power con-
sumption9–13. Developments in alternative nanoscale non-volatile 
resistive switching memory devices (such as phase-change, mag-
netic and resistive random access memory (RRAM)) has led to a 
resurgence of interest in the field14,15. The memristor (or memristive 
device), predicted in 197116,17, was originally defined as the fourth 
passive circuit element and has many valuable circuit properties. 
Memristive theory was applied to two-terminal resistive switch-
ing devices only a decade ago18. Fundamentally, resistive switching 
is the physical basis of memristive devices. Synaptic plasticity is 
implemented by adjusting the device conductance, by controlling 
the voltage (or current) stimuli through it in proportion to the dura-
tion, pulse rate and amplitude of the applied signals19 (see Methods). 
These devices are considered promising candidates for future non-
volatile memory applications and neuromorphic analogue circuits, 
thanks to their low power consumption, fast write and read, low 
fabrication costs, high density and scalability.

The majority of reported memristive neural networks20,21 owe 
their success to one-transistor–one-resistor (1T1R) technology, in 
which every memory cell is coupled to a select transistor fabricated 
in the front end of the complementary metal–oxide–semiconduc-
tor (CMOS) process. When introduced into memristive crossbar 
arrays, these selectors provided read/write-disturb immunity (from 
sneak paths or half-select, for example). However, they considerably 
increase the overall area, power and control overhead. Passive select-
ing devices (such as diodes), fabricated with memristive devices 
in the back-end of the CMOS process, are a promising scalable  
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alternative to select transistors in eliminating sneak paths21. 
However, functional neuromorphic networks based on pure passive 
memristive devices have been integrated only on a small scale22,23. 
As for commercial products based on memristive devices, exist-
ing ones lack CMOS integration. Commercialization of memristive 
devices has been further hindered by reliability issues, including 
local heating, and parameter spread variability24,25, as well as by the 
lack of a standard process flow for most of the materials used to fab-
ricate them26,27. The fabrication process is therefore still too imma-
ture for high-yield large-scale integration28.

Non-volatile floating-gate memories can now be feasibly embed-
ded in CMOS mixed-signal integrated circuits after recent optimi-
zations and downscaling of the cells29,30. Floating-gate devices have 
been used in various ways to implement artificial synapses in neu-
romorphic systems, most frequently as analogue memory cells for 
offline programmable synaptic weights and/or digital parameter 
storage or as trainable analogue synapse implementations that usu-
ally obey a learning rule such as STDP8–13. Redesigned floating-gate 
synapse transistors enable individual fast and high-precision tuning 
of their memory state as well as energy-efficient, high-endurance 
and temperature-insensitive analogue operation31–33. However, their 
feasibility in neuromorphic applications is limited by the costly 
double-poly process. Novel floating-gate devices with memristive 
operation mode (for example, MemFlash)34,35 have been proposed 
as a step forward to potentially substitute two-terminal memristive 
devices in large-scale CMOS-compatible dense neuromorphic sys-
tems36,37. Yet, such devices operate in a different conduction mode 
than that of the floating-gate synapse transistors8–13,29–33. (A sum-
mary of the technological, structural and functional properties of 
previously reported floating-gate and memristive devices for neu-
romorphic computing is provided in Supplementary Section 6 and 
Supplementary Table 10.)

In this Article, we bridge the gap between the emerging com-
putational capabilities of memristive devices in neuromorphic sys-
tems and the technological maturity of floating-gate transistors by 
using a standard CMOS technology. We propose a power-efficient 
memristive device based on an optimized two-terminal single-poly 
floating-gate transistor, optionally connected in parallel to a read-
out transistor38. Our cell, which is called the Y-flash, operates in a 
subthreshold memristive mode8,34 and is linearized for small-signal 
changes. We apply memristive techniques recently employed in 
small-scale selector-free dense integrated ANNs for STDP, VMM, 
associative memory and classification training. With this approach, 
we theoretically and experimentally demonstrate a practical mem-
ristive device for high-performance neuromorphic computing.

Floating-gate memristive device
The asymmetric Y-flash device was originally proposed as a two-
terminal n-channel metal–oxide semiconductor (NMOS) transistor 
(injection transistor) with a floating gate (FG). It is manufactured 
using the standard CMOS process flow and requires no additional 
masks. A readout NMOS transistor is optionally added to the Y-flash 
cell to mitigate reliability issues (for example, read disturb), while a 
common FG is shared with the injection transistor (see Methods). 
The FG potential is controlled by a capacitive coupling between 
the FG and the common drain terminal, as shown in Fig. 1a.  
For this purpose, the Miller capacitance of the drain is made larger 
than that of the source with a customized layout (Fig. 1b). Top-view 
and cross-section images of the Y-flash taken by a scanning electron 
microscope (SEM) are shown in Fig. 1c. The operation modes of the 
Y-flash as a digital memory element are specified (see Methods and 
Supplementary Section 1). Accordingly, different memory states are 
recognized by a shift of the I–V curves of the Y-flash when conduct-
ing in the saturation mode, corresponding to different threshold 
voltage levels (Vth; Fig. 1d). However, this shift produces a limited 
current dynamic range (slightly different charge is stored in the FG 

at different Vth) of up to one order of magnitude only at the same 
applied voltage, as shown by the I–V slope in the inset of Fig. 1d. 
We thus operate the Y-flash in subthreshold mode to achieve zero-
crossing I–V curves with highly dissimilar slopes, a wide current 
dynamic range and continuously varying resistance of different 
memory states (Fig. 1e). The subthreshold drain current is deter-
mined mainly by the read transistor current, thanks to its low Vth 
(see Methods and Fig. 1f).

The memristive device was basically implemented using an 
injection transistor36. A read transistor was optionally added in par-
allel to alleviate the performance constraints38 (Fig. 2a). The equiva-
lent two-transistor Y-flash cell operates in a memristive mode when 
the sources of both transistors are connected34. The large-signal I–V 
model of the Y-flash cell, when operating in the subthreshold mode, 
is approximated as a multiplication of two separable and dimen-
sionless factors (V and G, as functions of VDS and Vth, respectively):

IDS  Iread e
CR ´VDS
mVT|fflffl{zfflffl}

V VDSð Þ

e�
Vth
mVT|ffl{zffl}

G Vthð Þ
ð1Þ

where m is a technology constant called the subthreshold slope fac-
tor, VT is the thermal voltage constant equal to 26 mV, CR is the 
coupling ratio between the gate–drain and gate–source capacitances 
of the asymmetric Y-flash, Vth is the equivalent threshold voltage 
that represents the internal memory state variable of the device, 
and Iread = 1 nA is empirically determined as the current at VDS = Vth. 
The total subthreshold current, iDS = IDS + ids, in response to the 
total applied voltage, vDS = VDS + vds, in equation (1) is linearized 
using Taylor series expansion around a fixed read voltage VDS (bias, 
defined also as Vr) as

iDS � IDS|fflfflfflfflffl{zfflfflfflfflffl}
ids

¼ dIDS
dVDS


VDS¼Vr|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

1=Rmem

vDS � VDSð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
vds

ð2Þ

where we adopt the convention that voltages/currents with lower-
case symbols and upper-case subscripts refer to total voltages/
currents, those with upper-case symbols and subscripts refer to 
pure large-signal values, and those with lower-case symbols and 
subscripts refer to pure small-signal values. Equation (2) deter-
mines the small-signal current product linearized in an Ohm’s 
law-like manner, and defines the small-signal resistance of the 
device (dependent only on IDS), as approximated by the derivative 
of IDS at Vr; it is known as the dynamic or incremental resistance 
for small-signal changes39 (see Methods). The complete small-sig-
nal model, schematic and analysis are discussed and validated in 
Supplementary Section 2a,b. The resistance is highly state-depen-
dent and exponentially correlated with the internal state variable 
(see Methods). Therefore, the theoretical current dynamic range 
spans three orders of magnitude [1 nA:1 µA], while the state vari-
able dynamic range was measured (see Methods) as [1 V:2 V], corre-
sponding to Rmem ∈ [145 kΩ:145 MΩ] (Fig. 2b). The input dynamic 
range (IDR = 2vds) of the device was measured at three different val-
ues of Vth (Fig. 2c). The linearization described in equation (2) is 
valid under certain conditions (vds ≪ mVT/CR), where currents in 
response to positive and negative small-signal voltages are cancelled 
at IDR = 100 mV (vds = 50 mV), as shown in the inset of Fig. 1c; oth-
erwise, it becomes nonlinear (Vth = 2 V, for example). Consequently, 
the current dynamic range trades off with the input dynamic range.

Precise intermediate resistance values are gradually tuned by 
applying short program/erase pulses with specific parameters (such 
as pulse duration and voltage amplitude). The Y-flash program-
ming/erasing model imitates the RESET/SET process of a voltage-
controlled memristive device while adjusting Vth as a function of 
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the applied voltage, pulse duration and the current value of Vth (see 
Methods). The physical mechanism, the device’s energy diagram, 
the state variable dynamics and the corresponding resistance level 
in RESET/SET are illustrated in Fig. 2d–i. An exponential hyster-
esis in response to a large-signal voltage sweep is shown in Fig. 3a. 
Similarly, a linear hysteresis could be extrapolated in response to a 
small-signal input, where the zero-crossing (bias) point, program-
ming and erasing voltages are all in large-signal. Despite the nonlin-
ear effects, fine-tune program/erase pulses that adjust the resistance 
precisely are used to achieve an analogue memristive operation 
mode with more than 65 discrete levels, roughly equivalent to 6 bit 
precision (see Methods, equation (11)). These features make it pos-
sible to emulate synaptic learning and plasticity using a floating-
gate memristive device.

Floating-gate memristive synapse
The analogies between SET/RESET in memristive devices and 
synaptic long-term potentiation (LTP) and depression (LTD) have 
been investigated in refs. 19,40. LTP and LTD are the most important 
physiological mechanisms at the synaptic level, as they underlie the 
biological processes of learning, forgetting and memory. As they are 
associative and cooperative, they can employ Hebbian learning41, 
which is used as a basic behavioural rule in ANNs. STDP could be 
viewed as an asymmetric temporal version of the abstract Hebbian 
rule in spiking neural networks. In this Article, we implemented 
STDP using a floating-gate device that operates in a memristive 
mode in response to small-signal neural spikes (see Methods). The 
derived synaptic weight update (ΔW) rule (see Methods, equation 
(10)) inherently implements STDP without time-division multi-
plexing19 (Fig. 3b): it has a decaying exponent as a function of the 
time difference between pre- and post-synaptic spikes (Δt). The 
exponential weight update rule is derived from the injection and 

tunnelling dynamics. It is utilized together with the two-terminal 
memristive operation to achieve high efficiency for in situ analogue 
STDP. This nonlinear rule implies state-dependency; switching to 
the next state is mostly determined by the last memory state. It also 
implies that no update is required when the spikes are simultane-
ous, concurring with biological observations41. Furthermore, the 
nonlinear conductance dynamics could extend the memory lifetime 
of such networks42.

Although STDP is more biologically plausible and can describe 
a local learning rule for a single synapse, VMM is the basis for par-
allel computation in ANNs7. It is inherently implemented in hard-
ware, where the integration of analogue resistive memory devices in 
dense arrays enables extremely compact, fast and energy-efficient 
analogue computation by utilizing Ohm’s and Kirchhoff ’s laws. 
VMM is represented as Ym ¼ P

n Wn;mXn

I
 (where X is an input 

vector with n rows, and W is the synaptic weight matrix, with m 
rows and n columns) and is implemented via the small-signal I–V 
operation described in equation (2) by im ¼ P

n Wn;mvn
I

, as shown 
in Fig. 3c, where Wn;m ¼ 1=Rmemn;m

I
 is the incremental conduc-

tance for the small-signal at the n,m node, and vn is the small-signal 
voltage (within the IDR). VMM is an atomic operation executed 
simultaneously (see Methods) in the entire array. As a result of 
the nonlinear operation and asymmetry of the Y-flash structure, 
selecting elements are not required to eliminate disturbing effects 
(such as sneak path currents). Large-scale, dense neuromorphic 
arrays, comprising up to one million devices, are thus made feasible  
(Supplementary Section 5a)38.

We demonstrate two neuromorphic proof-of-concept applica-
tions that utilize the floating-gate memristive synapse. Although 
conceptually simple, these applications constitute technological 
milestones in the hardware realization of ANNs. In two recent 
articles22,43, these applications were used to demonstrate how the  
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Fig. 1 | Y-flash non-volatile memory device. a, Cross-sectional schematic of the single-poly floating-gate Y-flash device produced using a standard CMOS 
process. The device comprises two two-terminal NMOS transistors—injection and read—with an asymmetrical (increased) coupling ratio (CR) between 
the common drain and sources to the floating gate. The readout transistor can be optionally added and optimized to mitigate read disturb issues when the 
device is operating in saturation. b, Y-flash cell layout mapped to an electrical schematic by each terminal. c, SEM images of the Y-flash device fabricated 
in a 180 nm CMOS process: top view (left) and cross-section (right). d,e, I–V curves for different programming (PRG) or erasing (ERS) voltage values in 
a linear scale in saturation conduction mode (d) and in a log-linear scale at subthreshold conduction mode (e). The insets describe the slope of the I–V 
curves, showing one (d) to three (e) orders of magnitude dynamic range. Below 1 nA, the noise is dominant. Above 1 µA, the Y-flash conducts in saturation 
mode. f, Read transistor current versus injection transistor current in subthreshold mode (sub-1 µA), showing that the Y-flash total current is dominated by 
the read transistor. While in saturation, the read current is equal to the injection transistor current.
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applicative potential of memristive RRAM devices might be lever-
aged beyond their synaptic behaviours. Here, we implement these 
applications on 12 × 8 selector-free integrated floating-gate memris-
tive arrays, using a standard CMOS design flow.

Y-flash memristive neural network associative memory
Our first application implements associative memory using a recon-
figurable Hopfield network43. The Hopfield network has proved 
useful in content-addressable memories (CAMs) and combinatorial 
optimization problems, such as the travelling salesman and location 
allocation problems. A conventional Hopfield network has been real-
ized by constructing power- and area-starved CMOS synapses44. A 
Hopfield network is a dynamic, asynchronous and recursive system 
consisting of a set of interconnected neurons43. The Hopfield-based 
CAM topology is realized where the digital inputs of the system are 

used also as its outputs to digitally quantize the intrinsic analogue 
memory states pre-coded inside the network. Different patterns 
can be stored into the network by fine-tuning the values of the ana-
logue weights, after which the pre-stored patterns can be retrieved, 
analogously to associative memory in the human brain. In this 
Article, a three-bit CAM Hopfield network is constructed (Fig. 4a)  
with 12 differential floating-gate memristive synapses inside an 
integrated array, and three decision-making neurons (see Methods).

Associative memory, a unique capability of the brain, allows us 
to retrieve a piece of information by associative recall of related 
information. The target memory that must be associatively recalled 
was set at ‘110’ (see Methods). Once the targeted incremental 
resistances are obtained, they remain unchanged during the net-
work operation. The network can converge to ‘110’ automatically 
from any state in the range from ‘000’ to ‘111’. Figure 4b shows the  
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waveforms of state vector v(t) (see equation (13) in the Methods) 
in the process of retrieving the pre-stored pattern ‘110’ (in red) 
from eight different initial states. v(t) was updated recursively in 
three asynchronous cycles, with only one bit updated per cycle. A 
cycle update example is shown in Fig. 4b. The update starts from 
v(0) = (0 0 0). In the first cycle, the element v1 is updated, yielding 
an intermediate state vector of v(1) = (1 0 0); v2 is then updated in 
the second cycle, producing v(2) = (1 1 0). The network has now 
successfully recalled the pre-stored pattern ‘110’. In the follow-
ing cycles, no updating occurs and the network stabilizes at ‘110’. 
Recalling the pre-stored ‘110’ pattern by means of some intermedi-
ate states emulates weak memorization in the human brain: hav-
ing to think hard to remember something. For different initial state 
vectors, the network may be updated with different intermediate 
state vectors before recalling the pre-stored pattern. Direct memo-
rization emulates strong associative memory, where memories can 
be retrieved without experiencing associative states ({(0 1 0), (1 0 0), 
(1 1 0), (1 1 1)}).

In multi-associative memory, associative recall will lead us to 
recall different pieces of information, depending on the interme-
diate associative states we experience. In the hardware version of 
multi-associative memory, different pieces of data can be associa-
tively recalled from more than one pre-stored pattern43. We imple-
mented this in our network by minimally changing the resistance 
matrices and threshold vectors (see Methods) to reconfigure the 
weights to pre-store the pattern ‘101’ in addition to the original 
pre-stored ‘110’. As shown in Fig. 4b (in blue), the network could 
retrieve the pattern ‘101’ from the initial state vectors {(0 0 1), (0 1 1), 

(1 0 1), (1 1 1)}. The network continued to recall the previous pre-
stored ‘110’ with the rest of the initial states. Like the single CAM 
network, this network exhibited either strong or weak associative 
memory. For some initial state vectors, the network could directly 
recall ‘110’ or ‘101’, as they have good associability. Starting from 
some other initial state vectors, the network had to be updated with 
associative intermediate state(s) before successful retrieval (such as 
{(0 0 0), (0 1 1)}) due to weak associability. In Fig. 4c, we schemati-
cally summarize the retrieval of pre-stored ‘110’ and ‘101’ from dif-
ferent initial state vectors in a cube where each corner represents a 
state of the network. The single (red) and multiple (blue) CAMs are 
illustrated in the same schematic (the joint path is coloured black).

If a memory of the system is represented by the location of a 
stable point in the state space, partial information about that 
memory will be contained in nearby states, from which a final 
stable state with the complete information can be reached43. In a 
Hopfield network, because the final state is reached by associa-
tion and not by location, the memory can be considered genuinely 
content-addressable. The convergence flow to stable states is the 
crux of this CAM operation. The state hypercube can describe 
the network’s energetic entropy. Alternatively, the Hopfield net-
work operation can be described by an energy cost function43 
(see Methods). Correspondingly, we measured the cumulative 
dynamic small-signal power dissipation 

P
Δpvi;vj

I
, which defines 

the cumulative differences between the total small-signal power 
consumption of the network in each of two subsequent states 
(vi and vj) until convergence to the targeted state, as the invested 
power. Figure 4d shows the power dissipation difference from vi 
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Fig. 3 | Y-flash memristive synapses. a, I–V curve of the asymmetric Y-flash memristive device exhibiting memory hysteresis (inset plot has a log scale). 
VDS is negative in erase when the drain is grounded. Gradual SET/RESET operations are performed by 8 V/5 V pulses. The solid lines correspond to high/
low resistive states, while the dashed lines correspond to read voltages in subthreshold mode. b, STDP of the Y-flash operated in subthreshold mode 
(small-signal). The graph shows the weight (W) update percentage, normalized as a function of the temporal spike interval between pre- and post-
synaptic neurons. Synaptic long-term potentiation (LTP) is equivalent to erase and long-term depression (LTD) is equivalent to programming. c, SEM 
image (flipped) of the fabricated 12 × 8 Y-flash crosswise array in a 180 nm process that implements a fully connected single-layer n × m neural network. 
Triangles denote neurons. All Y-flash cells (synapses) are operated in parallel by small-signal voltages (v1…vn) that naturally implement the VMM dot 
product, programmed separately in column granularity by program pulses and erased in full column segments by erase pulses. For illustration purposes, 
only some wires are shown.
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to vj 8i; j : 0≤ i; j≤7ð Þ
I

 as a function of the i,j Hamming distance. 
The smaller the Hamming distance, the lower the power dissipa-
tion. This proves that the network always evolves to the closest 
intermediate states until it converges to the targeted state. We show 
that the convergence dynamics of the network resulted in mini-
mal power dissipation along the evolutionary path of the network, 
from each initial state to the targeted pattern ‘110’ in the single 
CAM network (Supplementary Section 5e). Under certain con-
ditions, the multiple CAM network also converged to ‘101’ with 
minimal power dissipation. This widely studied phenomenon is 
called the local minima of the energy function45,46. Furthermore, 
we show that the synchronicity and firing order between neurons 
are crucial for minimal power dissipation along the evolutionary 
path (Supplementary Fig. 35). In our asynchronous winner-take-
all configuration, minimal power dissipation was achieved. Other 
configurations yielded higher power dissipation.

Training a floating-gate memristive neural network
The second neuromorphic application implements a floating-gate 
memristive integrated array for in  situ training of a single-layer 
ANN to classify 3 × 3-pixel black/white images of stylized letters 
into three classes22, as illustrated in Fig. 5a. This is a single-layer 
perceptron; its top-level (functional) scheme is shown in Fig. 5b, 
with ten inputs and three outputs, fully connected with 10 × 3 = 30 
differential synaptic weights (see Methods), as shown in Fig. 5c. The 
perceptron’s outputs fi (i = 1, 2, 3) are determined as nonlinear acti-
vation functions

fi ¼ tanh βiið Þ ð3Þ

of the VMM product components (small-signal currents) 
ii ¼

P10
j¼1 wijvj

I
. Here, vj (with j = 1,…,9) are the small-signal input 

signals, v10 is a constant bias, β = 6.3 × 105 A−1 is a nonlinearity 
parameter chosen according to ref. 22, and wij are trainable differen-
tial floating-gate memristive synaptic weights.

We used the Manhattan update rule22 to train the network. 
Perfect classification accuracy was achieved after 29 training epochs 
(Fig. 5d,e), where the relevant neural activation function fi(·) pre-
cisely classifies the letters encoded in one-hot vector representation 
in response to the corresponding input letter. Due to the exponen-
tial dynamics of the programming process, using a constant number 
of applied programming pulses will lead to a time-varying learn-
ing rate η(t). Even if η(t) is not compensated for (Supplementary 
Section 5d), its decay contributes to high training accuracy and 
robustness against variations, overfitting and imprecise quantiza-
tion of the Manhattan update rule. Furthermore, applying the dif-
ferential synapse model with the small-signal model immunizes the 
training against drastic environmental variations (such as tempera-
ture)29. Evaluating the small-signal power dissipation after training 
showed that the average small-signal current (in response to 30 mV 
small-signal voltage) of each Y-flash cell is 67.4 nA, which corre-
sponds to a power consumption of 4 nW per synaptic weight and 
total power consumption of 3.6 μW of the whole network over a 
full testing dataset (epoch). The large-signal power consumption 
might decrease if we shift the Vth dynamic range to smaller values 
and operate with lower Vr. Note that the read transistor could be 
removed from the Y-flash device structure, to potentially enable a 
denser 1T selector-free array of two-terminal floating-gate mem-
ristive devices, relative to the 1T1R configuration mostly used in 
memristive crossbars. However, this might entail increasing the 
large-signal power consumption during read operations due to a 
higher read voltage, while decreasing the effective number of resis-
tive levels due to read and erase disturbs (see Supplementary Section 
5f and Supplementary Table 9).

a c

d

101

110

111

111

100

110

000001

–Vref

G
3,

re
f–

G
2,

re
f–

G
1,

re
f–

G
1,

re
f+

G
1,

1–
G

1,
1+

G
1,

2–
G

1,
2+

G
1,

3–
G

1,
3+

G
2,

re
f+

G
2,

1–
G

2,
1+

G
2,

2–
G

2,
2+

G
2,

3–
G

2,
3+

G
3,

re
f+

G
3,

1+
G

3,
1–

G
3,

2–
G

3,
2+

G
3,

3–
G

3,
3+

Vref

–V1

V1

–V2

V2

–V3

V3

3 2 1

011

Single-CAM Multi-CAM
Shared

010

101

100

011

0–2 nW

Hamming power dissipation, ∆P (W)

2–4 nW

4–6 nW

6–8 nW

010

001

000

Present state

N
ex

t s
ta

te

00
0

00
1

00
0

01
1

10
0

10
1

11
0

11
1

b

→101

0 200 400 0 200 4000 200 400 0 200 400
Time (ms) Time (ms) Time (ms) Time (ms)

2.00

2.03

2.00

2.03

2.00

2.03

100→110 101→111→110 110 111→110

0 200 400 0 200 400

V
1 

(V
)

V
2 

(V
)

V
3 

(V
)

V
1 

(V
)

V
2 

(V
)

V
3 

(V
)

2.00

2.03

2.00

2.03

2.00

2.03

0 200 400 0 200 400

000→100→110 001→101→111→110 010→110
                
011→111→110

→101

Time (ms) Time (ms) Time (ms) Time (ms)

Fig. 4 | Associative memory of a Y-flash memristive neural network. a, Circuit schematic of the fabricated Hopfield neural network for three-bit CAM 
using a Y-flash memristive integrated array and differential synaptic weight structure with symmetric configuration weight matrix. V1, V2 and V3 are the 
large-signal output bits of the CAM (also used as inputs) representing the output state vector v comprising v1, v2 and v3, encoded in small-signal: ‘1’ and 
‘0’ are represented by 30 mV and 0 V, respectively, around the 2 V large-signal. b, Experimental waveforms of the state vector recursive evolution from 
different initial states. The network had ‘110’ pre-stored in it in the single CAM (in red), while in the multiple CAM it had an additional pre-stored pattern 
‘101’, to which the network converged in some of the initial states (in blue). Dashed lines have been added to some of the waveforms to highlight the 
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I
 as a function of the i,j Hamming distance.
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Conclusions
We have reported a power-efficient floating-gate memristive device 
that combines the technological maturity of floating-gate technol-
ogy and the computational properties of a memristor. With the aim 
of closing the technological–functional gap between floating-gate 
and memristive devices as synapses in neuromorphic systems, we 
fabricated a two-terminal single-poly floating-gate non-volatile 
memory device in a standard 180 nm CMOS process (without addi-
tional masks), and connected it to a readout transistor. Our device, 
called a Y-flash cell, operates in an energy-efficient subthreshold 
memristive mode and is linearized for small-signal changes, allow-
ing a resistance dynamic range of two orders of magnitude. It is 
precisely tuned using optimized switching voltages and times, and 
can achieve 65 discrete resistive levels, as well as long analogue data 
retention, high endurance and low noise margin. The experimental 
results also indicate that our device could be easily scaled down to 
advanced standard CMOS technology nodes. Basic learning rules 
for synaptic emulation were experimentally implemented, includ-
ing STDP and gradient descent. We fabricated a floating-gate mem-
ristive integrated array without selectors to implement an ANN. A 
physical-level computation of the analogue VMM—the most com-
putationally intensive operation in any neuromorphic network—
was demonstrated, enabled by Ohm’s law, Kirchhoff ’s current law 
and linearization. We employed a differential synapse model, com-
prising two Y-flash cells, to allow programming of positive and neg-
ative values. A three-bit Hopfield ANN was also constructed, and 
single and multiple associative memories were achieved. Moreover, 
a single-layer ANN for 3 × 3 image classification of z, v and n letters 
was trained in situ.

Methods
Memristive device model. In the classic representation, the conductance of a 
memristive device (or memductance G) depends on a state variable w, which is itself a 
function of the applied voltage V. Formally, a memristive device obeys the following17:

I tð Þ ¼ G w;V ; tð ÞV tð Þ ð4aÞ

dw
dt

¼ f w tð Þ;V tð Þð Þ ð4bÞ

where f is a continuous function.

Y-flash operation methods. When a positive voltage is applied to the drain (while 
source and substrate are at ground potential), a fraction of the drain voltage 
(typically 60–80%) is transferred to the FG. If the transferred voltage exceeds 
the threshold voltage of NMOS (Vth), the Y-flash cell conducts in saturation 
mode. When higher voltage is applied to the drain (such as 5 V in a 110 Å gate-
oxide device), channel hot electrons are generated in the drain junction (CHEI 
mechanism). Some of these electrons are injected into the FG, increasing Vth. This 
corresponds to the programming of a memory cell. To erase the Y-flash device, 
high positive voltage is applied to the source, while the drain and substrate are kept 
at ground potential. In this case, there is no current in the Y-flash device channel. 
Hot holes are generated by BTBT in the source junction. The hot holes are injected 
into the FG and reduce the Vth of the Y-flash device.

If the Y-flash cell has two NMOS transistors (dual-channel device), the 
program/erase part can be separated from the readout part. The injection transistor 
is optimized to enhance hot carrier injection (it has a shorter channel and a p-type 
component in the lightly doped drain junction). The read transistor is optimized to 
suppress hot carrier injection. During reading, the source of the injection transistor 
is floating (high-Z) or shorted to the drain. During programming, the source of 
the read transistor is floating or shorted to the drain. During erasing, the drain and 
source of the read transistor are floating or shorted to the substrate. The substrate 
is kept at zero potential in all operation modes. Similar operation has been 
obtained in RRAM devices by employing a buffer47.
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Floating-gate memristive operation model. The small-signal resistance of a 
floating-gate device operating in a memristive mode is determined as

Rmem ¼ dIDS
dVDS

� ��1

¼ mVT

CR
1
IDS

����
VDS¼Vr

ð5aÞ

dRmem

dVth
¼ Rmem

mVT
¼ 1

CR ´ Iread
e
�CR ´Vr
mVT e

Vth
mVT ð5bÞ

Below 1 nA the current approaches the noise level of fast analogue amplifiers, 
and above 1 µA the device is in the above-threshold conduction mode. The state 
variable dynamic range is determined as ΔVth ¼ mVT

CR ln Ion
Ioff

� �
 1V

I

. Therefore, its 
dynamic range is Vth ∈ [Vr − ΔVth:Vr].

The RESET/programming process is modelled by the ‘lucky electron’ model of 
CHE injection48:

dVth;RESET

dt
¼ Iinj

Cfr
 K 0

Cfr
CR ´VDS � Vthð ÞnP EVð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
f VDS ;Vth;RESETð Þ

ð6Þ

where Cfr includes the floating gate oxide capacitance and fringing gate–drain 
capacitance, Iinj is the equivalent current of injected hot electrons to the shared 
floating gate via the injection transistor and equals IDS ´ P EVð Þ

I
, and P(EV) is the 

probability of a hot electron travelling a sufficient distance to gain energy EV 
without a collision. IDS is the transistor channel current:

IDS ¼
μCox

2
W
L

VGS � Vthð ÞVDS;sat ð7Þ

where VDS,sat is the saturation velocity as a result of high drain voltage and is equal 
to VDS;sat Lð Þ  VGS � Vthð Þjj L ´Esatð Þ

I
. K′ is a technology parameter and is a 

function of the transistor width (W), carrier mobility (μ), gate oxide capacitance 
(Cox), saturation velocity field (Esat) and channel length (L) (short/long channel 
modulation). Furthermore, the channel length modulation will determine n and 
the probability P(EV)48 (Supplementary Section 3b).

Analogously, the SET/erasing process is a BTBT hot holes injection49 modelled 
using gate-induced drain leakage current (GIDL):

IGIDL ¼ AEse
� B

Es ; Es ¼
CR ´Vs � Vth þ Vox

tox
ð8aÞ

dVth;SET

dt
¼ IGIDL

Cdep
¼ A ´ CR ´Vs þ Vox � Vthð Þ

Cdeptox
e�

Btox
CR ´VsþVox�Vth

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f VDS ;Vth;SETð Þ

ð8bÞ

where A and B are constants for indirect phonon-assisted tunnelling 
(Supplementary Section 3c), Es is the vertical electrical field at the silicon surface, 
tox is the oxide thickness in the overlap region, Vox = −Qdep/Cox is the oxide voltage 
and Cdep is the depletion layer capacitance.

Notably, equation (1) emulates equation (4a); however, equation (2) is 
analogous to equation (4a) under certain conditions, and equation (6) and 
equation (8b) are analogous to equation (4b). Consequently, the proposed device 
operates in a memristive mode, exhibiting a linear I–V in small-signal, as shown in 
the inset of Fig. 2c.

STDP implementation. A small-signal leaky-integrate-and-fire (LIF)8  
neuron is emulated in software, where its time event is determined proportionally 
to the sensed current magnitude of the device under test (DUT), after which  
the update rule is post-processed by means of a software driver that controls  
the equipment. This spike generator could be implemented by standard  
CMOS circuits and easily integrated with the Y-flash device: however, our 
methodology is sufficient for a proof of concept. For LTD, a reference small-signal 
current with maximal magnitude (−0.2 µA) is added, by Kirchhoff ’s current law 
(KCL), to the DUT current (a positive small-signal swing starting from 0.2 µA). 
This ensures that the post-synaptic neuron fires earlier than the pre-synaptic 
neuron in response to a negative current. Similarly for LTP, a reference small-signal 
current with minimal magnitude (−0.2 nA) is added (a positive small-signal input 
swing starting from −0.2 nA). The sign of the time difference between pre- and 
post-synaptic neural spikes Δt determines whether potentiation or depression 
will be induced, and the magnitude determines the duration of LTP/LTD. The 
magnitude is then translated to the corresponding number of applied erasing/
programming pulses.

Without loss of generality, from equations (6) and (8b), a parametric  
formula of Vth as a result of injection/tunnelling time can be obtained 
(Supplementary Section 3b,c):

Vth tð Þ ¼ αe�t=τ þ γ ð9Þ

where α, τ and γ are fitting parameters. Therefore, we developed the synaptic 
weight update rule ΔW (W ¼ 1=Rmem

I
) of STDP using equations (5b) and (9), in 

response to Δt:

ΔW
Δt

¼ dW
dVth

´
dVth

dt
¼ αW

mVTτ
e�

Δt
τ ð10Þ

VMM array implementation. A 12 × 8 Y-flash array was fabricated to implement 
the VMM. Wn,m is initially determined after supplying a large-signal voltage Vr 
and measuring the current (equation (5a)), and vn is obtained by subtracting two 
voltages (large-signal and large-signal + small-signal) that are successively supplied 
to the same row (n input). Correspondingly, im is the small-signal readout current 
product of the m column and is obtained by subtracting the currents in response to 
the two successive voltages. The sum (KCL) of the large-signal currents (operating 
point in response to Vr) of all the devices in a certain column (m output) is stored 
in software.

We measured, analysed and validated all the scenarios that complicate 
memristive crossbar operation. These included sneak path currents in parallel to 
the DUT, which decrease its resistance while reading50, and other paths containing 
devices that might be disturbed while programming, proportionally to voltage 
divider values (half-select). There are also flash array issues, including erase in 
the granularity of columns (segmented erase), program disturb of adjacent cells 
while programming the DUT, read disturb, current leakage through the substrate, 
endurance (100,000 cycles) due to oxide degradation, charge traps that decrease 
analogue data retention and stochastics (Supplementary Section 5b). All of these 
are thoroughly addressed, modelled and illustrated using SPICE simulations 
(Supplementary Section 4). We propose simple techniques to overcome these 
issues, and modify the programming/erasing operational methods of a Y-flash 
device inside an array (Supplementary Section 5a). Our experiments showed that 
the maximum collective impact of these sources corresponds to a 10 nA variation 
of the read current within the array. The noise margin (NM) is determined as a 
ratio between the variation (10 nA) and the current magnitude (maximum 1 μA). 
The corresponding number of resistive levels is extracted with

1þNM
1�NM

� �N ≤ Roff
Ron

¼ 1; 000 ð11Þ

A sufficiently accurate solution to this condition is N = 65. This is the number 
of effective distinct resistive levels, which is roughly equivalent to 6 bit precision 
(Supplementary Section 5c). The programming algorithm can program each cell 
with 1% accuracy.

Array issues can be handled by programming separate rows, using 4.5 V 
programming voltage instead of 5 V to decrease the crosstalk impact, starting 
from the farthest desired currents to be programmed, encoding the other floating 
devices in the same row to the highest resistive state (HRS) in order to reduce 
current leakage, and decreasing the practical current dynamic range to two orders 
of magnitude, with Roff ≈ 14.5 MΩ, which corresponds to 10 nA (noise level).  
We also adopt a differential synapse model to overcome real-time variations and 
avoid the power-starved segmented erase (used only for initializing the devices  
to currents below 1 μA). In this model, each synapse comprises two Y-flash cells.  
In addition, this model facilitates hardware realization of zero, positive and 
negative weights, essential in ANNs. The effective synaptic weight at node i,j is 
determined as

Wij ¼ Gþ
ij � G�

ij ð12Þ

In the first application, the two devices G±
ij

� �

I

 are located in the same column 
and adjacent rows (vertical) and are driven by opposite voltages. In the second 
application, they are located in the same row and adjacent columns (horizontal) 
and their outputs are subtracted.

CAM implementation. The synaptic weights of the entire network are described 

by a symmetric matrix with zero diagonal elements, W ¼
w11 w12 w13

w21 w22 w23

w31 w32 w33

0
@

1
A

I

, 

where 8i≠j;wij ¼ wji

I
 and wii = 0. The threshold of the artificial neurons is 

represented by the small-signal current threshold vector T = (θ1 θ2 θ3), where 
θi ¼ Gþ

i;ref � G�
i;ref

� �
 vref

I

, and the small-signal reference voltage (its state always 

is ‘−1’) is vref = −30 mV; the states of the three neurons are represented by the state 
vector v = (v1 v2 v3), where v1, v2 and v3 are the corresponding small-signal voltages 
of the states of neurons 1, 2 and 3, respectively. The synapses and thresholds were 
implemented in hardware using a 12 × 8 integrated Y-flash array. Neurons were 
emulated in software first using the sign function on the total small-signal current 
sensed from a column. ‘1’ and ‘0’ are represented by 30 mV and 0 V small-signal, 
respectively (around 2 V large-signal) and determined by the software. New states 
represented by the small-signal product (determined by two successive steps) of 
the neurons and supplied by software are recursively updated according to

v t þ 1ð Þ ¼ sign v tð Þ W � Tð Þ ð13Þ
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where t represents the number of updating cycles and t = 0 corresponds to 
the initial vector v(0). The transient neuron function of v1, v2, v3 occurs in 
asynchronous order proportionally to the input strength of each neuron (for 
example, the column with the highest sensed current drives the first neuron to fire), 
using an asynchronous LIF small-signal neuron emulated in software.

In the neuromorphic context, the pre-coded patterns are stored into the 
network by a recursive fine-tuning of the matrix W (the incremental resistance 
matrix of a pair of devices that implement the differential synapse). To store the 
binary pattern ‘110’ into the network, the positive and negative resistance matrices 
and threshold resistance vectors were set as

Rþ ¼
2:16 0:22 0:19
0:18 3:11 4:93
0:41 0:36 2:6

0
@

1
AMΩ; Rþ

ref ¼
0:27
0:21
0:19

0
@

1
AMΩ

R� ¼
3:01 2 0:22
0:83 4 0:4
0:64 0:2 3

0
@

1
AMΩ; R�

ref ¼
0:43
0:3
0:25

0
@

1
AMΩ

The corresponding weight matrix and threshold weights vector were 
approximated as

W  0:7μ

0 6:17 1:13

6:17 0 �3:31

1:13 �3:31 0

0
B@

1
CA; Gref  0:7μ

1:95

1:95

1:95

0
B@

1
CA ð14Þ

To achieve the targeted matrices and vectors in equation (14), the incremental 
resistances of the relevant Y-flash cells, determined by equation (5a), were tuned 
by applying fine-tuned 4.5 V programming pulses using the developed techniques 
(Supplementary Section 5e) and the offline training algorithm43. The positive and 
negative resistance matrices are not symmetric, but the division on their difference 
yields a symmetric weight matrix. This property enhances network flexibility. The 
corresponding weight matrix and threshold weights vector for the multi-associative 
memory were approximately reconfigured to

W  0:7μ

0 1:23 1:13

1:23 0 �3:31

1:13 �3:31 0

0
B@

1
CA; Gref  0:7μ

1:95

1:95

1:95

0
B@

1
CA ð15Þ

We observed that multi-associative memory could be implemented with 
minimal changes to the original matrix and vector in equation (14); we therefore 
reconfigured only w12 and w21 using the same tuning methodology. Consequently, 
we programmed R+

12 and R+
21 to decrease the synaptic values to 0.74 MΩ and 

0.49 MΩ, respectively. This is visualized in Fig. 4c: the schematic is divided into 
two different squares, connected by an arrow from ‘111’ to ‘110’ in the single 
CAM case. For multiple CAM, this arrow is disconnected, where the convergence 
in the left square is towards ‘101’. We thus reconfigured the network to pre-store 
the pattern ‘101’. The arrow from ‘111’ to ‘110’ is disconnected as a result, and the 
squares of the cube are divided into two parts, neither of which is accessed by the 
initial states of the other.

The energy cost function used to evaluate the optimal power dissipation is 
given by43

E ¼ � 1
2

XX
j≠i

wijvivj �
X

j
vjij �

X
j

Gj;ref þ
X

i
wij

 Z vj

0
f �1 Vð Þdv ð16Þ

fitted to the proposed system (small-signal energy), where vi, vj are the pre- and 
post-synaptic neurons, respectively, and f(·) is the neural activation function (sign 
in our case). The last term can be ignored for very steep transfer functions43. When 
the state of the neuron j is updated by Δvj

ΔE ¼ �
X

i≠j
wijvi � ij

h i
Δvj ¼ �

X
i≠j

wijvi � Gþ
j;ref � G�

j;ref

 
 vref

h i
Δvj ð17Þ

where the product in brackets is equal to the total current of neuron j by KCL 
(small-signal). vj is positive (after applying the sign function on the product) when 
this product is positive, and zero otherwise. Thus, any change in E is negative. 
The network will settle with minimal energy changes ΔE until the convergence to 
the targeted pattern in steady state. This energy function is used as a training cost 
function by the STDP rule, when calibrating the weights until the targeted pre-
stored pattern is robustly recalled.

Neural network training implementation. The network receives nine inputs 
corresponding to the pixel values. We tested the network on a set of N = 30 
patterns, including three stylized letters (z, v and n) and three sets of nine noisy 
versions of each letter, formed by flipping one of the pixels of the original  
image (inset, Fig. 5d). Because the set size was very small, it was used for  
both training and testing22. Each input signal was represented by a small-signal 

voltage vj equal to either +30 mV or −30 mV, corresponding, respectively, to the 
black or white pixel, while the bias input v10 was equal to −30 mV. Such coding 
balances the benchmark input set: the sum of all input signals across all patterns 
of a particular class is guaranteed to be close to zero, speeding up the convergence 
process. To realize the neural activation function, we measured the currents in each 
column (in two successive steps), after which the small-signal value, differential 
subtraction and the tanh function defined by equation (3) were post-processed  
in software.

At each iteration (‘epoch’) of this procedure, patterns from the training  
set were applied, one by one, to the network’s input, and its outputs fi(n),  
where n is the pattern number, were used to calculate the delta-rule weight 
increments based on the derivative of the mean square error cost function  
and backpropagation algorithm:

E ¼ 1
2

XNp

p¼1

f gð Þ
i nð Þ � fi nð Þ

h i2
ð18aÞ

Δij ¼
dE
dwij

¼ dE
dfi nð Þ ´

dfi nð Þ
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¼ δi nð Þvj nð Þ ð18bÞ

δi nð Þ ¼ f gð Þ
i nð Þ � fi nð Þ

h idf
di


i¼ii nð Þ

¼ f gð Þ
i nð Þ � fi nð Þ

h i
 1� fi nð Þ2
� 

ð18cÞ

Here f gð Þ
i nð Þ
I

 is the target value of the ith output for the nth input pattern. (In 
our system these values were chosen to be +0.85 for the output corresponding 
to the correct pattern class and −0.85 for the output corresponding to the wrong 
class, as suggested in ref. 22.) Once all N patterns of the training set were applied 
and all Δij(n) calculated in software, the synaptic weights were modified using the 
following Manhattan update rule:

Δwij ¼ ηsign
XN

n¼1

Δij nð Þ ð19Þ

where η is a constant that scales the training rate. The Manhattan update rule 
and the batch-mode delta rule of supervised training differ only in the binary 
quantization, expressed in equation (19) by the ‘sign’ function, which simplifies 
the hardware implementation of the delta rule as recommended in ref. 30. The 
training is executed in hardware after calculating equation (19) in software. We 
randomly initialized all the positive and negative incremental resistances of the 
Y-flash cells (R+, R−) around the lowest resistive state (LRS). Then, during training 
and according to the average delta rule (equation (19)) along the entire epoch, we 
updated the differential synapse using only 5 V programming pulses (applied on 
the positive resistance to decrease the weight, and on the negative resistance to 
increase the weight). We floated the whole bias row (v10) at training epoch  
number 14 and validated convergence to the desired classification function  
with sufficient accuracy.

Measurements and characterization set-up. The d.c. conduction and 
switching characteristics of the Y-flash were collected by an HP4156A Precision 
Semiconductor Parameter Analyzer, which was connected to the devices under 
test using a Cascade Microtech 12000 probe station. An eight-channel arbitrary 
waveform generator (NI PCI-6733) was a part of the set-up. During training, 
the drain node of the Y-flash was connected to the pulse generator, while the 
other nodes were connected to the source measure units (SMUs) to probe the 
total current. The waveform generator and fast current measurement units were 
connected to the inputs of a switching matrix. A Keithley 707 Switching Matrix 
(64→8) was adopted to independently access each device during the read, 
programming and erasing phases. The switching matrix was connected to the array 
of Y-flash devices using a 32 pin non-wired probe card (Wentworth). Drain inputs 
with the same voltage value shared the same channel of the waveform generator. 
All equipment in the set-up was controlled by the NI Labview environment using 
in-house customized software. This software enabled the different accurate read/
programming/erasing tuning algorithms and cycling/training/multi-tasking 
protocols discussed in this Article.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.

Code availability
The computer codes used in this study are available within this paper and its 
Supplementary Information files.
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