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Cytomorphic Electronics With Memristors for
Modeling Fundamental Genetic Circuits

Hanna Abo Hanna , Loai Danial, Shahar Kvatinsky , and Ramez Daniel

Abstract—Cytomorphic engineering attempts to study the cellu-
lar behavior of biological systems using electronics. As such, it can
be considered analogous to the study of neurobiological concepts
for neuromorphic engineering applications. To date, digital and
analog translinear electronics have commonly been used in the
design of cytomorphic circuits; Such circuits could greatly bene-
fit from lowering the area of the digital memory via memristive
circuits. In this article, we propose a novel approach that utilizes
the Boltzmann-exponential stochastic transport of ionic species
through insulators to naturally model the nonlinear and stochastic
behavior of biochemical reactions. We first show that two-terminal
memristive devices can capture the non-linear and stochastic be-
havior of biochemical reactions. Then, we present the design of
several building blocks based on analog memristive circuits that
inherently model the biophysical mechanisms of gene expression.
The circuits model induction by small molecules, activation and re-
pression by transcription factors, biological promoters, cooperative
binding, and transcriptional and translational regulation of gene
expression. Finally, we utilize the building blocks to form complex
mixed-signal networks that can simulate the delay-induced oscilla-
tor and the p53-mdm2 interaction in the cancer signaling pathway.
Our approach can provide a fast and simple emulative framework
for studying genetic circuits and arbitrary large-scale biological
networks in systems and synthetic biology. Some challenges may be
that memristive devices with frequent learning and programming
do not have the same longevity as traditional transistor-based
electron-transport devices, and operate with significantly slower
time constants, which can limit emulation speed.

Index Terms—Cytomorphic, cell-inspired circuits, memristors,
molecular biology, synthetic biology, systems biology.

I. INTRODUCTION

B IOLOGICAL data sets such as gene expression, proteome,
metabolite abundance, and microbiome composition have

grown exponentially over the last decade. The analysis of such
datasets can provide new insights into biological systems. These
insights could play a major role in discovering metabolic path-
ways related to complex diseases and help in their diagnosis and
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prevention [1]. However, the analysis of such large amounts of
data in a reasonable time, while considering the sophisticated
properties of cellular networks, can only be carried out through
higher-level biological simulations using high-performance and
large-scale computing frameworks [2].

Biological networks exhibit emergent properties such as
integration and regulation of noisy graded signals across
multiple time scales, through imprecise non-linear components,
based on feedforward and feedback loops [3], [4]. As such,
the analysis of biological experiments using software-based
simulation of cellular networks is a computationally intensive
task, especially when the effects of noise are included [2].
For example, in Gillespie algorithm, the most computationally
expensive part – the generation of exponentially distributed
random numbers, consumes approximately 98% of the
processing time [5]–[8]. Recently, efforts have been made to
define mathematical tools that can quantify emerging properties
of biological systems such as complexity, self-organization,
collective behavior of biological swarm and adaptation. Such
tools include information theory [9], multifractal analysis [10],
energy landscape theory [11] and agent-based systems [12].

Specialized electronic circuits, an area of long-standing and
growing interest in engineering, aims to address the challenges
of complexity. For example, digital application-specific inte-
grated circuits (ASICs) with a custom analog integrated circuit
have been proposed to accelerate the generation of exponentially
distributed random numbers [13]. Hardware acceleration tech-
niques that elevate parallelism [14] and special devices to model
biological behavior [15] have also been proposed. However,
these techniques have a common drawback; the simulation time
inevitably increases as the size of the gene and protein networks
scales up [5], [6].

Several approaches have been adopted to overcome the chal-
lenges of analyzing, modeling and simulating biological net-
works. For example, emulating the complex behavior of cells
has been simplified by assuming digital-logic approximation
of genetic circuits [3], [16]. Unfortunately, cells often exhibit
stochastic analog behavior rather than purely digital behavior;
therefore, the digital approximations are proving to be inade-
quate [17], and the approximated simulations will not be accu-
rate enough for the prediction of diseases.

Research in the emerging field of cytomorphic engineering
has tried to overcome the aforesaid challenges using ASICs
that exploit the similarities between the physical processes and
mathematical models governing chemical reactions and elec-
tronics [3], [18]–[23]. Specifically, it has been shown that current
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flow in transistors operated in the subthreshold regime can
quantitatively model the fundamental molecular circuits via log-
domain translinear circuits based on the Boltzmann exponential
distribution [19]. Such an approach can model deterministic and
stochastic biochemical reactions because the flows of molecules
and electrons current are both driven by the Poisson process. In
addition, the emulation time of cytomorphic chip is independent
on the number of reactions [23], while the software simulation
time is strongly dependent on reactions size [5].

It has been shown that the signal-to-noise ratio (SNR) at the
output of the cytomorphic circuit is proportional to the capacitor
size and the current levels; therefore, by adjusting the capacitors
or currents, any desired SNR can be achieved. However, cellular
noise levels in the case of a relatively small number of molecules
can be high enough such that extremely low currents and small
capacitors are needed. Transistors operating in the subthreshold
regime cannot reliably be controlled to adjust such noise levels
(due to factors such as body effect, leakage current, or device
mismatches). Therefore, to capture highly random fluctuations
in genetic circuits that involve low protein concentrations, e.g.,
DNA-protein binding reactions, it was necessary to design and
build standalone artificial noise-generation circuits.

Artificial noise can be generated either using an ex situ
pseudo-random number generator [20] or by amplifying the
intrinsic thermal noise in analog transistors [23]. Significant
area consumption can occur because of digitally programmable
SRAM and shift registers in these circuits. Thus, cytomorphic
circuits would benefit from more efficient analog memory ele-
ments that can also naturally compute in an analog and stochastic
fashion.

In this paper, we utilize the physical properties of two-terminal
memristive devices to mimic the deterministic dynamics and
stochastic fluctuations of biochemical reactions and genetic
elements. Memristive devices are electrical non-linear passive
nano-scale devices that can retain a state of internal resistance
based on the history of the applied voltage and the current
flowing through them [24], [25]. In the last decade, memristive
devices have been proposed in a broad range of applications,
including but not limited to resistive random-access memory
[26], efficient and highly scalable artificial memristive synapses
[27] and neurons [28], supervised and unsupervised learning
architectures [29], boolean logic gates [30], programmable ana-
log circuits [31] and high speed true random number generators
(couples of nano-seconds for 100 pulses) [32], [33].

Memristive devices and biochemical binding reactions can be
seen as analogous in terms of biophysical dynamics and energy
[34], [35]. Both have an input-output transfer function with a
non-linear behavior, and both are controlled by time-dependent
internal state variables. The two logic states of a digital mem-
ristor can represent the two states of biochemical reactions;
binding and unbinding of protein-DNA or substrate-enzyme.
The dynamics of the enzymatic reaction and the forming of a
new complex follow the Poisson distribution, as do the dynamics
of switching a memristor. We expect that the “cytomorphic”
mapping between cellular biology and memristors can be cap-
italized upon to design a fast and simple emulation framework
for building and simulating biological systems [3], [18]–[23],

Fig. 1. A simplified overview of the processes in the central dogma, including
induction, transcription factor binding, transcription and translation in a bacterial
genetic circuit.

[36]. Self-organization and collective behavior of biological
components [10] might be modeled by using a diffusor circuits
that are widely used to demonstrate silicon retina [37]. We expect
that interpolating negative feedback loops and memristors in cy-
tomorphic circuits can mimic adaptation in biological systems.
Cytomorphic circuits can also map architectural concepts and
design principles from cells to electronics. Living cells have the
ability to perform complex, real-time and highly sensitive tasks
and process environmental input signals with highly noisy and
imprecise parts, such that reliable outputs are produced. These
properties make them the ultimate candidate for designing noise-
tolerant, ultra-low power electronic systems. Another important
advantage of using memristor-based cytomorphic circuits is that
it includes both memory and processing in the same computing
unit, in analog fashion to biological systems. Therefore, we
expect that memristor-based cytomorphic circuits could greatly
benefit from lowering the area of the digital memory via mem-
ristive circuits.

For readers unfamiliar with genetic circuits, we provide a
simplified summary of the processes in the central dogma, how
proteins are regulated and produced in living cells in response to
cellular signals. Fig. 1 gives an overview. Genes are a stretched
sequence of DNA, which encodes the information needed to
produce a protein. RNA polymerase (RNAp) is a multi-protein
complex that binds to a region of DNA called a promoter and
converts the information into messenger RNA (mRNA) in a
process called transcription. mRNA is then translated into amino
acids, in a process called translation by another complex molecu-
lar machine, the ribosome. Amino acids are then converted into
proteins. Promoters regulated by RNAp only are constitutive:
the rate at which the gene is transcribed, the number of mRNAs
produced per unit time, is constant. Other promoters can be
regulated by proteins, also known as transcription factors (TF in
Fig. 1), which bind their DNA binding site within the promoter.
If the transcription factor is an activator, it will enhance the
binding of RNAp to the promoter; therefore, it will increase the
transcription rate. If the transcription factor is a repressor, it will
prevent the binding of RNAp, reducing the transcription rate
as a result. TF is usually designed to transit rapidly between the
active and inactive form, at a rate that is modulated by chemicals
and small molecules called inducers (I in Fig. 1) as well as by
environmental signals (e.g., temperature and pH, or receptors).

This paper is organized as follows. In Section II, we introduce
the principles and the motivation for modeling biochemical
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Fig. 2. (a) Cartoon diagram of binding reaction between protein and its target. The reaction can be represented as a two-state system: ON − state representing
the free proteins and free binding sites, and OFF − state representing the formation of complex P ∗ or occupied binding sites. (b) Energy flux of molecules
in chemical reactions. (c) Diagram of memristor built in metal-insulator-metal structure. On the left, memristor with highest resistance (ROFF ), in the middle
intermediate resistance, and on the right, lowest resistance (RON ). (d) Energy flux and flow of ionic species in memristive devices. (e) Memristor based KCL
circuit to model the binding reaction between a protein and its target (binding site) in steady state. The current source XTotal models all the binding sites and
the current through MP models the occupied binding sites (complex P ∗). The pulses are an example of programming pulses used to program the memristor.
(f) Memristor based KVL circuit to model the binding reaction in steady state. The voltage across MP models the occupied binding sites.

reactions with memristive devices. In Section III and Section IV,
we discuss the building blocks of our cytomorphic circuits,
including gene regulation, transcription, translation, and noise.
In Section V, we show a proof-of-concept circuit capable of
modeling two genetic circuits, the delay-induced oscillator,
and the p53-mdm2 interaction in the p53 pathway. Finally,
Section VI concludes with a brief discussion of the potential
benefits and future directions of this work.

II. MEMRISTORS MODEL BIOCHEMICAL REACTIONS

To map biochemical reactions to memristive devices and vice
versa, our first step is to explore both systems in the context
of their basic mathematical representation models, kinetics and
energy levels.

A. Biochemical Reactions

A simple biochemical reaction that describes the binding of
proteins to their targets is illustrated in Fig. 2(a). The targets can
be DNA binding sites or other proteins. When proteins bind to
their target, a new complex is formed. According to mass-action
kinetics, the rate of complex formation is proportional to the
collision rate kF [4]. Consequently, the rate of change of the
complex P ∗ can be described as:

dP ∗/dt = kF ·XFree · P, (1)

XFree + P ∗ = XTotal, (2)

whereXTotal represents the total concentration of binding sites,
P and XFree represent the concentration of free proteins and
free binding sites, respectively.

Equation (1) describes the chemical kinetics rate and (2)
can be viewed as a molecular balance law. According to (2),

biochemical reactions consist of free and occupied binding sites,
which can be viewed as time-dependent internal state variables
whose sum is constant. This fraction is controlled by the complex
P ∗. The rate coefficient of such biochemical reactions is expo-
nential in terms of free energy difference (Gibbs energy [38]) and
is often described by the Boltzmann statistics [3]. The reaction
can be accelerated by adding catalysts known as enzymes to the
system. The enzymes decrease the activation energy and speed
up the rate as shown in Fig. 2(b) [4]. A simple solution to (1)
and (2) at steady state reveals that the concentration of P ∗ can
be viewed as two logic levels: zero, marked as ON – state and
P ∗ marked as OFF – state, as illustrated in Fig. 2(a).

Biochemical reactions often consist of two simultaneous re-
actions: a forward reaction with a rate kF that enhances the
reaction and a reverse reaction with a rate kR that dissociates
the complex (Fig. 2(a)) [4]. The kinetics of P ∗ is thus described
as:

dP ∗/dt = kF ·XFree · P − kR · P ∗. (3)

Equations (2) and (3) are the elementary model that captures
the kinetics of biochemical reactions, such as the binding of the
enzyme to the substrate and the binding of the protein to DNA
sites [4]. At steady state, the complex concentration is:

P ∗ = XTotal · P

P +KD
, (4)

where KD = kR/kF is known as the dissociation constant and
has units of concentration. Equation (4) is known as Michaelis–
Menten kinetics (MM) in the context of enzyme-substrate bind-
ing and it can also describe the binding reaction of proteins to
DNA.
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B. Memristive Devices

A memristive device is essentially a two-terminal electronic
device whose conductance is modulated by controlling the flux
or charge passing through it. Such devices are often built in a
metal-insulator-metal structure as shown in Fig. 2(c) [25]. A
popular abstraction for the insulation region with a length of
L is by separating it to doped and undoped regions, marked as
Wdoped andWundoped, respectively. If the doped region extends
to full-length, the resistivity of the device (also known as the
memristance) is dominated by a low resistivity region with a
boundary resistance known as RON (Fig. 2(c), right). If the
undoped region extends to the full-length, the total resistivity of
the device is dominated by a high resistivity with a boundary
resistance ROFF (Fig. 2(c), left).

A simple behavioral model which represents a voltage-
controlled memristive system is:

v =M (W, v) · i (5)

dW/dt = μ ·
(
V − VTH

VTH

)α

· f (W ) . (6)

Here, (5) is the linear I − V equation for a resistive device,
also known as Ohm’s law, where M is the memristance and W
is an internal state variable. Equation (6) describes the kinetics
of the state variable W , where μ is a constant with units of
m/sec, α is a fitting non-linearity constant, VTH is a threshold
voltage for programming, V is the applied voltage, and f(W )
is a window function adding non-linear dependence on the state
variable and solving the mathematical condition at the range
edges W ∈ (WON , WOFF ) [39].

The I-V characteristic of memristive devices often exhibits
exponential dependency on their state variables [40], with mem-
ristance:

ME = RON · exp (λ ·W/WOFF ) , (7)

whereλ = ln(ROFF /RON ) is a constant [39]. Alternatively, for
the linear I-V characteristic in terms ofW [27], the memristance
is expressed as:

ML = (ROFF −RON ) ·W/WOFF +RON . (8)

The I-V characteristics in (7) and (8) model memristors with
multiple states, acting as an analog device. In addition, they can
be used to model the special case, when memristor has only two
states and acts as a digital device.

Both biochemical reactions and memristive devices involve
the motion of charged atomic or molecular species, including
state variable dependency on time (P ∗ in (3) and W in (6)).
The hopping of atoms in memristive devices [41] is analogous
to the diffusion of a reactant in biochemical reactions. Both
systems are non-linear with two asymptotic values. The two
boundary resistance values, RON and ROFF , which are set by
the two boundaries WON and WOFF , are equivalent to the free
and occupied binding sites, respectively. A memristor with two
states can model the digital approximation of the biochemical
reaction given in (1) and (2). The switching rate in memristive
devices follows the Boltzmann statistics and is determined by

bias-dependent activation energy [42]. An increase in the effec-
tive programming voltage V reduces energy barriers as shown
in Fig. 2(d). Thus, the number of applied pulses affects the state
of the memristors similarly to the way the number of enzymes
affects biochemical reactions. The time required to form a new
chemical complex and the delay time of switching memristors
both follow a Poisson distribution [42], [43]; thus, the stochastic
dynamics for biochemical reactions and memristor switching are
similar.

The thermodynamic Boltzmann exponential equations that
describe ion flow in memristive devices are strikingly similar
to the thermodynamic Boltzmann exponential equations that
describe molecular flux in chemical reactions, as can be seen
in the following:

ψ − ψ0 = KT · ln (P/P0 ) , (9)

W −W0 = L/λ · ln (MP /RON ) , (10)

where ψ is the chemical potential, i.e., the Gibbs free energy
per molecule [38], which sets the molecule concentration P .
W0 and P0 are constants referred to as the reference concen-
tration and reference chemical potential, respectively. Equation
(10) was derived from (7). The analogy between (9) and (10)
suggests that the chemical potential can be encoded as the state
variable of the memristor and the protein concentration by the
memristance. The above-mentioned analogies suggest that hy-
brid memristor-CMOS electronic circuits can efficiently model
large-scale genetic-processing systems in biological networks.

C. Modeling Michaelis–Menten Kinetics With
Memristor-Based Circuits

Multi-state memristors are more suitable for capturing the
analog behavior of the biochemical reactions given by (2) and
(3), or the steady-state solution in (4). A simple way to model
(4) is based on Kirchhoff’s current and voltage laws (KCL and
KVL). Fig. 2(e) shows a current divider between memristorMP

with a value of P and a resistor with a value of KD. The circuit
can model (4) with XTotal representing the total number of
binding sites and the complex P ∗ as the current passing through
the resistor. Equation (4) can also be modeled by a KVL circuit,
where current dividers are replaced by voltage dividers as shown
in Fig. 2(f). Consequently,XTotal becomes a voltage source and
P ∗ is modeled by the voltage drop on the memristor.

By substituting (7) in the voltage divider expressions, the
dropping voltage across MP can be represented as:

P ∗
V = XTotal · MP

MP + Rγ

= XTotal · RON · exp (λ ·W/WOFF )

RON · exp (λ ·W/WOFF ) + Rγ
, (11)

where KD = Rγ is analogous to the dissociation constant and
MP is analogous toP in (4). The value ofKD can be easily mod-
ified by changing the resistorRγ . A similar representation can be
achieved by current and a KCL circuit. Therefore, the complex
P ∗ can be measured as the current P ∗

I or voltage P ∗
V , depending

on the circuit used. Notably, for W = 0, a leakage voltage (or
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current) is built in. This is known as the basal level often found in
biochemical binding reactions [4]. ForW =WOFF , a maximal
voltage (or current) is built in, representing the negative feedback
and the saturation in (3) and (4) due to the forward and reverse
reaction.

In specific conditions, when the memristor exhibits linear
dependency on the state variable and f(W ) = 1, programming
the device with NP pulses with a width of TW and amplitude
AV > VTH changes the memristance according to:

MP = RON +R0 ·Np, (12)

where R0 = (ROFF −RON ) · (μ/L) · (TW /VTH) · (AV −
VT ).

By substituting (12) in the voltage (or current) divider expres-
sions, (11) is replaced with the following relation:

P ∗
V/I = XTotal · Np

Np +KD
+XTotal · RON

Np +KD
, (13)

where KD = RON/R0 +Rγ/R0 is analogous to the dissocia-
tion constant, and Np is analogous to P in (5), which denotes
the total number of proteins available for binding. The left-hand
term in (13) fits the model of the biochemical binding reaction
in (4), and the right-hand term is a leakage current (or voltage)
that fits the basal level of promoters and enzymatic reactions.
Further analysis and simulation results of an ideal memristor
with a linear dependency on the state variable are presented in
our previous works [34], [35].

III. MODELING GENE REGULATORY CIRCUITS WITH

MEMRISTOR-BASED CIRCUITS

Computation and processing in living cells are achieved by
the regulation of complex gene networks. The input signals that
carry the cellular information control the activity of transcription
factors such as activators and repressors. While the binding of
RNAp to the promoter site initiates the transcription process,
the rate of the process is controlled by the number of bind-
ing sites bound by the transcription factor [4]. In this section,
we introduce different circuits based on memristive devices to
model activation and repression processes, hybrid promoters,
cooperative binding, transcription, and translation.

A. Activator Binding

In activation, the rate of transcription is proportional to the
probability that an activator A is bound to its DNA binding site
D. Some activators function (in the sense that they can bind
DNA) only when a specific input signal SX is present [4]. In
practice, the signal SX is a small molecule called an inducer,
which binds the activator to form a complex [ASX ]. Corre-
spondingly, this reaction can be described by MM kinetics with
a forward rate kF and reverse (dissociate) rate kR. Biochemical
reactions such as the binding of small molecules to transcription
factors are usually fast, with a sub-second timescale, as com-
pared to other biological processes, such as protein expression
[4]. Therefore, and for simplicity, in this work we assume that
these reactions are in their steady state. According to (4), the

complex [ASX ] is given by:

[ASX ] = AT · SX

SX +KA−SX

, (14)

where [ASX ] is the function activator,AT is the total number of
activators, and KA−SX

= kR/kF is the dissociation constant.
The binding of the complex [ASX ] to the DNA binding site

D often reaches equilibrium in seconds, while transcription
and translation of the gene takes minutes [4]. Therefore, the
binding of complex [ASX ] to DNA can also be described by
MM kinetics:

[ASXD] = DT · [ASX ]

[ASX ] +KASX−D
, (15)

where [ASXD] is the fraction of DNA sites bound by [ASX ],
DT is the total number of binding sites, and KASX−D is the
dissociation constant. Equation (15) is a function of the signal
SX through the complex [ASX ]; therefore, the current or voltage
representing [ASX ] from (14) must be converted to proper
programming voltage to set the memristance [ASX ] in (15).

The promoter activity is computed as the probability that
the DNA binding site D is occupied by a functional activa-
tor. Transcription cannot initiate if RNAp is not bound to the
promoter, regardless of whether the activators bind. Therefore,
in our model, we multiply the promoter activity by a factor β,
which models the fraction of promoter sites bound by RNAp.
Thus, we express the promoter activity by:

fA (ASX , RNAp) = β · [ASXD] . (16)

Note that when no signal is present, there is a very small
probability that RNAp will bind and transcribe the gene, which
in turn leads to the basal level, fA([ASX ] ≈ 0). This leakage is
modeled by the low resistance of [ASX ] in (15).

Fig. 3(a) shows a memristor-based KVL circuit that models
the activity of a biological promoter, as given in (16). The KVL
circuit models the binding of the complex [ASX ] to the DNA
binding site D, as given in (15). Transistor M0 converts the
voltage [ASXD] to a current through the transconductance gM0

.
The circuit output is a voltage which is dropped on the memristor
MRNAp, which represents the promoter activity given in (16).
The voltage source DT was chosen to be −200 mV to fit the
small signal dynamic range of the PMOS transistor M0. The
memristor MRNAp can model the activity of RNAp using two
states: high resistance to model the binding of a high level
of RNAp and set β to a high value, and low resistance to
model the binding of a basal level of RNAp and set β to a
low value in (16). The purpose of the memristor MRNAp is to
capture the stochastic dynamics of RNAp, as will be discussed
in Section VI. The memristor MRNAp is programmed to high
resistance (W = 0.5 ·WOFF ) when a “Bias” pulse, which is
accompanied by random small pulses, is applied, as shown in
Fig. 3(a).

SPICE and MATLAB simulation results for the activation
process are shown in Fig. 3(b-c). Fig. 3(b) shows the non-linear
monotonic transfer function, which results from binding activa-
tors to the DNA binding site. Fig. 3(c) shows a linear monotonic
curve that describes the transfer function of the promoter activity
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Fig. 3. (a) Two-stage memristor based circuit to model the activation process.
The KVL circuit models the binding of a function activator to its DNA binding
site. Programming MRNAp models the binding of RNAp to the promoter to
initiate transcription. (b) SPICE and MATLAB of binding reaction between
the function activator and DNA site. The solid curve is SPICE data and the
dotted curve is the biophysical model (MATLAB) given in (15). (c) SPICE
simulations of promoter activity f(ASX). The red curve (Basal) represents the
binding of a basal level of RNAp (MRNAp = RON ). The black (Bias) and
the green (Max) curves model the binding of a high or maximal level of RNAp
(MRNAp = RON · exp(ξ · λ) where ξ = [0.5, 0.55], respectivley).

and complex level when a high level of RNAp is bound (RNAp-
bias and RNAp-max) and weak dependency when a basal level
of RNAp is bound.

For the design of the proposed circuits, we used a 0.18 μm
CMOS process, and memristors fitted by the VTEAM model
[39], [44] to the Pt/HfOx/Hf/TiN RRAM device with a buffer
layer [45]. This device has a high-to-low resistance state ratio
of ∼50 and low forming, set, and reset voltages. Circuit and
memristors parameters are listed in Table I.

B. Repressor Binding

Repressors are transcription factors that can bind a specific
DNA site H in the promoter [4]. When the site H is free
(not occupied by a repressor), RNAp binds the promoter and

transcribes the gene, but if the site is occupied by a repressor,
RNAp cannot bind and no transcription is obtained. Based on a
similar explanation as above, the binding of repressor R to site
H at steady state is described by:

[RH] = HT · R

R+KR−H
, (17)

where [RH] is the fraction of bound DNA sites, HT is the total
number of binding sites, andKR−H is the dissociation constant.

The sum of the free and occupied binding sites is equal to
the total number of binding sites; therefore, we can describe the
concentration of free DNA binding sites as:

H = HT − [RH] = HT · KR−H

R+KR−H
. (18)

Given that the sum of probabilities that a binding site is
occupied or free is equal to one, we can describe the activity
of a promoter that is controlled by a repressor as:

fR (R,RNAp) = β (RNAp) ·H. (19)

Fig. 4(a) shows a memristor-based circuit that models pro-
moter activity of the repression process. The circuit models the
binding of the repressorR to the DNA binding site and the output
[H] represents the free binding sites as given in (18). In this
case, RNAp binds only if the siteH is free; therefore, our model
assumes that the bias is ‘zero’ when the promoter is occupied by
a repressor, and “high” when the promoter is free. SPICE and
MATLAB simulation results are shown in Fig. 4(b-c). Circuit
and memristor parameters are listed in Table I.

C. Hybrid Promoter

In eukaryotic cells, promoters are often controlled by combi-
natorial transcription factors [4], [16], [46]. Each transcription
factor has a binding site with a specific DNA sequence; therefore,
such promoters have multi-binding sites and are called hybrid or
combinatorial promoters. A promotor regulated by an activator
and a repressor is one example of a synthetic bacterial hybrid
promoter prevalent in biotechnological applications. Such a pro-
moter has four statistical states: free binding sites [V ], binding
sites occupied by an activator [V A], binding sites occupied by
a repressor [V R], and [V AR], where both A and R bind to the
binding site V , as shown in Fig. 5(a).

Transcriptional events occur mainly from the state [V A], in
which the only activatorA binds. Here we assumed that there is
no crosstalk between the binding reactions of the activator and
the repressor. As such, the hybrid promoter activity is given by:

fH = DT ·
(

A
KA

)n1

+
(

A
KA

)n1 ·
(

R
KR

)n2

1 +
(

A
KA

)n1

+
(

R
KR

)n2

+
(

A
KA

)n1 ·
(

R
KR

)n2
.

(20)
This function can be approximated by the simple “logic”

function (A · R̄), with three plateau levels: the basal level, when
A is not bound andR is bound, the maximum activity level, when
A is bound and R is not bound, and the intermediate activity
level, when both A and R are bound [4]. Fig. 5(b) shows the
simulation results of (20). The four labeled points (X, Y, Z, W)
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TABLE I
CIRCUIT AND MEMRISTORS PARAMETERS

represent the boundary cases (digital behavior) of (20). Point
X represents the case where the site is unoccupied by either
activators or repressors (state [V ]), point W represents the case
where a high level of repressor binds their DNA binding sites
(state [V R]), point Y represents the case where a high level of
activator binds their DNA binding sites (state [V A]) and point
Z represents the case where activators and repressors bind the
DNA binding sites (state [V AR]). In the simulation of (20),
the property whereby the binding of the repressor blocks the
attachment of RNAp to the promoter was not taken into account;
therefore, the simulation shows thatfH(Z) is higher thanfH(X)
and fH(Y ) instead of being near the basal (low) level (point W).

The implementation of a hybrid promoter is shown in
Fig. 5(c). The circuit functions as a fuzzy AND gate and it
contains two memristors, X and Y, which model the activator
and the repressor binding sites, respectively. Initially, mem-
ristors XA and YR are both programmed to low resistance,
which models the free activator and the occupied repressor
binding sites, respectively. Such an arrangement results in the
smallest equivalent resistance and the lowest promoter activity.
Programming XA to high resistance models the binding of the
activators and doing the same for YR models the unbinding of
the repressors. This arrangement results in the highest equiva-
lent resistance and the maximum promoter activity. Simulation
results are shown in Fig. 5(c). The four labeled points are the
complements of those in Fig. 5(b).

D. Cooperative Binding

Cooperative binding in living cells can be described as the
number of identical components that collectively interact to
enhance and stabilize biochemical reactions [4]. Transcription
factors are often composed of several identical subunits, such as
dimers or tetramers; therefore, proper functionality is achieved
when the subunits bind together. In our previous work, we pre-
sented a memristor based circuit to model cooperative binding.
The Hill coefficients were encoded as the programming pulse
width. The models were based on the correlation between the
memristance and the pulse width: applying a longer positive

(negative) pulse results in a larger increase (decrease) of mem-
ristance [27], [47]. Mathematical analysis and simulation results
can be found in [34], [35].

IV. NOISE IN GENETIC CIRCUITS

Biological systems are inherently stochastic. The transporta-
tion of discrete random carriers is accompanied by collisions and
probabilistic arrival, which generate random fluctuations. These
fluctuations, known as intrinsic noise through networks, are
well modeled as a Poisson process, generating shot noise which
scales as the square root of the molecular count [4], [48]. An
example of such a process is the stochasticity in gene expression
in genetically identical cells, which arises from fluctuations in
transcription and translation.

The fluctuations of protein often originate from the random
production and decay of low-copy mRNAs. Several models
were proposed to describe the stochasticity in protein levels.
Two well-known models are the “Poisson scenario” and the
“telegraphic” model [49]. In the “Poisson scenario” constant
promoter activation is assumed, and noise is only included in
mRNA production and destruction. The “telegraph scenario”
assumes that the promoter becomes active only for short bursts,
during which transcripts are made and mRNA and protein pro-
duction follow deterministically.

As the first order of approximation, the expression of mRNA is
proportional to the rate of RNAp arrival at the promoter site. The
number of RNAp arriving at the promoter is Poisson distributed
with a variance that is equal to the mean. In our stochastic
model, we assume that each binding of RNAp to the promoter
site produces a single mRNA molecule; therefore, the promoter
can be viewed as a counter of RNAp. The stochastic kinetics
of a pulse counter often follow Poisson shot noise statistics
(e.g., photon counting [3]); therefore, the number of mRNAs
also follows the Poisson distribution.

To model the stochastic behavior of gene expression, a multi-
level (analog) memristorMRNAp is used as a counter of applied
programming pulses. If MRNAp exhibits linear dependency
on the state variable as in (12), then each programming pulse
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Fig. 4. (a) Two-stage memristor based circuit to model the repression pro-
cess. The KVL circuit models the binding of a repressor to its binding site.
(b) SPICE and MATLAB (biophysical model) simulations of activator binding.
H represents the concentration of free DNA sites and R represents the repressor
level. The solid curve is SPICE data and the dotted curve is the biophysical
model (MATLAB) given in (18). (c) SPICE simulations of promoter activity
f(R). Green and red curves are defined as in Fig. 3(b).

models the arrival of one RNAp to the promoter site. To model
the probabilistic number of RNAp, the programming pulses
(NR) are controlled by a “random clock. The random clock
exhibits Poisson characteristics with mean NR that is equal to
the variance ΔN2

R. In cases whereMRNAp exhibits exponential
dependency on the state variable as in (8), the programming
pulses include a bias pulse accompanied by NR short random
pulses.

Here, we linearized the exponential characteristic of the mem-
ristor in order to implement a linear counter:

MRNAp =MRNAp (w0) + δ ·MRNAp (w0) · (w − w0) ,
(21)

where δ = λ ·Koff · TP ·ΔV/(L · VTH).

Fig. 5. (a) Diagram of the four states of the hybrid promoter. State [V ]: DNA
binding sites are free from activators and repressors. State [V R]: repressor binds
the DNA site. State [V A]: activator binds the DNA site. State [V AR]: both
activator and repressor bind the DNA site. (b) MATLAB simulation results of
the promoter activity given in (20) [4]. Parameters used in the simulation:DT =
200, KA = 15, n1 = 1.5, n2 = 2 and KR = 10. The four labeled points
represent the extreme cases of the hybrid promoter. (c) Two-stage memristor-
based circuit to model the hybrid promoter. The memristors XA and YR model
the binding sites for the activator and repressor, respectively. LowXA represents
the case where the DNA site is not bound by the activator and highXA represents
the case where the DNA site is bound by the activator. High YR represents the
case where the DNA site is not bound by the repressor and low YR represents
the case where the DNA site is bound by the repressor. (d) SPICE simulations
of promoter activity fH using the circuits in Fig. 4(c). The four labeled points
represent the extreme cases.
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Fig. 6. (a) Memristor-based circuit to capture the deterministic and stochastic behavior of the activation-transcription-translation process. The activation stage
models the binding of the function activator to the DNA binding site. The transcription stage models the dynamics of the transcription process in which a segment of
DNA is copied into mRNA by the enzyme RNA polymerase (RNAp). The capacitor voltage M is the mRNA level. The translation stage models the dynamics of
the translation process by which mRNA is decoded to produce protein. The gain of the common source amplifier captures the Fano-factor (1 + b) in the translation
process. The capacitor voltage P is the protein level. The values of RM,P and CM,P are set according to the half-life of mRNA and protein molecules. (b-i) SPICE
simulation results of stochastic gene expression. (b) Effect of random number of programming pulses on the memristor MRNAp. Initially, MRNAp is programmed
by the bias pulse to MRNAp = 14.14KΩ. Then, a random number of programming pulses is used to add stochasticity to the memristance. The number of pulses
(NR) is Poission distributed with mean of NR = 64. (c) SPICE simulation results of the dynamics of the stochastic translation process (protein production) for
different values of MRNAp. (d) SPICE simulation results of mRNA production in the transcription process. The violet dots are the steady state output voltage of
the transcription stage for fifty Poisson distributed NR

′s with mean value of NR = 64. The black line is the mean value of mRNA calculated by considering all
the dot points. (e-h) SPICE simulations of the translation process for different Poisson distributed programming pulses with mean of NR = [1, 36, 64, 100],
respectively. The orange dots are the output voltage of the translation stage with AProtein ≈ 3. The black line is the mean value calculated by considering all
the dot points. (i) SPICE simulation results of SNR versus molecule concentration (P̄ ), for different gains AProtein = [2, 3, 4], which represent different Fano
factors, ϕ = [1, 2, 3], respectively.

Equation (26) reveals that a memristor can be used as an
analog counter around a fixed working point. The first term,
MRNAp(w0), represents the bias that initiates and sets the
fraction of promoter sites bound by RNAp (β in (16)). This level
ranges from basal to high. Zero bias pulse sets MRNAp(w0) to
low resistance, which models the binding of a basal (low) level
of RNAp; then, the transcription level is expected to be low,
while non-zero bias pulse sets MRNAp(w0) to high resistance,
which initiates the transcription process and models the binding

of a high level of RNAp. The second term in (21) is used as “a
noise injection source” by programming with a random number
of pulses, NR.

To include stochastics in the transcription-translation cir-
cuit in Fig. 7, we define the input for the transcription stage,
fM , as the difference between fM (NR) for any number of
pulses NR and fM (0) forNR = 0. A simple implementation of
this definition is a differential amplifier, where the positive input
is fM (NR �= 0) and the negative input is fM (NR = 0). The
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Fig. 7. (a) Cartoon model of the delay-induced oscillator. (b) Block diagram of the circuits used to model the delay-induced oscillator. The control blocks set the
connectivity and the input signals for block 1. (c) Time diagram and algorithm used when simulating the network.

inputs f(NR) and f(NR = 0) are defined according to the gene
regulation circuit, (16) in the activation process and according
to (19) in the repression process. For example, in the case of
activation the input for the differential amplifier will be:

fM (NR)− fM (NR = 0)

= ([ASXD] · gm0 · δ ·M (w0)) ·NR. (22)

The noise power of transcription (noted as ψM ) is defined as
the ratio between the variance ΔM2 and the mean M̄ , and the
signal-to-noise ratio (SNR) is defined as the ratio between M̄
and the standard deviation ΔM . Using (22), the noise power
and the SNR of the transcription process can be represented as:

ψM = ρ ·AmRNA · ΔN
2
R

NR

, (23)

SNRM =
√
NR, (24)

where ρ = ([ASXD] · gm0 · δ ·MR(w0)) and AmRNA is the
gain of the transcription stage.

In an analogy to the transcription process, translation can be
viewed as the process of counting ribosomes that arrive at mRNA
molecules. Biological experiments and biophysical models have
shown that the noise power of translation in protein generation
is higher than the noise power of transcription in mRNA gen-
eration, ψprotein > ψmRNA. Therefore, the variance in protein
generation is larger than the Poisson statistic,ΔP 2 = ϕ · P̄ [50],
where ϕ = 1 + b is known as the Fano-factor. The parameter
b is known as the burst size and is equivalent to the number
of proteins synthesized from a single mRNA transcript. The
burst size originates from the molecular gain between the mRNA
copy number and the protein copy number [3], [50]. Using our
mathematical analysis in (23) and (24), we can express the noise

power of translation as:

ψP = AProtein · ψM , (25)

whereAProtein ≡ ϕ = 1 + b is the gain of the translation stage.
Fig. 6(a) shows an analog circuit that models the stochastic

process of mRNA and protein production controlled by the
activator-inducer complex. The circuit comprises the activation,
transcription and translation stages. The transcription stage is
implemented as a differential amplifier and models the stochastic
dynamics of the mRNA level. A capacitor and resistor at the
output of the stage were added to model the dynamics of tran-
scription process and set the halftime of mRNA. The translation
stage is implemented as a degenerated common source amplifier
and models the stochastic dynamics of the protein level. The ratio
RD/RF sets the gain of the transcription stage, which sets the
Fano-factor in (21). The activation stage can be replaced with
the circuits in Fig. 3–5, depending on the required functionality.

Fig. 6(b) shows the SPICE simulation results of the dynamics
of MRNAp when programmed with a random number of pulses
(NR) and Fig. 6(c) shows the dynamics of protein production in
translation process for different values of MRNAp. Fig. 6(d-h)
show SPICE simulation results of the stochastic behavior of the
transcription and translation stages when applying a different
random number of pulses (NR). In each simulation, fifty random
numbers which follow a Poisson distribution were generated by
MATLAB with pre-defined mean, width, and amplitude. The
pulses were used in programming MRNAp (NR in (21)) to add
small changes in the memristance to emulate the stochasticity in
the number of arriving RNAp. Fig. 6(i) shows SPICE simulation
results of the impact of different gains on the SNR of the
translation process.
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Fig. 8. MATLAB simulation results of the delay-induced oscilator: (a) oscil-
lation without noise (NRNAP = 0), (b) oscillation with noise in the number of
RNAp (NRNAp is Poisson distributed) and (c) a special case where the half-life
of protein is much longer than the half-life of mRNA. In this case the mRNA
oscillates, and the protein reaches steady state. (d) MATLAB simulation results
of the delay-induced oscillator model in [53]
Source: W. Mather, M. R. Bennett, J. Hasty, and L. S. Tsimring [53]. Copyright
2009 by the American Physical Society.

V. MODELING GENETIC CIRCUITS

In this section, we emulated two genetic networks, the delay-
induced oscillator [51] and the interaction between p53 and
mdm2 in cancer signaling pathways [52]. Both networks employ
delay in the negative feedback to implement the genetic clock
and synchronization between biological signals.

A. Working Methodology

The building blocks of the networks used to model the genetic
networks are based on the gene regulatory, transcription and
translation circuits shown above. The connectivity between the
blocks is obtained using switches which are controlled by a pre-
defined algorithm. The controlled switches operate the system
in two modes, program and read. In programming mode, the
switches disconnect the memristors from the circuits and the
memristors are programmed by a voltage pulse generator. In
reading mode, the switches connect the memristors to the circuits
and they function as two-terminal passive devices.

B. Delay-Induced Oscillator

Although the proposed memristor-based circuits are analog
in nature, the flexibility in adding digital basis functions such as
delays through a control block simplifies the modeling and the
simulation of well-known synthetic circuits such as the delay-
induced oscillator.

Fig. 7(a) shows a cartoon model of an auto-negative feedback
loop circuit, where the gene R represses its own transcription.
The time delay between repression and translation causes os-
cillations in the R level, which can be viewed as charging
and discharging of a capacitor [53]. To emulate the genetic
oscillator circuit, we configure the building blocks as shown
in Fig. 7(b). First, we program the gene regulatory (block 1)
model to behave as a repressor (Fig. 4(a)). Second, the output
of block 2 (Translation-Transcription) is converted to a number
of pulses through block 4 (#Pulses→ P ). Then, it is returned
in a feedback loop to the circuit input.

The control block runs the network in two modes (reading and
programming) and switches the network between three states as
shown in Fig. 7(c). The switches are configured according to the
current state. When the system is in reading mode (state 1 or state
2), the switches S2, S3 are open and S1 is closed. Block 1 calcu-
lates the promoter activity, which is high if the system is in state
1 and low if it is in state 2. Block 2 receives its input from block 1
and calculates the dynamics of mRNA and protein (transcription
and translation) and the final level of the produced protein VR.
The repressor level (VR) is low if the previous state was 1 and
high if the previous state was 2. When the system switches to
state 3 (programming mode), the switches S2, S3 close and S1

opens. If the previous state was state 1, the promoter site is bound
by a repressor; therefore, RNAp cannot bind. In this case, a large
number of pulses (NP ) is generated by block 4, which results
in programming memristorMR to high resistance, then, block 3
sets the bias pulse to zero (Bias =′ 0′), and results in program-
mingMRNAp to low resistance. If the system was in state 1 (re-
pressor level is low), the promoter site is free; therefore, RNAp
can bind. In this case, block 4 generates a small number of pulses
(NP ), the memristor MR is programmed to low resistance, and
MRNAp is programmed to low resistance (Bias =′ 1′). In addi-
tion to the bias pulse, a stochastic number of pulses (NRNAp) can
be generated and added to include stochastics in the network as
shown in Fig. 7(c). The reading time in the network was chosen
to be 100x the programming time (Fig. 7(d)) to maintain contin-
uous operation of the circuits. The programming time must be
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Fig. 9. (a) Cartoon of the p53-mdm2 interaction. p53 activate the transcription of Mdm2, while Mdm2 binds p53 to promote its ubiquitination and degradation.
(b) Block diagram of the network used to model the negative feedback loop in p53-mdm2 interaction. The control blocks set the connectivity. (c) Time diagram
and algorithm used when simulating the network.

chosen such that all memristors are programmed to their final
value. For example, in our models, we chose the programming
time to be 10 μsec and the reading time to be 1 msec.

We examine the delay-induced oscillator in three comprehen-
sive cases: 1) oscillation without noise as shown in Fig. 8(a), 2)
oscillation with noise as shown in Fig. 8(b), and 3) where no
oscillations occur, as shown in Fig. 8(c). Case 3 is a special case
where the half-life of the protein is ten times longer than the half-
life of the mRNA. For cases (1) and (2), we chose the half-time
of mRNA and protein to be 166 μsec (reading time/6) to ensure
that the output of block 2 reaches 99% of its final value. We ran
10 iterations for case 1 and 50 iterations for case 2, where each
iteration contains programming and reading cycles. In case 3,
we chose the half-life of mRNA to be 166 μsec and the protein
half-life to be 10 msec. We ran 200 iterations for this case.

For all three cases, the total number of DNA binding sites
was set to DT = |200 mV|, the memristance MR ∈ [2 KΩ−
100 KΩ], where MR = 2 KΩ represents a basal level of the
repressor R, and MR = 100 KΩ represents the maximum level
of R, achieved when VR is maximal. The dissociation con-
stant for the repressor binding was chosen to be K = 10 KΩ,
the transconductance gm0

= 150 μS, and the gain of block 2
AmRNA = 1 and AProtein = 3. The transfer function of block
4 ensures that the maximum value of VR is converted to NR =
100, and the pulse width TP ensures that maximumNR sets the
memristance to boundary value ROFF .

Fig. 8(d) shows MATLAB simulation results of the delay-
induced oscillator model presented in [53]:

dR

dt
= α · C0

C0 +R (t− τ)
− β ·R− γ · R0

R0 +R
, (26)

where R is the number of repressor molecules, τ is the delay
time, α is the production rate of the repressor, β is the rate
of degradation due to dilution, R0 is the dissociation constant

for repressor-protease binding, and γ is the maximum rate of
degradation due to protease. It can be seen that with proper time
and amplitude scaling, our simulation results are compatible
with the biological experiments in [51] and the mathematical
model in (21) and in [53].

C. P53 Pathway

The p53 network is perhaps the most important pathway
involved in preventing the initiation of cancer. The levels of the
p53 protein and its activity are upregulated in response to various
stresses such as DNA damage and hypoxia. Active p53 initiates
different transcriptional programs that result in cell cycle arrest,
cellular senescence, or apoptosis. The core regulatory circuit of
p53 consists of the protein p53 and the E3 ligase protein, Mdm2.
The proteins p53 and mdm2 form a negative feedback loop,
in which p53 positively regulates mdm2 by activating Mdm2
transcription and Mdm2 negatively regulates p53 by promoting
its ubiquitination and degradation as shown in Fig. 9(a). Negative
feedback loops, such as that between p53 and Mdm2, are motifs
found far more often than predicted by chance in biological
networks. Therefore, we show as a proof-of-concept the ability
of our circuits to simulate the negative feedback loop between
the tumor suppressor p53 and the oncogene Mdm2.

Fig. 9(b) shows the block’s connectivity used to model the
negative feedback between p53 and Mdm2. First, we program
the gene regulatory (block 1) model to behave as an activator
(Fig. 3(a)). Block 5 generates a voltage Vp53 through a simple
RC circuit which models the level of the protein p53. Second,
the outputs of block 2 (Translation-Transcription) and block
5 are inserted to block 6, which models the dynamics of the
Michaels–Menten equation and captures the binding between
p53 and mdm2. This block can be implemented as a translinear
circuit as given in [3], [19] or as KVL/KCL circuit as shown
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Fig. 10. MATLAB simulation results of the negative feedback interaction
between p53 and mdm2 in cancer pathways. (a) Deterministic model and (b)
stochastic model. (c-d) Simulation results of the deterministic and stochastic
model in [44], respectively; p53 is in black and MDM2 is in red.
Source: G. B. Leenders and J. A. Tuszynski [52]. Copyright 2019 by Leenders
and Tuszynski.

in Fig. 3. Then, the output of block 6, which is the free p53,
is converted to programming pulses (NP ) through the block 4
and returned in a feedback loop to block 1 to act as an activator.
The control block runs the network in reading and programming
modes and switches between three states as shown in Fig. 9(c).

When the system is in reading mode (state 1, state 2, state 3
or state 4), at the beginning switches S2, S3, S4 are open and

S1 is closed. Block 1 determines the promoter activity, which
is high or low if the level of p53 is high (state 4) or low if
the level of p53 is low (state 3). At the same time, block 5
generates the protein p53 (Vp53) through a simple RC circuit.
Then, switch S3 closes and the steady state outputs of block 2
(Vmdm2) and block 5 (Vp53) are inserted to block 6. When the
system switches to programming mode (state 5), the switches
S1, S3 are open and S2, S4 are closed. The output of block
6 (free p53 - Vp53free

), which acts as an activator for mdm2,
is converted to programming pulses (Np53) through block 4.
These programming pulses set the memristance of Mp53 in
block 1. If the level of free p53 is high, Mp53 is programmed
to high resistance. On the other hand, if the level of free p53
is low, Mp53 is programmed to low resistance. In addition, the
memristor MR is programmed to high (Bias =′ 1′) if a high
level of RNAp is bound to the promoter or to low resistance
(Bias =′ 0′) if the basal level RNAp is bound to the promoter.
In our model, a high level of RNAp binds the promoter if
the level of free p53 is high. In addition to the bias pulse, a
stochastic number of pulses (NRNAp) can be generated and
added to include stochastics in the network as shown in Fig. 8(c).
In this model, the reading time was chosen to be 100x the
programming time (Fig. 9(c)) to maintain continuous operation
of the circuits (programming time is 10 μsec and reading time is
1 msec).

For the simulation of this system, we set the total number of
DNA binding sites that can bind p53 to DT = |200 mV|. The
memristance MP53 ∈ [2 KΩ− 100 KΩ], where MR = 2 KΩ
represents a basal level of the free p53 and MR = 100 KΩ
represents the maximum level of free p53. The dissociation
constant for the p53 binding was chosen to be K = 10 KΩ,
the transconductance gm0

= 150 μS, and the gain of block 2
AmRNA = 1 and AProtein = 3. The transfer function of
block 4 ensures that the maximum value of p53 is converted to
Np53 = 100, and the pulse width TP ensures that Np53 = 100
sets the memristance to the boundary value ROFF . The current
source which represents the maximum generated level of p53
is set to Ip53Total

= 200 mV, and τ = Rp53 · Cp53 was chosen
such that VP53 reaches steady state quickly.

Fig. 10(a-b) show the deterministic and stochastic simulation
results of our model, respectively. Fig. 10(c-d) show the corre-
sponding results from the model presented in [52]. It can be seen
that our simulations are compatible with the biological mathe-
matical models that have been developed to explain p53-mdm2
oscillations [52], [54].

VI. CONCLUSION

We demonstrated the analogies between memristive devices
and biochemical reactions at the nanoscale level and showed
that such devices can capture the non-linear and stochastic
behavior of biochemical reactions. Both systems are non-linear
and controlled by time-dependent internal state variables which
set the fraction between two boundary states. Programming
pulses affect the memristor state similarly to the way enzyme
concentration affects biochemical reactions. The time to form
a new complex and the delay time of switching memristors
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both follow a Poisson distribution. In accordance with the afore-
mentioned analogies and similarities, memristor-based circuits
were designed to model processes within a living cell, including
induction by small molecules, activation, and repression by
transcription factors, hybrid promoters, cooperative binding, and
transcriptional and translational regulation of gene expression.
Two genetic circuits, the delay induced-oscillator and negative
feedback interaction of p53-mdm2 in the p53 pathway, were
modeled and simulated as a proof-of-concept. The capability
of the memristor-based circuit to capture the analog behavior
of biochemical reactions while digitally controlling the flow of
signals within the circuits simplifies the design and sheds light
on the inner mechanisms.

Several works in the field of cytomorphic circuits [3], [18],
[19], [21], [22] have quantitatively mapped the exact chemical
differential equations to current-mode circuits. The simulation
of a biological system with this approach is carried out by solving
the differential equation using analog circuits. The accuracy of
the results is a function of the accuracy of the mathematical
models and that of the analog circuits. Since biological systems
are non-linear, large-scale, stochastic, and very complex, the
mathematical models that describe them will not have perfect
accuracy. It is moreover almost impossible to construct all the
quantitative models and complete their verification and valida-
tion. As for the accuracy of the analog circuits, these generally
suffer from mismatches as well as process and temperature
variations. In addition, for a relatively low number of molecules,
the cellular noise in genetic circuits might be high enough such
that it masks the signal (noise higher than signal). In that case,
the quantitative model will provide no additional information.
Therefore, when modeling large-scale gene networks, tissues
and organs, qualitative (behavioral) mapping, including stochas-
tics, may be sufficient.

In our future work, we intend to compare the circuits with bi-
ological experimental data and develop more advanced models.
In addition, we will use the memristor-based circuits to build
an accelerator for modeling large-scale biochemical reactions
and biological pathways. We will exploit the non-linearity of
the memristive devices and the properties of intrinsic stochastic
memristor-based circuits to build qualitative models of large-
scale biological systems. The biological pathways will be mod-
eled as multi-state systems that perform internal stochastic ana-
log computation at the DNA level and exchange information via
digital signals at the protein level.

To build such an accelerator, multi-state memristors are
needed. Filamentary RRAMs [45] exhibit promising features
for designing cytomorphic circuits: speed, scalability to the
nanometer regime, and ultra-low power consumption. The un-
derlying metal-insulator–metal structure is simple, compact,
CMOS-compatible, and highly scalable. Filamentary RRAM
requires only metal-oxides such as HfOx, AlOx, TaOx films,
which are already in use in CMOS fabs. The multi-level has
been demonstrated in most of these materials. The filament for-
mation/completion process is inherently abrupt. The switching is
achieved by moving only a handful of atomic defects; therefore,
large variability through Poissonian statistics (‘shot noise’) is

present. This internal stochasticity can be used to emulate noise
in gene expression, as an alternative to programming the device
with a random number of pulses. Other non-volatile memories
such as phase-change memory [55], conductive-bridging RAM
[56], and floating gate transistors can also be used in the design
the cytomorphic circuits.

Finally, we expect that the proposed models and circuits
will lead to the design of energy-efficient and noise-tolerant
cell-inspired electronic circuits. Such circuits will have a direct
impact on the fields of synthetic and system biology.
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