JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

SIMPLER MAGIC: Synthesis and Mapping of
In-Memory Logic Executed in a Single Row to
Improve Throughput

Rotem Ben-Hur, Ronny Ronen, Fellow, IEEE, Ameer Haj-Ali, Student Member, IEEE, Debjyoti Bhattacharjee,
Adi Eliahu, Natan Peled, and Shahar Kvatinsky, Senior Member, IEEE

Abstract— In-memory processing can dramatically improve
the latency and energy consumption of computing systems by
minimizing the data transfer between the memory and the
processor. Efficient execution of processing operations within the
memory is therefore a highly motivated objective in modern
computer architecture. This paper presents a novel automatic
framework for efficient implementation of arbitrary combina-
tional logic functions within a memristive memory. Using tools
from logic design, graph theory and compiler register allocation
technology, we developed SIMPLER (Synthesis and In-memory
MaPping of Logic Execution in a single Row), a tool that
optimizes the execution of in-memory logic operations in terms
of throughput and area. Given a logical function, SIMPLER
automatically generates a sequence of atomic Memristor-Aided
loGIC (MAGIC) NOR operations and efficiently locates them
within a single size-limited memory row, reusing cells to save
area when needed. This approach fully exploits the parallelism
offered by the MAGIC NOR gates. It allows multiple instances of
the logic function to be performed concurrently, each compressed
into a single row of the memory. This virtue makes SIMPLER an
attractive candidate for designing in-memory Single Instruction,
Multiple Data (SIMD) operations. Compared to previous work
(that optimizes latency rather than throughput for a single
function), SIMPLER achieves an average throughput improve-
ment of 435x. When previous tools are parallelized similarly to
SIMPLER, SIMPLER achieves higher throughput of at least 5x,
with 23x improvement in area and 20X improvement in area
efficiency. These improvements more than fully compensate for
the increase (up to 17% on average) in latency.

Index Terms—Memristor, memristive systems, logic design,
MAGIC, mMPU, von Neumann architecture, logic synthesis,
throughput.

I. INTRODUCTION

A basic assumption that has guided computer architects in
the design of almost all modern computing systems is the
separation between processing units and data storage units. In
almost any computing system today, data is processed by the
processor and stored inside the memory. Over the last few
decades, computer architects have enjoyed orders of magni-
tude improvement in computer performance, e.g., processor
speedup, reduced power consumption, and the downscale of
system dimensions. This trend line was fueled by impressive

R. Ben-Hur, R. Ronen, A. Eliahu, Natan Peled, and S. Kvatinsky are with
the Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion Is-
rael Institute of Technology, Haifa 32000, Israel. A. Haj-Ali is with the Faculty
of Electrical Engineering and Computer Science, University of California,
Berkeley, California, USA. D. Bhattacharjee is with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore (E-
mail: rotembenhur@campus.technion.ac.il, shahar @ee.technion.ac.il).

This research is partially supported by the ERC under the European Union’s
Horizon 2020 Research and Innovation Programme (grant agreement no.
757259), and by the Israel Science Foundation grant no. 1514/17.

technological achievements in the two principal computer
components, the processor and the memory. Nowadays, how-
ever, it seems that both units have reached a scaling barrier,
and that data processing performance is now limited mostly
by the inevitable need to transfer data. The energy and delay
associated with this data transfer are estimated to be several
orders of magnitude higher than the cost of the computation
itself [1f]. This data transfer bottleneck is known as the
memory wall.

Numerous methods for alleviating the memory wall have
been explored. The most common method is to integrate
several levels of cache memory near the processor. Cache
memories can significantly reduce the amount of data trans-
ferred between the processor and the memory [2], but do
not fully eliminate this need. A relatively more recent (and
less prevalent) approach is to integrate processing units within
memory elements. The idea of combining processing units
within DRAM and SRAM cells was explored in [3[]-[5].
However, the potential benefits of in-memory computing were
not fully exploited in these works, as they still required data
transfer between storage and processing elements. In most
common technologies, conventional memory cells are in fact
ill-suited for performing direct computations.

The breakthrough in the field of in-memory computing came
with the emergence of new memory technologies that can be
used to perform logic operations, in addition to their traditional
data storage capabilities. Some of these technologies are based
on novel electrical elements called memristors [[6]. Memristors
are used to modulate data into resistance, where high and
low resistances represent logical ’0’ and ’1°, respectively.
Memristors are actually passive elements with very promising
capabilities. They can change their resistance as a result
of the voltage applied across them, and their high density,
non-volatility, low power consumption and CMOS fabrication
compatibility [7]], [[8] offer huge potential improvements over
current cell technologies. Furthermore, memristors can be
used to perform logic operations, enabling processing within
the memory [9]-[12]. Resistive random access memories
(RRAM) [13] have paved the way for combining processing
and memory, since they allow the same physical entities to be
used for both [9]-[12]].

An attractive approach for performing logic within a con-
ventional memristive memory array is stateful logic, where
logical states of logic gates are represented by resistance and
the logic gates are constructed solely by memristors. The
inputs of a logic gate are the logical states of the memristors
before the execution of the logical operation associated with

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

the gate. Likewise, the output of the gate is the state of
the memristor after the execution of the logical operation
associated with the gate.

Several stateful logic families compatible with memristive
memories have been proposed in this context [14], [15]. A
leading candidate among these is Memristor-Aided loGIC
(MAGIC) [16]. MAGIC has been shown to outperform com-
peting methods [17], while enabling a full implementation
within a standard memristive memory array. The basic MAGIC
gate executes a logical NOR operation. Since NOR is a
complete logic function, a MAGIC NOR gate is sufficient for
the execution of any logical operation within the memory:
the desired logic function is divided into a sequence of
MAGIC NOR operations. In what follows, we refer to a single
execution of a function with specific inputs as a computation
instance (or as an instance). MAGIC NOR gates can be
applied anywhere within the memory array, using the same
cells and structure, where the stored data functions as input
for the logical operation.

The integration of data storage capabilities with MAGIC-
based processing within memristive memories has led to the
development of the memristive Memory Processing Unit
(mMPU) [18]]. This novel architecture replaces conventional
DRAM memory with a memory that is also capable of
performing general-purpose computing. The mMPU consists
of standard memristive memory arrays, with only minor
modifications to the CMOS periphery and control circuits to
allow support for computations as well as conventional data
read and write operations. The mMPU is therefore completely
compatible with standard von Neumann architectures, as it
can operate either as a hybrid memory-processing unit or
as a standard memory. Nevertheless, the advantages of a
memristive crossbar array, e.g., density and non-volatility, are
maintained in the mMPU architecture.

To perform a computation within the mMPU, a compute
command is received by the mMPU controller [19]. The con-
troller interprets the command and converts it into a sequence
of MAGIC operations. It then sends the corresponding control
signals to the memristive memory arrays to perform the actual
logic operations. To realize the full potential of the mMPU,
the desired computation must be converted into an efficient
sequence of MAGIC operations. Such a sequence should
involve a small number of computational steps, utilize only a
limited area within the array, and consume low energy. Several
such sequences were proposed for some popular arithmetic
operations and shown to be relatively efficient. The studied
functions include fixed-point addition and multiplication [17],
[201], [21]], and convolution [22]]. However, all of these works
relied on manual crafting and optimization of the sequence of
operations, designed for a specific logical function. Obviously,
this is neither a general, nor optimal, design methodology.
Furthermore, manual designs are naturally time consuming and
error-prone, hence prolonging the time-to-market of any future
product.

Recent work has focused on automatic conversion of ar-
bitrary logical functions to a sequence of executions within
the memory. In [23]], [24], tools were developed to generate
execution sequences for arbitrary logical functions, while

minimizing the computational latency in a memristive memory
setup. Latency is minimized for a single computation instance
by exploiting parallelism features of in-memory stateful logic
operations so to execute several NOR operations within
an instance in a single cycle. However, because multiple
rows and columns must be utilized, this optimized latency
comes at the cost of disabling significant areas within the array,
since many cells are unused for the computation. Additionally,
numerous instances of the same logical function within a given
memory array can only be executed serially in this method.

In this paper, we take a different approach: we improve
the performance of the mMPU by maximizing the throughput
rather than minimizing the latency. We work under the Single
Instruction, Multiple Data (SIMD) [2] concept, exploiting
parallelism among different computation instances rather
than optimizing a single instance of a given logical function.
In this model, the mMPU will perform a series of identical
computations (differing only in the input data) on many com-
putation instances. We present a novel synthesis and mapping
tool called SIMPLE (Synthesis and In-memory MaPping of
Logic Execution in a single Row). SIMPLER unleashes the
full potential of parallel computations offered by in-memory
executions within a memristive array, in the SIMD setup.

As a synthesis tool, SIMPLER outperforms previous work
by performing in parallel multiple instances of computations
associated with a given logical function. Thus, although the la-
tency of a single computation instance may be slightly higher,
the overall throughput of the array increases dramatically
thanks to the ability to compute each instance in a different
row in parallel. Such a configuration allows SIMD operations
to be supported efficiently in an mMPU setup for the first
time. The magnitude of this paradigm change is illustrated
by a simple, realistic, example: a system consisting of a 512-
row memory array can execute 512 computation instances in
parallel. Even at 4x longer latency, the system provides an
astonishing 128 higher throughput.

SIMPLER represents a fundamental shift in the design of
in-memory computing systems. New challenges that arise in
this novel, throughput-oriented, approach are all solved using
SIMPLER. In this context, SIMPLER makes the following
contributions:

1) Automates the process of generating in-memory MAGIC
NOR execution sequences to improve the throughput of
the computation and allow efficient SIMD executions.

2) Compresses relatively complex computations into a sin-
gle finite size memory row by efficient reuse of cells
when necessary.

3) Reduced tool complexity. SIMPLER uses efficient com-
piler like register allocation technology to generate an op-
timized mapping for huge computations within seconds.

Compared to previous work that optimizes latency rather
than throughput for a single function ([24], [25])), SIMPLER
achieves an average throughput improvement of over 435x
for a memory array with 512 rows. When the previous tools
are parallelized in a similar manner to SIMPLER, SIMPLER

The SIMPLER tool may be found at:
https://github.com/RotemBenHur/SIMPLER-MAGIC.git

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

vy vy gL
A

(

\Cﬁf? b@

-
s
\Gat? C

Fig. 1. Parallel execution of three aligned MAGIC NOR gates.

offers at least 5x higher throughput and 23x smaller area
usage.

II. PRELIMINARIES AND MOTIVATION

All in-memory computations in this work rely on the basic
MAGIC NOR operation. We first explain MAGIC and how
it motivates our choice to optimize throughput in Section
Then we describe a motivational example to explain
and support this choice in Section Next, we survey the
relevant related work in Section [[I=C} Finally, we formally
define the problem this paper solves in Section [[I-D]

A. Preliminaries and Definitions

The MAGIC NOR gate is performed by applying voltage(s)
to the input(s) and output memristors. The state of the output
memory cell changes in accordance with the logical states of
the memristors. The advantages of MAGIC over other stateful
logic techniques include the separation between the input(s)
and output memristors, the need for only a single execution
voltage (called V;), and the lack of additional periphery
elements [17]. The N-input NOR gate operation requires two
steps (clock cycles):

(1) A logical ’1” is written to the output memristor by applying
a voltage, denoted V,,1, across it.

(2) Vy is applied to all NV inputs, and the ground is connected
to the output.

A single-input NOR is a NOT gate; hence, both N-input
NOR and NOT gates may be executed by MAGIC. Figure [I]
illustrates the in-memory execution of three MAGIC NOR
gates, each using three cells: two for the inputs and one for
the output. The inputs and output of a single gate need not be
located in adjacent cells; the only requirement is that they be
located on the same row (M AGIC' row operation), or column
(MAGIC column operation). To perform both MAGIC row
and MAGIC column operations, a transpose memory [17] is
required.

Since a NOR operation spans the complete set of Boolean
operations, a MAGIC NOR gate is sufficient to execute any
desired logic function. Hence, MAGIC NOR may be used
as the basic computing element for all kinds of processing
within the memory by dividing the desired function into a
sequence of MAGIC NOR operations (execution sequence).
The execution of a sequence of two two-input MAGIC NOR
gates is shown in Figure 2] These basic NOR operations
are performed serially using the memory cells, where the
output of the first MAGIC gate acts as one of the inputs

g1

AAA
oA A AAA

Fig. 2. Serial execution of two MAGIC NOR gates in a single row.

(a) The two-gate netlist.

(b) Execution of the netlist in three steps (clock cycles):
(1) Writing a logical "1’ to the output memristors (initialization).
(2) Gate 1 execution - NOR(I N1,I N»).
(3) Gate 2 execution - NOR(I N3,0OUTY).

9’ A ‘17 A

of the second gate during the second stage (cycle) of the
computation. Serially executing all the gates in the sequence
may be time consuming. Aligning the inputs and outputs of
different MAGIC NOR gates allows them to be executed
in parallel, as illustrated in Figure [T} Wisely exploiting this
property may either improve the latency of a logic function or
the throughput of a SIMD (Single Instruction, Multiple Data)
operation.

The latency may be improved by parallelizing several gates
of the NOR execution sequence belonging to the same single
instance, using multiple rows for the execution of a single in-
stance [23]]. The throughput may be improved by parallelizing
the execution of many instances of the same logic function:
each instance is placed in a different row.

In our context, throughput is defined as:
#instances

Throughput = ———, (1)
Latency
where #instances is the number of instances of the function
performed in parallel (=#rows), and Latency is the number
of clock cycles required for the computation. The throughput
increases linearly with the number of instances.

When the row is wide enough to hold all the inputs and gates
required to execute the desired function (number of columns
> number of inputs + number of gates), the computation fits
easily into that row, and the number of execution steps (clock
cycles) is equal to the number of gates. However, if the row is
not wide enough (number of columns < number of inputs +
number of gates), the computation must be split into different
rows or cells must be reused.

A cell can be reused when it stores data no longer needed
for the rest of the computation, i.e., all its consumers have
already been computed. A cell must be initialized before reuse.
Because MAGIC requires that a logical "1’ be initially written
to the output memristor, a cell is re-initialized by writing
a ’1’ to it. We assume that all desired cells within a row
can be re-initialized in a single clock cycle, by applying

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

(b) 1] 2

gl ||| g2

(c)

N
w
D
(%]
(<]
~N
o
o

10|11|12|13 |14 |15 g10

=

R
o

W

Kel

=

gl, | 82, | 83, | g4, | 85, | 86,

I NN |BR|WIN|F
o
)}

g7, | 88, | 89, |810,|g11,|g12, gl2

N

>
~N

w
~N

gl, | 82, | 83, | g4, | 85, | 86,

g7, | 88, | 89, |810,|gl1,|g12,

=
o

g8

=
=

gll

N | Ay [By | Cin | 81y | 82y | 83w | 84n | 850 | 860

87y | 88y | 89 810|811y (812,

Fig. 3. (a) Single-bit full adder (1-bit FA) netlist. (b) A single 1-bit FA execution using an 11 X 3 array. Each green cell initially stores the inputs. Each
orange cell gi stores the result of gate i. Gates g1 and g2 (yellow rectangles) are executed in parallel during the first clock cycle, and gates g4 and g5
(gray rectangles) are executed in parallel during the second clock cycle. All other gates are executed serially. The total execution time is therefore 10 clock
cycles, but parallelizing instances is difficult. (c) N 1-bit FA operations executed in parallel. Each FA operation is allocated to a single row. Each green cell
initially stores the inputs. Since they are all aligned, all N FA operations are executed concurrently. Each orange cell gi; stores the result of gate 7 of the
jt" FA operation. All results of gij of a specific ¢ for all j (each orange column) are executed in a single clock cycle. Since there are enough columns for
computation, no initialization cycles are necessary, and the execution time is 12 cycles, in accordance with the number of gates.

Column Number

123 456 7 89 Nﬁ\r/:“.:’eer
(a)|A|B|Ci|1|1|1|1|1|1| Initial State 0
(b) [A]B [Cle1]ez]es]ealeeleg] |, Eectionof 1

gates 1,2,5,4,6,8

(© [ale]c]1]1]es|1[e6lgg| mitiatizations 7

Execution of

awi|

(@ [a[B[cle7lesles|eofeeles] “rreeras B0
(e) | A| B |Ci| 1 | 1 |85|39| 1 |38| Initialization 2 11
() [ale[c]s[c]es|goleic[gs| FExecutionof ;44

gates 11, 10,12

Fig. 4. Execution of the /-bit full adder netlist using a single row of the
memory with 9 columns, following the execution order detailed in Figure EI
The states of the row during different stages of the computation are: (a)
The initial state of the row. (b) Serial calculation of the first 6 gates.
(c) Initialization of the 3 gate results not required as inputs for future
computations. (d) Serial calculation of the next 3 gates. (e) Initialization
of 3 gate results not required as inputs for future computations. (f) Serial
calculation of the last 3 gates.
Vw1 to their columns and connecting the row to ground.
Re-initializations that take more than a single-clock cycle is
addressed in Section [Vl The overall number of total cell
initializations does not change because of cell reuse. Every
MAGIC write has to be preceded by a cell initialization, so
the total number of writes remains the same regardless of
cell reuse; only their timing is different. Depending on the
desired computation and the number of cells available for it,
cell reuse may or may not suffice. The execution order of the
gates of a given computation determines the number of cells
that can be reused at a given time; thus, a mapping will be
found only if the execution order of the gates is efficient. For
large logic functions, all of the cells might still be required for
re-initialization, because there are no unneeded cells to free.
Consequently, the tool fails to find a possible mapping.
Since the row has to be large enough for complex execu-
tions, the size of the memory array limits the complexity of the

computations that can be executed in-memory. In conventional
DRAM memories, the smallest unit is called a MAT. Usually,
a DRAM MAT consists of an array of 512 x 512 memory
cells. In memristive memories, a MAT may contain up to
512 x 512 cells in transistor-less memristive arrays and up
to 2048 x 8192 in I1TIR arrays [§8]. Using a single MAT
to execute a given function yields better latency and energy
consumption. In contrast, distributing a single computation
instance over more than a single MAT requires data transfer
between the MATS, significantly reducing the benefits of in-
memory computation [26]. However, the same computation
can be parallelized over different data in different MATs. In
this paper, we consider a MAT size of 512 x 512. This size
allows us to maintain the conventional DRAM structure while
supporting in-memory execution of relatively large functions
(large number of MAT columns) and improving the parallelism
(large number of MAT rows). To show the potential of execut-
ing larger functions, we report some results with a 1024 x 1024
MAT size.

B. Motivational Example

To further clarify the definitions and explanations from the
previous subsection, we describe an example of a single-bit
full adder, consisting of 12 gateﬂ as described in Figure .
To improve the latency of a single instance of the full adder, it
is executed using an 11 x 3 memory array. Two pairs of NOR
operations are parallelized, and the execution takes 10 clock
cycles, as shown in Figure [3p.

The throughput of the full adder can be improved by
executing N instances in parallel using an N x 15 array.
Each instance is executed using a single row, and the number
of execution steps (clock cycles) is 12, in accordance with
the number of NOR and NOT gates (independent of the
value of N), as demonstrated in Figure Bk. In this case,

2The best known full adder consists of nine two-input NOR Gates. We use
a 12-gate full adder to better explain various aspects of the SIMPLER tool.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

row stze = 15 columns = 12 gates + 3 inputs; hence,
no re-initialization cycles are required. A row with fewer than
15 columns is too small to execute all the gates. Cells must
be re-initialized in this case. If, for example, the instance is
executed using a 9-cell row, two re-initialization cycles will
suffice when the execution order is chosen wisely, as described
in Figure E} On the other hand, when the row size is less
than 8, re-initialization will not help, and no mapping exists,
regardless of the execution order.

C. Related Work

Techniques for mapping an execution of complex functions
into a limited-size MAT were previously proposed. The two
leading approaches are (1) to automatically improve the la-
tency of a single computation instance by executing different
gates of the same instance in parallel, and (2) to manually
improve the throughput by executing different instances of the
same logic function in parallel.

In our previous work, we developed SIMPLE MAGIC
(Synthesis and In-memory MaPping of Logic Execution for
Memristor-Aided 10GIC) [23]], a tool for improving the latency
of a single instance by using both MAGIC row and column
operations to exploit the parallelism within that instance.
Without reusing cells, SIMPLE maps the gates of the same
instance of a function to the memory array so that as many
gates as possible of the same computing instance are aligned
in either rows or columns; therefore, many gates can be
performed in parallel. To achieve the best mapping, SIMPLE
solves an optimization problem that minimizes the latency,
area or/and energy. SIMPLE improves the latency by 48%
on average as compared to a single row execution (without
reusing cells).

Motivated by the computational burden of solving opti-
mization problems, Yadav et al. [24] suggested heuristics for
finding a mapping. Instead of generating the mapping with
the maximum number of aligned gates (thus, with maximum
parallelism and minimum latency), the unaligned gate outputs
required as inputs for other gates were moved by adding copy
cycles. Their method resulted in a latency increase of 4.9%
and an average area increase of 4.7x as compared to serial
execution using a single row.

To alleviate the copy cycles overhead, the authors of SAID
[25] proposed an improved heuristics that uses a Look-Up
Table based synthesis, based on a Sum-of-Products (SoP)
representation, to increase the number of gates executed in
parallel. SAID reduces the latency by 28% compared to serial
execution using a single row, but increases the area by 8.6x.

In [17]], the authors proposed that each logic function
be mapped into a single row. Parallelism within a single
computation instance is not allowed, meaning that the gates
are executed serially. Therefore, the latency of the execution
(in terms of the number of clock cycles) equals the number
of NOR and NOT gates in the execution sequence of that
logic function, which is not minimized. Additionally, cell
reuse is not supported. Unfeasibly wide rows are thus required
to execute large logic functions. In [22]], manually crafted
algorithms that reuse cells are proposed to solve this problem.

Cell reuse allows larger functions to be feasibly executed
inside the size-limited memory arrays. However, manual im-
plementation of complex algorithms (with and without cell
reuse) is very tedious and error-prone. The variety of functions
they can fit in a restricted memory row size is therefore quite
limited. In contrast, SIMPLER automatically generates the
execution sequence that allows maximum cell reuse when nec-
essary. For example, SIMPLER reduces the minimum required
number of cells for the execution of an 8-bit multiplier from
77 (in [22])) to 65, and reduces the execution latency using a
row size of 77 cells from 918 cycles to 699.

Efficient in-memory execution of SIMD operations yields
significantly higher throughput than low latency execution of
a single computation instance. This motivated our choice to
automatically map the function execution into a single row.

D. Problem Definition and Complexity

The problem we address in this paper is similar to the
problem discussed in [27]. The problem is generating an
execution sequence FES that uses the minimum number of
memory cells (smallest row). It is formally defined as follows:

Problem Statement 1 : Given a data dependence graph G
that represents a logical function, derive an execution sequence
ES for G that is optimal in the sense that the number of
memory cells required for executing the graph is minimal.

For a general DAG, the problem is known to be NP-
Complete [28]. We therefore propose heuristics to find an
optimized mapping in a linear complexity.

III. SIMPLER MAPPING ALGORITHM

The SIMPLER flow is divided into two main stages, as
shown in Figure 5}

1) ABC Synthesis Tool: Similarly to [23]], the first stage is
the ABC synthesis tool [29]] with a modified cell library. ABC
receives an arbitrary logic function in a .pla or .blif format,
and produces a NOR and NOT netlist in a verilog format,
while minimizing the number of gates.

2) SIMPLER Mapping Tool: The second stage is the SIM-
PLER mapping tool, an in-house Python script that does the
following:

(i) Receives the minimized NOR and NOT netlist and the
number of cells within the memory row dedicated to the
computation.

(i) Maps all netlist gates to that single row by determining
the locations (column/cell number) of each input and
output of the gate and the timing (clock cycle number)
in which it is executed.

(iii) Adds re-initialization cycles when cells must be reused.

In the next subsections, the SIMPLER mapping algorithm
is described. Section discusses the assumptions and
considerations for optimizing the in-memory execution. In
Section the mapping of the netlist gates into the memory
row is described. The complexity of the algorithm is then
discussed in Section [I-C|

A. Principles for Efficient Mapping into the Memory

The mapping of a computation to the memory cells is
produced by first determining the execution order of the gates

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

GATE inv ..

Customized |[PyEmunSa

standard cell

Column Number
sssssssssss

[alelclalalafaa[a]a]

module ckt(
. library (.genlib)

A 4

ABC Synthesis
Tool

endmodule

Logic function
(.blif / .pla)

»

Minimized NOR and
. NOT netlist (.v)

(Lo [c el leleslele]
@
Spatially independent

|:> execution sequence in
a single row

>
3
M [
- [[
[[[
[[
i

Mapping Tool

To a single row

Fig. 5. SIMPLER general flow. The ABC synthesis tool receives an arbitrary logic function and a modified library, and produces a minimized NOR and
NOT netlist. An in-house Python-based mapping tool receives the netlist along with the possible memory array size and produces the execution sequence.

Fig. 6. A reduction from one-bit full adder netlist (Figure Bp) to a directed
acyclic graph (DAG), where each vertex represents a gate and each blue
edge represents a wire. The green arrows represent the direction the signals
propagate in the original netlist. The F'O and the C'U are, respectively, the
Fan Out and the Cell Usage values of each vertex. The order of the execution
sequence is determined according to the C'U values.

and then deciding to which free cell each gate is allocated. The
order influences the number of cells required for the entire
execution, as some gates may be freed earlier than others;
thus more cells may be reused during prior stages of the
computation. To minimize the required number of cells, we
use a register allocation technique that minimizes the number
of registers necessary for a computation [30]]. This technique
requires first performing a reduction from the NOR and NOT
netlist to a DAG (Directed Acyclic Graph):

vertex; < gate;

2
3)
for all ¢ gates in the netlist. Therefore, the DAG’s roots are
the gates whose outputs are connected only to the function
outputs, and its leaves are the gates whose inputs are connected
only to the function inputs. Additionally, each vertex receives
a Fan Out (F'O) value according to the number of vertices its
output is connected to. For example, a reduction of the one-bit
full adder netlist from Figure 3p to a DAG is shown in Figure
6

To maximize the number of cells that may be reused at a
given time, the following two principles should be considered
while determining the execution order:

e Use Depth-First Search (DFS) rather than Breadth-First
Search (BES) [31]], ¢.e., start from the root node(s) and
traverse along each branch as far as possible. A node V is
inserted into the execution sequence on the way back up

edge; < wire;

if either: (1) V is a leaf, or (2) all children of V' are in the
sequence. For example, if the execution order of the DAG
in Figure [6] is determined according to BFS: g1 — ¢2 —
g4 — g3 — ¢b, then after five cell allocations, only two
may be reused (g1, g2). However, with DFS, the order
is g1 = g2 — gb — g4 — g6, and then after five cell
allocations, four cells may be reused (g1, g2, g5, g4).

o The quality of the execution order depends on the order
of traversal among the node’s children. Our heuristic
for determining the order is to first execute sub-graphs
that require more cells for their execution. For example,
in Figure [] g6 has two sub-graphs: g5 and g4, which
require, respectively, execution of three cells and a single
cell. If sub-graph g¢b is executed first, then at least three
cells are required for the execution of g6 (g5, g4, g6, in
the cycle that g6 = NOR(g4, g5) is executed, since the
cells of g1, g2 are reused). On the other hand, if sub-graph
g4 is executed first, then at least four cells are required
for the execution of g6 (g4, g1, g2, g5, in the cycle that
g5 = NOR(g1, g2) is executed).

To determine the minimum number of cells required for
the execution of each sub-graph, our algorithm follows the
generalized Strahler algorithm proposed in [30]], which uses
the Strahler number [32] to determine the minimal number
of registers needed to compute an arithmetic expression tree.
In the SIMPLER algorithm, this number is called Cell Usage
(CU), and it is calculated for each vertex. The C'U represents
an estimation for the number of memory cells known to
be sufficient for executing the sub-tree of each vertex. As
previously stated, the execution of a MAGIC logic gate also
requires a memory cell for its output. Therefore, CU + 1 of a
vertex is the estimated sufficient number of memory cells for
the entire execution of that vertex (after execution of all its
descendants and reusing cells when possible). For example, as
discussed in the previous paragraph, to execute g6 from Figure
[l three cells are enough when choosing the right execution
order (CU(g6) = 2).

The Strahler algorithm [30] is intended for trees only.
However, in our case the netlist is reduced to a DAG (Directed
Acyclic Graph), since some gates may be connected to several
parents or ancestors, ¢.e., their F'O is larger than 1. As a result,
the CU + 1 value does not predict the minimum number of
cells accurately. For example, CU(g9) = 2, but when the
execution order is g1 — g2 — g5 — g4 — g6 — g7 —
g3 — g9 — g8, four cells are required when ¢9 is executed.
The reason is that FFO(g6) = 2; thus, while executing ¢9,

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

g6 is still needed for the execution of g8. Therefore, g6 may
not be freed after g7 is executed. Consequently, during the
execution of g9, four cells are occupied by the following
gates: g6, g7,g3,99. As a result, determining the execution
order according to the Strahler number alone, while perfectly
correct, does not necessarily produce the optimal execution.
More optimal cell ordering should be evaluated in future work.

B. Mapping Execution Sequence of Logic Functions into a
Single Row

The mapping algorithm, presented in Algorithm [T} receives
the netlist as a directed graph G = (V, E) representation (V'
and FE are, respectively, the sets of nodes and edges), along
with the number of cells dedicated for the computation (row
size), and produces a mapping of the nodes to that limited-size
row. In the initial state of the memory, when a computation
is started, all inputs are stored in a single row, in adjacent
cells. (This is not in fact mandatory for in-memory execution
of MAGIC, but the algorithm works this way for simplicity
and without loss of generality since the locations of the inputs
are irrelevant because the mapping is arbitrary.)
The mapping is done by traversing all vertices of the DAG
twice: (a) once to determine the execution order by calculating
a CU value for each vertex, and (b) again, using the order
imposed by the CU values, to allocate the vertices into the
available memory cells. Both traversals are done by starting
from all the DAG roots (the gates that produce an output
of the netlist, e.g., vertices g12 and g11 in Figure [6) to the
leaves (gates connected only to the input(s) of the netlist, e.g.,
vertices g1 — g4 in Figure [6).
The stages of the mapping are:
1) Stage 1 - Compute the Cell Usage value for each vertex:
In this stage the CU value is computed for each vertex, by
function ComputeCU, as detailed in Algorithm [2| The CU is
computed by traversing all of the vertices, starting from each
one of the roots, and continuing to the leaves. A C'U value
is assigned to a vertex only if all its children were already
given a C'U value. The CU of a given vertex V is determined
according to the following rules:
o If V is a leaf (:.e., all of the inputs of V' are also inputs
of the function): CU(V) = 1.

o Else: Sort all N children of V by descending order of
their CU values. Then:
CU(V) = mazx{CU(Venia,s)) +1— 1}, Vi = (1 to N).
Explanation: when executing child ¢, all ¢ — 1 children
must already be allocated, and CU (V¢pi1a,i) is the es-
timation of the number of cells necessary for executing
child ¢’s sub-tree. Therefore, for the execution of child 7,
the number of cells is CU(Vepiia,i) + % — 1. Therefore,
the number of cells sufficient for executing V’s sub-tree
CU (V) is max{CU(Vepira,i)) +i—1}, Vi = (1 to N).

An example of the C'U values of a single-bit full adder is
given in Figure [6]

2) Stage 2 - Allocate the gates to the memory cells:
In this stage, the gates are allocated to the memory cells,
and each allocation is assigned an execution clock cycle
number ¢. This number is assigned by functions AllocateRow
and AllocateCell, which are detailed in Algorithms [3] and [4]

respectively. The graph is traversed again, starting from the
roots, and continuing to the leaves. The child with the larger
CU value is traversed first. For example, when traversing the
graph in Figure [6] ¢5 is traversed before g4 from ¢6, since
CU(g5) = 2 > CU(g4) = 1. When a gate whose children
were already allocated to cells (i.e., executed) is reached, it can
also be executed (since all its inputs are ready). For example,
in Figure [6] the execution order when starting with the root
gl1 is either:

@gl >92—>9g5— g4 — g6 — g8 — g7 — g3 — g9 —
gll — g10 — g12

or:

®) gl - g2 — g5 — g4 — g6 — g7 — g3 — g9 — g8 —
gll — g10 — g12

since CU(¢8) = CU(¢9); thus no priority between them is
defined. In future work, priorities between vertices with equal
CU values and priorities between different roots should be
explored. The gate that is ready for execution is allocated to
a free cell, and ¢ is incremented by 1. If no free cells are
left, the cells that store the outputs of the gates that are no
longer needed are all re-initialized in a single cycle; thus ¢
is also incremented by 1. Consequently, there is more space
available for mapping the outputs of the next gates; thus, the
gate is allocated, with another increment of t.

To determine that the output of a gate is not needed as input
for future gates, the Fan Out (F'O) value is computed for each
gate. When a gate is allocated, the F'O values of all gates
connected to its inputs are reduced by one. Therefore, during
the initialization cycle, the cells of the gates with FFO = 0 may
be freed and reused, since they are not needed as inputs for any
future gate. For example, the mapping of a single-bit full adder
into 9 cells is given in Figure] The total number of cycles
is 14, 2 of which are dedicated for initialization. In the first
initialization cycle, gates g1, g2 and g4 are reused. However,
g5 and g6 cannot be freed yet, since FO(g5) = FO(g6) = 2
and during the first initialization cycle only one of their parents
nodes was executed (g6 is parent of gb and g8 is parent of
g06).

When all the netlist gates are mapped, the mapping tool
prints the produced mapping and the required number of
initialization cycles. When there is no possible mapping, the
tool reports it.

C. SIMPLER Complexity

We evaluated SIMPLER complexity and found it to be
O(|V']), where |V| is the number of vertices in the graph (#
of gates). The analysis is as follows (where |E| is the number
of edges (wires), and N is the row size used for allocation):

1) The maximum number of edges entering a vertex depends
on the type of gate used: 2 and 4 for NOR gates with,
respectively, 2 and 4 inputs. Hence |E| < 4 - |V|, or
O(|E]) < O(|V]).

2) We use DFS in both stages. Classical DFS has complexity
of O(|V| + |E|); hence, in our case it is O(|V]).

3) In stage 1, for each vertex we sort the incoming edges
according to the CU of the vertices they came from. Since
the number of incoming edges is limited to 2 or 4, this
is basically a (small) constant cost.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

Algorithm 1 SIMPLER MAGIC

Algorithm 2 Function computeCU

Inputs:

(1) Directed graph G = (VE) (G, V = {V1,..
NOT netlist, gates and wires, respectively).

(2) N = number of cells in the row (including cells for storing the function inputs and
outputs).

Output: A T-tuple, where T' is the number of clock cycles of the entire execution.
Each element of the tuple details the inputs & output of the executed gate along with
the cell numbers they are allocated to.

Initially: Without loss of generality, all Z netlist inputs are stored in adjacent cells of
a single row (columns (0 to Z — 1)). Therefore the number of cells dedicated for the
computation is N — Z.

-»V]v|} and E represent the NOR &

All variables are global (thus available in all functions):
Vie{l,...,| V |}: C(V;) < set of children of V;
Vie{l,...,| V |} P(V;) < set of parents of V;

ROOTs <« set of all roots of G

t=0\\ number of clock cycles

Vie{l,...,|V |} CUV;) =0

\\ CU(V;) is the Cell Usage value of V;

Vi€ {1,...,| V |} FO(Vi) =| P(V;) |

\\ FO(V;) is the Fan Out (= number of parents) of V;
e (L, .|V [} map(Vi) = 0

\\ map(V;) is the number of the cell/column V; is mapped to
Vi € {0,...,Z — 1}: UsedList.insert(cell(i))

Vi € {Z,..., N — 1}: AvailableList.insert(cell(i))

InitList <— &

\\ computeCU(V;) - Receives a vertex V; and computes its Cell Usage (CU)
(recursive function, thus when receives a root computes the CU value for all its
descendants):

\\ CU(V;) is the Cell Usage value of V;

\\ C(V;) is set of children of V;

\\ C(V;)) is child j of V;

int function computeCU(V;)

if CU(V;) > 0 then
\\ CU(V;) was generated already
return CU (V;)

else if C(V;) == ¢ then
\\ Vi has no children — V; is connected to
\\ function inputs only
return CU(V;) =1

else
for j = 1,...,|C(Vi)Ld0
CU(C(Vi)9)) « computeCU(C(V;)W))
end for

C'(V;) + sorted(C(V;))
\\ ’sorted’ sorts C(V;) by CU values in
\\ descending order indexed k
return max; {C'(V;)®) + k — 1}
end if
end function computeCU

\\ AvatilableList, UsedList and InitList are linked lists with double pointexrs

\\ Each cell number i (i € {0,...,N — 1}) of the row is represented
\\ by element cell(i), which is located in the corresponding linked list
\\ according to its state
\\ The cell states are :
\\ 1. available — a cell waiting to be used for the computation
\\ 2. used — an already used cell for the computation
\\ 3. init — a cell that may be reused but initialization is required
for all » € ROOT's do
computeCU(r)
end for
for all » € ROOT's do
if AllocateRow(r) == FALSE then
return FALSE \\ Cannot find mapping
end if
end for
return TRUE
\\ A mapping of the entire netlist is found

4) In stage 2, allocating a cell for a vertex involves searching
for a free cell and changing its state as needed. The
complexity of this search is O(1), achieved by using
linked-lists to link all cells with the same state.

All in all, SIMPLER complexity is linear with the number
of vertices in the graph. This low complexity results in a fast
execution time. As an example, SIMPLER maps a graph with
over 12K vertices, independent of the memory row size, in less
than 0.6 seconds on a client notebook (HP EliteBook 840, Intel
Core i7, 16GB RAM, 512GB SATA SSD).

IV. EXPERIMENTAL RESULTS AND EVALUATION

We evaluate the SIMPLER synthesis and mapping tool by
calculating the latency, throughput, area, and area efficiency
of each benchmark execution using the Python-based tool we
developed. Additionally, we compare SIMPLER to other tools
by assessing its ease of use and the time it takes to generate the
mapping. The netlists we use consist of N-input NOR gates,
where either: (1) N € {1,2}, i.e., NOT gates and two-input
NOR gates (NOR2), or (2) N € {1,2,3,4} (NORA4). The
evaluation consists of three parts:

1) Comparison to other mapping tools: SIMPLE MAGIC
[23]], Yadav et al. [24] (referred as YADAV for the rest
of the paper) and SAID [_25]. For each comparison, we
use the benchmark suites used by the original authors.
For both SIMPLE and YADAV we use NOR2 netlists,

Algorithm 3 Function AllocateRow

\\ AllocateRow(V;) - Receives a vertex V; and returns TRUE only if an
allocation is found for it and for all its descendants (recursive function):
\\ CU(V;) is the Cell Usage value of V;
\\ C(V;) is set of children of V;
\\ map(V;) is the number of cell (column) the V; is
\\ mapped to
\\ FO(V;) is the Fan Out (= number of parents) of V;
bool function AllocateRow(V;)
for all V; €sorted(C(V;)) do
\\ ’sorted’ sorts C(V;) by CU values in
\\ descending order
if map(V;) == 0 then
if AllocateRow(V;) == FALSE then
return FALSE
end if
end if
end for
if map(V;) == 0 then
\\ Vi is not mapped yet
map(V;) < AllocateCell(V;)
if map(V;) == 0 then
\\ Vi could not be mapped
return FALSE
end if
end if
return TRUE
end function AllocateRow

and for SAID we use NOR4, similarly to each work.
Tables [Il [l and [T list the results of the comparison with,
respectively, SIMPLE MAGIC, YADAV and SAID.

2) Evaluation of SIMPLER on the EPFL combinational
benchmark suite [33]]. EPFL is a quite large, modern
benchmark suite designed to challenge modern logic
optimization tools. The trade-off between the area and the
performance (latency and throughput) is examined. The
SIMPLER tool is very efficient and produces the mapping
for each of the EPFL benchmarks within seconds. The
SIMPLER EPFL results are given for both NOR2 and
NORA4. These results will be useful for comparison with
future work, and are detailed in Table

3) Comparison to Optimal SIMPLER (OptiSIMPLERE]): Op-
tiSIMPLER tries to determine the minimum area (in
terms of number of cells) required for the execution of

3The OptiSIMPLER tool may be found at:
https://github.com/debjyoti0891/arche. git

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

Algorithm 4 Function AllocateCell

\\ AllocateCell(V;) - Receives a vertex V; and returns the cell (column) number
it is allocated to, and 0 if it fails:

int function AllocateCell(V;)
FreeCell = AvailableList.GetFirst()
\\ List.GetFirst() returns the first element of List
\\ or ® when List is empty
if FreeCell == @ then
\\ No available cell; therefore, all init cells
\\ are initialized simultaneously :
if InitList.IsNotEmpty() == True then
\\ List.IsNotEmpty() returns True if List is not empty
\\ i.e., at least one cell ready for initialization exists
AwailableList.concatenate(InitList)
\\ Listl.concatenate(List2) concatenates List2 to Listl
InitList < &
FreeCell = AvailableList.GetFirst()
t+ = 1 \\ Initialization cycle — increment # of cycles
else
return 0 \\ No cells to initialize
end if
end if
UsedList.Insert(FreeCell)
\\ List.Insert(Element) inserts Element to List
AvailableList.Delete First()
\\ List.DeleteFirst() deletes the first element from List
\\ i.e., first available cell is now Used
t+ = 1 \\ Allocate to cell — increment # of cycles
for all Vi, € C(V;) do
\\ Update the FO value of the allocated gate :
FO(Vi)— =1
if FO(Vic) == 0 then
InitList.Insert(cell(map(Vy)))
UsedList.delete(cell(map(Vy)))
\\ List.delete(Element) deletes Element from List
\\ i.e. moves cell(map(Vy)) from UsedList to InitList
end if
end for
return F'reeCell
end function AllocateCell

a function using a single row of the memory by reusing
cells, and then to find the minimal latency possible for
this area. We developed OptiSIMPLER as part of our
work on SIMPLER to assess SIMPLER’s benefits. Op-
tiSIMPLER works by solving an optimization problem,
using the Z3 SMT solver [34]]. This tool evaluates the
quality of SIMPLER’s heuristics by comparing the mini-
mum number of cells proposed by SIMPLER to the opti-
mal solution generated by OptiSIMPLER. Since solving
optimization problems is computationally cumbersome,
its run-time has to be restricted. We allowed OptiSIM-
PLER to run no more than 2 days per benchmark. With
this limit, OptiSIMPLER succeeds in mapping only small
benchmarks (less than 100 gates). Therefore, it succeeds
in running only the LGsynth91 benchmark suite [35].
OptiSIMPLER and SIMPLER are compared in Table
where both map NOR4 netlists.

A. Description of the Compared Previous Works

We compare SIMPLER to three previously developed map-
ping tools: SIMPLE MAGIC [23], YADAV [24] and SAID
[25]].

1) SIMPLE MAGIC [23]] - solves an optimization problem
that minimizes the latency of the execution of a function
in-memory. As opposed to SIMPLER, SIMPLE uses
several memory rows for the execution of a single com-
putation instance, with the goal of reducing the latency
of a single computation instance. For the same reasons as
OptiSIMPLER, SIMPLE can map very small benchmarks

only; thus, we evaluated SIMPLE using the LGsynth91
benchmark suite [35].

2) YADAV [24] - uses heuristics to map the execution of
larger functions into the memory. It can process larger
benchmarks than SIMPLE. The authors use the ISCAS85
benchmark suite [|36] for their evaluation. To execute the
larger benchmarks within an array with limited-size rows,
several rows are used for a single computation instance
and data is copied among the different rows occasionally.
Each copy of a single bit takes two clock cycles (two
NOT operations), thus increasing the execution latency.

3) SAID [25] - similar motivation and general approach as
YADAYV, but employing a different mapping technique
and using the IWLS’93 benchmark set.

B. Description of the Criteria for Efficient Mapping

Latency is the number of cycles to complete a computation.
A MAT (memory array) may contain several computation
instances. The latency of executing all computation instances
in the given MAT (#CycAlllnst) is higher than the execution
latency of a single computation instance (#CycSinInst), unless
all computation instances can be executed in parallel. In SIM-
PLER, where all instances are simultaneously executed, the
overall latency of all instances is equal to the latency of a sin-
gle instance, which is equal to the number of executed gates +
the number of initialization cycles (independent of the number
of instances). However, in SIMPLE, YADAYV and SAID (which
aimed to improve the latency of a single instance), when
parallelized in a similar manner to SIMPLER, the latency
of all computation instances increases with the number of
instances. When the computation instances are aligned by rows
(row alignment), MAGIC column operations of different
instances are executed in parallel, and MAGIC row operations
are serially executed, and vice versa when the instances are
aligned by columns (col alignment), as shown in Figure
Hence, #CycAlllnst = #Cr x #Ir + #Cc x #Ic, where
#C'r and #Cc are, respectively, the number of cycles in which
MAGIC row and MAGIC column operations are executed.
#1Ir and #Ic are, respectively, the number of instances that
can be executed within the given MAT in the row alignment
and col alignment configuration (i.e., respectively, two and
three instances in Figure [7). The tools developed by YADAV
and SAID are not public; thus, we could not evaluate the exact
#C'r and #C'c. Therefore, for both we optimistically assume
a latency equal to that of executing a single instance, which is
a very loose lower-bound on the latency of executing all the
instances. This bound can only be reached when each instance
is executed using a single row. For the rest of the section,
latency of SIMPLE refers to #CycAlllnst, and of YADAV
and SAID refers to #CycSiniInst.

Throughput is the maximum number of instances that can be
executed within the MAT within a given time unit, as stated
in Equation [} Maximal throughput improvements can only
be achieved for well-parallelizable code. To assess the practi-
cal benefit for a specific kernel/application, a comprehensive
system analysis is needed. Additionally, physical restrictions
[26] may also limit the number of rows that can be executed
in parallel, thus reducing the throughput gain proportionally.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

l- (a) l- (b)

18X27) | 18X27,

l- (c) l- (d)

18X27) | 18X27,

l- (e) l- (f)

18X27) | 18X27,
64X64

Fig. 7. A 6464 memory array. Each blue rectangle is a computation instance
computed within the array. Each instance is executed using 18 x 27 cells. The
yellow lines represent a MAGIC column and the green lines a MAGIC row
operation. When the instances are aligned by rows (row alignment), two
instances can be aligned, since [64/27] = 2, e.g. (a) and (b). All aligned
MAGIC column operations of the different row-aligned instances may be
executed in parallel, whereas the MAGIC row operations of the different
instances are serially executed. When the instances are aligned by columns
(col alignment), three instances can be aligned, since |64/18] = 3, e.g.,
(a), (c) and (e). All aligned MAGIC row operations of the different column-
aligned instances may be executed in parallel, whereas the MAGIC column
operations of the different instances are serially executed.

In this paper, we evaluate the throughput as if the maximum
parallelism is possible, i.e., the number of instances equals
the number of rows in the MAT (i.e., 512). For SIMPLE,
YADAV and SAID, we evaluated the throughput in two ways:
first, the throughput for a single instance (SinT P), as these
methods were originally intended to be executed that way. Ad-
ditionally, we computed the throughput for as many instances
as possible that are executed concurrently, within the given
MAT (ParTP). ParTP is only the hypothetical potential
throughput of the existing methods should they employ parallel
computation of different instances. Overall, ParT P favors the
existing methods by giving them the extra benefit of running
multiple computation instances in parallel (which may be
unrealizable). Also, as previously mentioned, the latency of
SAID and YADAV is a loose lower bound; hence, we use a
quite optimistic upper-bound for the throughput potential of
these two methods.

Area is determined by the number of columns X
the number of rows allocated for the execution of a single
computation instance, including the area necessary for storing
the function inputs, e.g., 18 x 27 = 486 in Figure
For SIMPLER, the area is equal to the number of active
memristors, since a single row execution enables the use of
all available memristor cells for the computation. Therefore,
when cell reuse is not required, the area is equal to the number
of gates + the number of inputs. Otherwise, when cell reuse is
required, the area is equal to the number of columns allocated
for the computation (which is smaller than the allocated area
with no reuse). On the other hand, for all three tools, the
area is much larger than the number of active memristors.
This is because the processing is distributed over several rows;
hence, they do not use all the memristors in the array for the
executions.

The area efficiency is calculated as m

C. SIMPLER Results

Tables [} [T and [IT] (first three columns) list the number of
inputs (#In), outputs (#Out), and the number of all gates (both
two-input NOR and NOT) after the ABC optimization (ABC,
#Gates), which is equivalent to the number of pure execution

steps (latency) in SIMPLER (that is, without re-initialization
cycles). The next seven columns of Table |l| and six columns of
Tables [and [T} show the results for SIMPLE, YADAV and
SAID, using a memory array size of 512 x 512 (the last three
benchmarks in Table [l use a 1024 x 1024 array, according
to the area required for the execution of YADAV). First, the
latency necessary for execution is given. For SIMPLE, the
number of cycles for executing a single instance (#CycSinInst)
and the number of cycles for executing all instances in the
MAT (#CycAlllnst) are given in two different columns. As
discussed in Section [[V-B] the given latency for YADAV and
SAID is a loose lower bound equal to the number of cycles for
executing a single instance (#CycSinlnst). The next columns
show the maximum number of computation instances that fit
the given array size (#inst), the throughput (TP), the number
of active memristors used for the execution (#Mem), the area
necessary for the computation of a single instance (Area), and
the area efficiency (AreaEff). The next four columns list the
results of the proposed SIMPLER synthesis tool, when execut-
ing within a row with the minimum number of cells required
by SIMPLER for the execution of each benchmark (referred as
#MinCells) and an additional maxz{5% of #MinCells, 10}
cells. #Inst is not stated for each benchmark, since SIMPLER
maps the computation to a single row; thus, the number of
instances that can be executed concurrently equals the number
of rows in the array (1024 for the last three benchmarks in
Table [[Il and 512 for all other benchmarks in Tables [I} [l and
[M). Area and #Mem are listed together in one column, as they
are the same for SIMPLER since only a single row is used.
Finally, the area efficiency (AreaEff) is listed.

The comparisons between all three works (SIMPLE, YA-
DAV and SAID) and SIMPLER are given, respectively, in
the last five columns (Comparison) of Tables [l [and
All averages are relative numbers computed as geo-
metric mean. All compare the number of cycles, through-
put, and area efficiency of SIMPLE, YADAV and SAID
to SIMPLER, calculated a5 5ryrprn v AD AV ST D results-
Additionally, the area compression (AreaCom) is calculated

s SIMPLfl/A}/ﬁLD; }{ /,féiD Area SIMPLER is area efficient
since it can reuse cells; therefore, it uses on average 24 x less
area as compared to YADAYV, 22x less than SAID and 6.5x
less than SIMPLE. SIMPLER achieves 9.8 better (lower)
average latency than SIMPLE, when executing all instances.
Additionally, SIMPLER achieves 2.6% better average latency
than YADAV. On the other hand, SAID achieves 42% better
average latency than SIMPLER (note that the latency of
YADAV and SAID is for a single instance only). For SIMPLE,
the latency for executing all instances is 14x greater than for
the execution of a single instance only. Assuming the latency
overhead for executing all instances by YADAV and SAID
is similar, SIMPLER achieves 14x better average latency.
Thus, the bound on latency is very loose. Overall, SIMPLER
exhibits higher throughput than previous work. Compared to
the original versions of YADAV, SAID and SIMPLE, all of
which operate on a single computation instance at a time,
SIMPLER, respectively, achieves higher throughput (SinTP) of
526, 360x and 332x. When previous work is parallelized,

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

SIMPLER achieves 4.9x better average throughput (ParTP)
than SIMPLE, and at least 9.3x and 2.7x better throughput
than, respectively, YADAV and SAID (again, with latency
of a single instance), when using the loose upper bound on
the throughput of SAID and YADAV. Additionally, SIMPLER
achieves at least 25x and 16x better area efficiency than, re-
spectively, YADAV and SAID, and 63x better area efficiency
than SIMPLE.

Table lists the results for executing the EPFL combina-
tional benchmark suite within the memristive memory using
the SIMPLER algorithm. The first three columns are similar
to Tables [l [l] and The next eight columns of Table
list the results using NOR2 netlists. First, the number of gates
is given (ABC, #Gates). Then, the latency (#Cyc) and area
(Area) of three cases are listed: when executing using (1)
an unlimited number of cells (UnlimitCells), i.e., an array
with enough columns to execute with no initialization cycles,
(2) the minimum number of cells required by SIMPLER
(MinCells), and (3) the minimum number of cells required by
SIMPLER with an additional maxz{5% of #MinCells, 10}
(MinCells+5%/10). These additional cells decrease computa-
tion latency with a relatively low area cost. Re-initializing all
desired cells within a row might take more than a single clock
cycle, depending on the size of the row and the voltage applied
to it [37]. The last column of the NOR2 results shows the
latency (LimitInitCells, #Cyc) when no more than 10 cells can
be initialized simultaneously (during the same clock cycle),
while the area is equal to MinCells+5%/10. The last eight
columns list similar results when using NOR4 netlists.

The number of cycles and the area for the UnlimitCells
case are compared to the following four cases: (1) MinCells,
(2) MinCells+5%/10 (3) LimitlnitCells and (4) lowest-bound
Area (#In+#Out). The results for NOR2 are given in Figure
[Bp, where all averages are relative numbers computed as
geometric mean. When using the minimum required number
of cells (MinCells), the area decreases by 5.8x on average
as compared to UnlimitCells, at the cost of a 6.2% average
increase in the number of cycles. Adding a small percentage of
cells (MinCells+5%/10) reduces the overhead of initialization
cycles from 6.2% to a Geomean of 2.3%, at the cost of a
small increase in area (7.5%). In the LimitInitCells case, the
latency increases by 10% on average as compared to executing
with no limitation on the number of initialized cells with
UnlimitCells. In general, when the number of initialized cells
is increased to A, the relative latency increases by less than
(1+%). For example, when the number of initialized cells
is increased to 25, the latency increases to less than 4%.
Under the assumption that 25 cells or more can be initialized
simultaneously, the latency overhead is small; therefore, for
all other results we ignore the limitation on the number of
cells that can be initialized during the same clock cycle. The
lowest-bound area is the minimal theoretical possible area
required for the execution, as if cells store only the inputs and
outputs of the function, assuming that no cells are needed for
execution of the intermediate gates. This bound indicates how
close the obtained mapping is to the theoretical lowest limit.
For example, although benchmark dec reduces the area to
only 76%, the lowest-bound area shows it may not be reduced

=
N
=]
X

120%

t

N
100% v

80%
60%

40%

Latency & Area relative to UnlimitCells

20% I I
0% - B B a1 I |
& & ;¥ Q& & & & & A~
’bbb §°\k 0 & <& ¥ §o & ‘\o‘\ < P &z
& I
Benchmarks
Area - MinCells Area - 5%/10 mm Area - Lowest Bound

~e-#Cycles - MinCells #Cycles - 5%/10 ~e-#Cycles - LimitInitCells

120%

100%
80% W B

60%

(b)

40%

20%

NOR4 Latency & Area relative to NOR2

0%

' 'S £ < D < X . .
¢ S & ¥ & 4\'5" i & &
L ¢ & $° &
& < «
Benchmarks

Area - UnlimitCells Area - Mincells -e-#Cycles - UnlimitCells -e-#Cycles - Mincells

Fig. 8. The results of EPFL benchmarks for (a) NOR2 and (b) NOR4 as
compared to NOR2.

below 72%, since dec inputs and outputs occupy most of the
cells.

In Figure [8p, the NOR2 and NOR4 configurations are com-
pared as , for UnlimitCells and MinCells. In the
UnlimitCells case, the area and latency decrease, respectively,
by an average of 19.6% and 20.5% when using NOR4 netlists.
With MinCells, the latency decreases by an average of 21.3%
compared to NOR2, similar to the relative decrease in latency;
however, the area is almost similar (increases by a Geomean
of 0.2%) for NOR2 and NOR4. The reason is that the fan-in
of NOR4 gates (i.e., the number of children) is higher than for
NOR?2, and the cells that store the children cannot be freed for
reuse until the gate is executed. Therefore, when using NOR4
gates, fewer cells may be freed and reused at a given time. As
a result, the area when using MinCells with NOR4 (i.e., the
number of reuse cycles is large) is similar to MinCells with
NOR2.

Table[V]compares the minimum number of cells required for
different executions using SIMPLER and OptiSIMPLER. The
first four columns are similar to Tables and [lT} The next
two columns detail the minimal number of gates for which the
SAT solver found a mapping (SAT) and the minimal number
of gates for which the SAT solver found that no mapping is
possible (UNSAT). In all benchmarks except mux, the SAT
solver found the mapping within the 2-day time limit using the
minimum number of cells (SAT_Area — UNSAT _Area =
1). In mux, the SAT solver could not decide on the optimal
mapping under this limited run-time, (SAT_Area = 30 and
UNSAT_Area = 27; thus, a mapping with 29 or 28 cells
might also exist). As can be seen in the table, SIMPLER

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

succeeded in generating a mapping using only 29 cells in mux,
meaning that it produced a better mapping than limited-run-
time-OptiSIMPLER. In the next column, the optimal number
of cycles (#Cyc) for the chosen mapping (SAT case) is listed.
The next two columns list the minimum number of gates
for which SIMPLER found a mapping with (MinCells) and
the number of cycles (#Cyc) required for each benchmark in
SIMPLER. The last two columns list the difference between
the area and number of cycles of the minimized mapping found
by OptiSIMPLER (SAT case) and SIMPLER.

Although SIMPLER is not optimal, it successfully generates
mappings with only 0.8 additional cells on average, compared
to the optimal mapping produced by OptiSIMPLER. However,
SIMPLER reduces the number of cycles by an arithmetic av-
erage of 1.1, compared to OptiSIMPLER. Since the results are
given for small benchmarks only, a more accurate evaluation
may require further work.

In addition to comparing the numerical results, we also
compare the ease of use among the different tools:

o Flexibility: For SIMPLER, the mapping is done into a
single dimension. SIMPLE, YADAV and SAID, on the
other hand, generate a mapping using a two-dimensional
array. Therefore, the process for the mapping generation
is much shorter and simpler for SIMPLER.

o Overhead on memory periphery and control: In SIM-
PLER, either MAGIC row or MAGIC column operations
are used. In contrast, SIMPLE, YADAV and SAID use
both operations. Therefore, they use a transpose mem-
ory [17], which has a larger and more complex periphery.
Additionally, SIMPLE, YADAV and SAID require scat-
tered execution of gates among rows and columns, thus
complicating the memory controller.

e Function input and output locations: For SIMPLER, the
function inputs and outputs can be located more naturally,
i.e., adjacent to each other, with no overhead. On the
other hand, the inputs and outputs in SIMPLE and SAID
are located to allow optimal latency. In YADAV, if the
inputs are in adjacent cells, copy cycles are necessary to
align them for the execution of the gates they feed, and
the outputs are moved to their final locations after they

are ready.
¥ V. CONCLUSION

This paper presents an automatic logic synthesis flow
called SIMPLER (Synthesis and In-memory MaPping of Logic
Execution in a single Row) for optimizing the throughput
of in-memory SIMD computations. SIMPLER automatically
generates a sequence of MAGIC NOR gates and then maps
the execution of a single instance of a desired logic function
to a single size-limited row, reusing cells as needed. Mapping
a computation into a single row allows numerous instances
to be executed in parallel, according to the number of rows
dedicated to the computation, thus dramatically improving
the throughput. The SIMPLER algorithm uses heuristics
to reduce the complexity of mapping the computation in-
memory; thus, SIMPLER can quickly generate an optimized
mapping for huge benchmarks. The optimized mappings that
SIMPLER generates are the basis for designing an effi-
cient memristive memory processing unit (mMPU) controller.

Hence, SIMPLER is a stepping stone towards a powerful
mMPU.

Our experimental results show that SIMPLER yields an
average throughput improvement of 435X compared to Yadav
et al. and SAID (which optimize the latency, rather than
throughput). When these previous tools are parallelized in a
similar manner to SIMPLER, SIMPLER achieves a throughput
improvement of at least 5x, with at least 23 x better area and
at least 20X better area efficiency, at the cost of up to 17%
average latency degradation.

REFERENCES

[1]1 A. Pedram, S. Richardson, S. Galal, S. Kvatinsky, and M. A. Horowitz,
“Dark Memory and Accelerator-Rich System Optimization in the Dark
Silicon Era,” IEEE Design Test, vol. 34, no. 2, pp. 39-50, Apr. 2017.

[2] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,
Sthed. Elsevier, 2014.

[3] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM,”
IEEE Micro, vol. 17, no. 2, pp. 34—44, March 1997.

[4] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A.
Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory
Accelerator for Bulk Bitwise Operations Using Commodity DRAM Tech-
nology,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 *17, 2017, pp. 273-287.

[5]1 S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute Caches,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2017.

[6] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on
Circuit Theory, vol. 18, no. 5, pp. 507-519, Sep. 1971.

[71 S.Kbvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “The Desired
Memristor for Circuit Designers,” IEEE Circuits and Systems Magazine,
vol. 13, no. 2, pp. 17-22, Secondquarter 2013.

[8] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, “Design implications of
memristor-based rram cross-point structures,” in 2011 Design, Automation
Test in Europe, March 2011, pp. 1-6.

[9] E.Linn, R. Rosezin, S. Tappertzhofen, U. Bottger, and R. Waser, “Beyond
von Neumann—Logic Operations in Passive Crossbar Arrays Alongside
Memory Operations,” Nanotechnology, vol. 23, no. 30, July 2012.

[10] P-E. Gaillardon, L. Amard, A. Siemon, E. Linn, R. Waser, A. Chattopad-
hyay, and G. De Micheli, “The Programmable Logic-in-memory (PLiM)
Computer,” in Proceedings of the 2016 Conference on Design, Automation
& Test in Europe, ser. DATE *16, 2016, pp. 427-432.

[11] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi,
and S. Kvatinsky, “Logic operations in memory using a memristive akers
array,” Microelectronics Journal, vol. 45, no. 11, pp. 1429 — 1437, 2014.

[12] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Fast boolean logic mapped on memristor crossbar,” in 2015 33rd IEEE
International Conference on Computer Design (ICCD), 2015.

[13] C. Xu et al., “Overcoming the Challenges of Crossbar Resistive Memory
Architectures,” 2015 IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 476—488, Feb. 2015.

[14] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.
Williams, “’Memristive’ Switches Enable *Stateful” Logic Operations via
Material Implication,” Nature, vol. 464, no. 7290, pp. 873-876, Apr. 2010.

[15] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-Based Material Implication (IMPLY) Logic: Design
Principles and Methodologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, pp. 2054-2066, Oct 2014.

[16] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC - Memristor-Aided Logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp- 895-899, nov 2014.

[17] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic Design Within
Memristive Memories Using Memristor-Aided 1oGIC (MAGIC),” IEEE
Transactions on Nanotechnology, vol. 15, no. 4, pp. 635-650, July 2016.

[18] R. Ben-Hur and S. Kvatinsky, “Memory Processing Unit for In-memory
Processing,” in 2016 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), July 2016, pp. 171-172.

[19] R. Ben-Hur and S. Kvatinsky, “Memristive Memory Processing Unit
(MPU) Controller for In-Memory Processing,” in Proceedings of the In-
ternational Conference on the Science of Electrical Engineering (ICSEE),
Nov 2016.

[20] A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, “Efficient Algorithms
for In-memory Fixed Point Multiplication Using MAGIC,” 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2018.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

TABLE I
COMPARISON BETWEEN SIMPLE MAGIC [23]] WITH 512 X 512 MEMORY ARRAY SIZE AND SIMPLER, BOTH USING NOR2 NETLISTS.
Original Netlist ABC SIMPLE MAGIC [23] SIMPLER (this work) Comparison - SIMPLER/SIMPLE
Benchmarks TP Area AreaEff TP Area=#Mem AreaEff
#In #Out #Gates | #CycSinInst | #CycAlllnst | #Inst [#Inst} #Mem (#tcetls] [106 } #Cyc [#Iﬂ.st] (#heeils) [106 } #Cyc | AreaCom | SinTP | ParTP | AreaEff
“Hcyc FHcyc-Fcells Fcyc Fcyc-Fcells
Sxpl 7 10 112 97 886 680 0.767 142 3x105 3.76 119 4.30 39 226 13.4% 8.08x 417x | 5.61x | 60.1x
clip 9 5 152 136 742 510 0.687 184 3x148 3.18 160 3.20 47 139 21.6% 9.45x 435x | 4.66x 43.8
cml50a 21 1 62 51 570 1360 2.386 87 3x63 9.73 67 7.64 39 401 11.8% 4.85x 390x | 3.20x 41.2x
cml62a 14 5 60 46 530 1360 2.566 92 3x62 10.64 64 8.00 35 468 12.1% 5.31x 368x | 3.12x | 44.0x
cml63a 16 5 61 45 522 1360 2.605 95 3x61 10.98 66 7.76 36 441 12.6% 5.08x 349x | 2.98x | 40.2x
misex | 8 7 78 45 1380 864 0.626 112 14x21 2.58 83 6.17 33 383 6.0% 8.91x 278x | 9.85x | 148.1x
parity 16 1 76 37 1078 1050 0.974 107 20x12 4.05 81 6.32 35 370 7.5% 6.86x 234x | 6.49x | 91.3x
x2 10 7 68 36 1404 1512 1.077 86 12x14 4.45 73 7.01 33 435 5.2% 5.09x 252x | 6.51x 97.9
Geomean: 10.3% 6.48x 332x | 4.88x 63.2x
TABLE 11

COMPARISON BETWEEN YADAYV [24]] WITH 512 X 512 MEMORY ARRAY SIZE (1024 x 1024 FOR LAST THREE BENCHMARKS) AND SIMPLER, BOTH

USING NOR2 NETLISTS.

EPFL BENCHMARKS EXECUTED USING SIMPLER WITH DIFFERENT MEMORY ARRAY SIZES (#MINCELLS, #MINCELLS +
max{5% of #MinCells,10}), AND #MINCELLS WITH LIMITATION ON NUMBER OF SIMULTANEOUSLY INITIALIZED CELLS (LIMITINITCELLS).
COMPARISON BETWEEN RESULTS OF NOR2 AND NOR4 NETLISTS.

Original Netlist ABC YADAV [24] SIMPLER (this work) Comparison - SIMPLER/YADAV
Benchmarks TP (Upper Bound) Area AreaEff TP Area=#Mem AreaEff
#In #Out #Gates | #CycSinInst | #Inst [#Inst .103} #Mem [#Ce”s] [106 } #Cyc [#Inst .103} [#cells] [106] #Cyc | AreaCom | SinTP | ParTP | AreaEff
cyc Hcyc-FHcells cyc Fcyc-FHcells
c432 36 7 221 249 273 1096 290 69x13 4.69 237 2160 62 71.4 95.2% 14.5x 538x | 2.0x | 15.2x
c499 41 32 594 631 64 101 707 116x31 0.46 620 826 110 15.4 98.3% 32.7x 521x | 8.1x 33.3x
c880 60 26 495 527 144 273 613 107x14 1.33 512 1000 142 14.4 97.2% 10.5x 527x | 3.7x 10.9x
cl355 41 32 594 681 72 106 757 103x28 0.53 619 827 111 15.3 90.9% 26.0x 563x | 7.8x | 28.6x
c1908 33 25 569 594 75 126 648 93x33 0.58 588 871 122 14.6 99.0% 25.2x 517x | 6.9x | 25.4x
2670 233 140 967 892 17 19 1183 340x29 0.12 891 575 383 3.1 99.9% 25.7x 513x | 30.2x | 25.8
c3540 50 22 1393 1668 36 22 1761 109x55 0.10 1434 357 192 3.8 86.0% 31.2x 596x | 16.5x | 36.3x
c5315 178 123 1974 1931 46 24 2251 547x22 0.05 2002 511 351 1.5 103.7% 34.3x 494x | 21.5x | 33.1x
6288 32 32 2842 2916 160 55 3104 49x115 0.06 2938 349 149 2.4 100.8% 37.8x 508x | 6.4x | 37.5x
c7552 207 208 2241 2130 46 22 2486 542x22 0.04 2227 460 535 0.9 104.6% 22.3x 490x | 21.3x | 21.3x
Geomean: 97.4% 24.4x 526x | 9.3x 25.1x
TABLE III
COMPARISON BETWEEN SAID [25]] WITH 512 X 512 MEMORY ARRAY SIZE AND SIMPLER, BOTH USING NOR4 NETLISTS.
Original Netlist ABC SAID [25] SIMPLER (this work) Comparison - SIMPLER/SAID
Benchmarks TP (Upper Bound) Area AreaEff TP Area=#Mem AreaEff
#In #Out #Gates | #CycSinInst | #Inst [#Inst .103} #Mem (#heeils) [106 } #Cyc [#Inst -103] [#cells] [106 } #Cyc | AreaCom | SinTP | ParTP | AreaEff
Fcyc cyc-Fcells #cyc Hcyc-Fcells
9sym 9 1 207 160 77 481 1026 70x46 2.04 218 2349 57 84.4 136.3% 56.5x 376x | 4.9x | 41.5x
apexs 117 88 773 777 32 41 2223 207x32 0.20 879 582 260 4.6 113.1% 25.5x 453x | 14.0x | 22.5x
clip 9 5 103 135 320 2370 451 50x16 9.71 114 4491 49 187.7 84.4% 16.3x 606x | 1.9x | 19.3x
duke2 22 29 409 300 28 93 1632 106x65 0.51 450 1138 135 17.3 150.0% 51.0x 341x | 12.2x | 34.0x
e64 65 65 389 134 252 1881 394 24x40 8.15 474 1080 143 15.5 353.7% 6.7x 145x | 0.6x 1.9x
inc 7 9 92 55 560 10182 280 51x9 41.54 107 4785 42 233.3 194.5% 10.9x 263x | 0.5x | 5.6x
misex3c 14 14 501 518 27 52 2551 156x52 0.25 532 962 115 17.1 102.7% 70.5x 499x | 18.5x | 68.7x
rd73 7 3 99 150 252 1680 379 56x18 6.94 108 4741 44 220.7 72.0% 22.9x Tllx | 2.8x | 31.8x
5202 10 4 118 79 144 1823 559 54x32 7.68 128 4000 53 154.6 162.0% 32.6x 316x | 2.2x | 20.1x
vg2 25 8 101 55 572 10400 280 23x19 43.63 115 4452 61 149.5 209.1% 7.2x 245x | 0.4x 3.4x
Geomean: 142% 22.5x 360x | 2.7x 15.8x
TABLE IV

NOR2 NOR4
Original Netlist ABC UnlimitCells MinCells MinCells+5%/10 LimitInitCells ABC UnlimitCells MinCells MinCells+5%/10 LimitInitCells

" #In #0Out #Gates #Cyc Area #Cyc Area #Cyc Area #Cyc #Gates #Cyc Area #Cyc Area #Cyc Area #Cyc

adder 256 129 1531 1531 1787 1585 388 1560 398 1685 1529 1529 1785 1574 391 1557 401 1682
arbiter 256 129 12798 12798 13054 13016 1016 12876 1054 14078 12330 12330 12586 12553 958 12416 994 13563
bar 135 128 4051 4051 4186 4162 429 4115 444 4457 2711 2711 2846 2772 416 2751 431 2986
cavle 10 11 840 840 850 924 125 870 135 924 670 670 617 644 119 626 129 668
ctrl 7 26 143 143 150 169 43 150 53 157 108 108 115 123 48 112 58 118
dec 8 256 360 360 368 373 267 364 280 396 328 328 336 338 628 331 281 361
int2float 11 7 294 294 305 332 53 307 63 324 197 197 208 219 54 206 64 217
max 512 130 4200 4200 4712 4268 1020 4230 1046 4620 3268 3268 3780 3326 1034 3291 1061 3595
priority 128 8 852 852 980 905 196 885 206 938 748 748 876 784 193 766 203 823
sin 24 25 7915 7915 7939 8140 453 8019 475 8707 5463 5463 5487 5659 461 5539 483 6010

[21] M. Imani, S. Gupta, and T. Rosing, “Ultra-Efficient Processing In-Memory
for Data Intensive Applications,” in Proceedings of the 54th Annual Design
Automation Conference (DAC), 2017, pp. 1-6.

[22] A. Haj-Ali, R. Ben-Hur, N. Wald, R. Ronen, and S. Kbvatinsky,
“IMAGING-In-Memory AlGorithms for Image processiNG,” IEEE Trans-

actions on Circuits and Systems I: Regular Papers (TCAS1), June 2018.

[23] R. Ben-Hur, N. Wald, N. Talati, and S. Kvatinsky, “Simple magic: Synthe-
sis and in-memory Mapping of logic execution for memristor-aided logic,”
in 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov 2017, pp. 225-232.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

TABLE V
COMPARISON BETWEEN THE MAPPING WITH THE MINIMAL REQUIRED NUMBER OF CELLS (OPTISIMPLER), AND SIMPLER, USING NOR4 NETLISTS.

[24] D. N. Yadav, P. L. Thangkhiew, and K. Datta, “Look-ahead mapping of
Boolean functions in memristive crossbar array,” Integration the VLSI
Journal, vol. 64, pp. 152-162, 2019.

[25] V. Tenace, R. G. Rizzo, D. Bhattacharjee, A. Chattopadhyay, and A. Cal-
imera, “SAID: A Supergate-Aided Logic Synthesis Flow for Memristive
Crossbars,” in Design, Automation and Test in Europe Conference and
Exhibition (DATE), March 2019, pp. 372-377.

[26] N. Talati, A. Haj Ali, R. Ben-Hur, N. Wald, R. Ronen, P.-E. Gaillardon,
and S. Kvatinsky, “Practical Challenges in Delivering the Promises of
Real Processing-in-Memory Machines,” in Design, Automation and Test
in Europe Conference and Exhibition (DATE), Mar. 2018.

[27] R. Govindarajan, Hongbo Yang, J. N. Amaral, Chihong Zhang, and G. R.
Gao, “Minimum register instruction sequencing to reduce register spills
in out-of-order issue superscalar architectures,” IEEE Transactions on
Computers, vol. 52, no. 1, pp. 4-20, Jan 2003.

[28] R. Sethi, “Complete register allocation problems,” SIAM Journal on Com-
puting, vol. 4, no. 3, pp. 226248, 1975.

[29] A. Mishchenko, “ABC: A System for Sequential Synthesis and
Verification,” Berkeley Logic Synthesis and Verification Group, 2012.
[Online]. Available: http://www.eecs.berkeley.edu/~alanmi/abc/

[30] D. Auber, “Using Strahler Numbers for Real Time Visual Exploration of
Huge Graphs,” in Computer Vision and Graphics (ICCVG), 2002.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. MIT Press and McGraw-Hill, 2001.

[32] A.N. Strahler, “Hypsomic Analysis of Erosional Topography,” in Bulletin
Geological Society of America 63, 1952, pp. 1117-1142.

[33] L. Amar, P.-E. Gaillardon, and G. De Micheli, “The EPFL Combinational
Benchmark Suite,” in Proceedings of the 24th International Workshop on
Logic Synthesis (IWLS), 2015.

[34] L. De Moura and N. Bjgrner, “Z3: An Efficient SMT Solver,”
in Proceedings of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).
Springer-Verlag, 2008, pp. 337-340. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1792734.1792766

[35] S. Yang, “Logic synthesis and optimization benchmarks user guide: Ver-
sion 3.0.” in MCNC, 1991.

[36] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” in Proceedings
of IEEE Int’l Symposium Circuits and Systems (ISCAS 85). 1EEE Press,
Piscataway, N.J., 1985, pp. 677-692.

[37] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, “Overcoming the challenges of crossbar resistive memory
architectures,” in 2015 IEEE 21st International Symposium on High Per-
Jformance Computer Architecture (HPCA), Feb 2015, pp. 476-488.

Rotem Ben-Hur received her B.Sc in Electrical
Engineering from the Technion - Israel Institute
of Technology, in 2014. In 2012 she joined Elbit
Systems as an FPGA designer. Since 2015, she is
a graduate student working toward a PhD degree
(direct path) at the Andrew and Erna Viterbi Faculty
of Electrical Engineering, Technion - Israel Institute
of Technology. Her current research is focused on
novel architectures for logic with emerging memory
technologies.

N | Original Netlist ABC OptiSIMPLER SIMPLER (this work) Diff (SIMPLER-OptiSIMPLER)

h #In #Out #Gates SAT - Area [#cells] UNSAT - Area [#cells] SAT - #Cyc MinCells - Area [#cells] #Cyc Area [#cells] #Cyc
bl 3 4 7 8 7 16 9 13 1 -3
cml38a 6 8 24 16 15 42 17 44 1 2
cm42a 4 10 14 15 14 30 16 31 1 1
cmb 16 4 49 25 24 74 27 67 2 -7
conl 7 2 22 12 11 37 13 32 1 -5
cordic 23 2 72 31 30 104 34 96 2 -8
decod 5 16 25 23 22 48 23 56 0 8
majority 5 1 9 10 9 13 10 13 0 0
mux 21 1 56 30 27 77 29 78 -1 1
xor3 5 1 18 10 9 28 10 28 0 0

Arithmetic average: 0.8 -1.1

Ronny Ronen is a Senior Researcher at the Andrew
and Erna Viterbi Faculty of Electrical Engineering,
Technion Israel Institute of Technology. He received
the B.Sc. and M.Sc. degrees in computer science in
1978 and 1979, respectively, both from the Tech-
nion Israel Institute of Technology. Ronny was in
Intel from 1980 to 2017 in various technical and
managerial positions. In his last role, Ronny led the
Intel Collaborative Research Institute for Compu-
tational Intelligence (ICRI-CI). Until 2011, Ronny
was a senior staff computer architect in the Intel
Development Center in Haifa and before that the director of Microarchitecture
Research in that center. In these roles, Ronny led/was involved in the initial
definition and pathfinding of major leading edge Intel processors. Earlier,
Ronny led the development of several system software products and tools
including the Intel Pentium processor performance simulator and several
compiler efforts. Ronny holds over 70 issued patents and has published over 20
papers. Ronny is an IEEE Fellow and was an Intel Senior Principal Engineer.

Ameer Haj-Ali is currently a Ph.D. student at the
Department of Electrical Engineering and Computer
Science at UC Berkeley. He completed his M.Sc.
studies at the Andrew and Erna Viterbi Faculty
of Electrical Engineering at the Technion - Israel
Institute of Technology in 2018. He received the
B.Sc. degree in computer engineering, summa cum
laude, in 2017 from the Technion - Israel Institute of
Technology. From 2015 to 2016 he was with Mel-
lanox Technologies as a chip designer. His current
research is focused on auto-tuning, reinforcement
learning, ASIC design, and high performance computing.

Debjyoti Bhattacharjee received his B.Tech in
Computer Science and Engineering from WBUT,
India in 2013, M.Tech in Computer Science from
Indian Statistical Institute, Kolkata in 2015 and
PhD degree in Computer Science and Engineering
from Nanyang Technological University, Singapore,
in 2018. During his doctoral studies, he worked
on design of architectures using emerging technolo-
gies for in-memory computing. He developed novel
technology mapping algorithms, technology-aware
synthesis techniques, and proposed novel methods
for multi-valued logic realization. His current research is focused on hardware
design automation tools and application-specific accelerator design, with
emphasis on emerging technologies.

Adi Eliahu received her B.Sc. in Electrical En-
gineering from the Technion Israel Institute of
Technology, in 2018. Since 2018, she is a graduate
student working toward a M.Sc degree at the Andrew
and Erna Viterbi Faculty of Electrical Engineering
at the Technion. Her current research focuses on
designing architectures for low-power systems using
non-volatile memory emerging technologies.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2019

Natan Peled received his B.Sc. in Computer Engi-
neering from the Technion - Israel Institute of Tech-
nology, in 2019. In 2018 he joined Annapurna labs
- Amazon, as a verification engineer. Since 2019,
he is a graduate student working toward a M.Sc
degree at the Andrew and Erna Viterbi Faculty of
Electrical Engineering at the Technion. His current
research focuses on novel architectures for logic with
emerging memory technologies.

Shahar Kvatinsky is an Assistant Professor at the
Andrew and Erna Viterbi Faculty of Electrical En-
gineering, Technion Israel Institute of Technology.
Shahar received the B.Sc. degree in Computer Engi-
neering and Applied Physics and an MBA degree in
2009 and 2010, respectively, both from the Hebrew
University of Jerusalem, and the Ph.D. degree in
Electrical Engineering from the Technion Israel
Institute of Technology in 2014. From 2006 to 2009,
he worked as a circuit designer at Intel. From 2014
and 2015, he was a post-doctoral research fellow
at Stanford University. Kvatinsky is an editor of Microelectronics Journal
and has been the recipient of numerous awards: the 2019 Krill Prize for
Excellence in Scientific Research, 2015 IEEE Guillemin-Cauer Best Paper
Award, 2015 Best Paper of Computer Architecture Letters, Viterbi Fellowship,
Jacobs Fellowship, ERC starting grant, the 2017 Pazy Memorial Award, the
2014 and 2017 Hershel Rich Technion Innovation Awards, 2013 Sanford
Kaplan Prize for Creative Management in High Tech, 2010 Benin prize, and
seven Technion excellence teaching awards. His current research is focused
on circuits and architectures with emerging memory technologies and design
of energy efficient architectures.

	Introduction
	Preliminaries and Motivation
	Preliminaries and Definitions
	Motivational Example
	Related Work
	Problem Definition and Complexity

	SIMPLER Mapping Algorithm
	ABC Synthesis Tool
	SIMPLER Mapping Tool

	Principles for Efficient Mapping into the Memory
	Mapping Execution Sequence of Logic Functions into a Single Row
	Stage 1 - Compute the Cell Usage value for each vertex
	Stage 2 - Allocate the gates to the memory cells

	SIMPLER Complexity

	Experimental Results and Evaluation
	Description of the Compared Previous Works
	Description of the Criteria for Efficient Mapping
	SIMPLER Results

	Conclusion
	References
	Biographies
	Rotem Ben-Hur
	Ronny Ronen
	Ameer Haj-Ali
	Debjyoti Bhattacharjee
	Adi Eliahu
	Natan Peled
	Shahar Kvatinsky

