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Abstract—Quantized neural networks (QNNs) are being ac-
tively researched as a solution for the computational complexity
and memory intensity of deep neural networks. This has sparked
efforts to develop algorithms that support both inference and
training with quantized weight and activation values without
sacrificing accuracy. A recent example is the GXNOR framework
for stochastic training of ternary and binary neural networks.
In this paper, we introduce a novel hardware synapse circuit
that uses magnetic tunnel junction (MTJ) devices to support
the GXNOR training. Our solution enables processing near
memory (PNM) of QNNs, therefore can further reduce the data
movements from and into the memory. We simulated MTJ-based
stochastic training of a TNN over the MNIST and SVHN datasets
and achieved an accuracy of 98.61% and 93.99%, respectively.

Index Terms—Memristor, Magnetic Tunnel Junction, Deep
Neural Networks, Quantized Neural Networks, MRAM.

I. INTRODUCTION

DEEP neural networks (DNNs) are the state-of-the-art
solution for a wide range of applications, such as image

and natural language processing. The classic DNN approach
requires frequent memory accesses and is compute-intensive,
i.e., it requires numerous multiply and accumulate (MAC)
operations. For example, computing the first fully connected
layer of VGG16 [1], which has 8192×4096 synapses, requires
32 million MAC operations, while storing and accessing
128MB of weights. As such, DNN performance is limited
by computing resources and power budget. Therefore, efforts
have been made to design dedicated hardware for DNNs [2–
4]. Those solutions support training with high resolution such
as 32-bit floating point. Still, DNN models are power hungry
and not suited to run on low-power devices.

Ternary neural networks (TNNs) and binary neural net-
works (BNNs) are being explored as a way to reduce the
computational complexity and memory footprint of DNNs.
By reducing the weight resolution and activation function
precision to quantized binary {−1, 1} or ternary {−1, 0, 1}
values, the MAC operations are replaced by much less de-
manding logic operations, and the number of required memory
accesses is significantly reduced. Such networks are also
known as quantized neural networks (QNNs) [5]. This insight
triggered recent research efforts to design novel algorithms that
can support binary and/or ternary DNNs without sacrificing
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accuracy. Recently, the GXNOR algorithm for training such
networks was proposed [6]. This algorithm uses a stochastic
update function to facilitate the training phase. Unlike other
algorithms [5, 7, 8], GXNOR does not require keeping the
full value (e.g., in a floating point format) of the weights and
activations. Hence, GXNOR enables further reduction of the
memory capacity during the training phase.

Emerging memory technologies such as Spin-Transfer
Torque Magnetic Tunnel Junction (STT-MTJ) can be used to
design dedicated hardware to support in-situ DNN training,
with parallel and energy efficient operations. Furthermore,
the near-memory computation enabled by these technologies
reduces overall data movement. The MTJ is a binary device,
with two stable resistance states. Switching the MTJ device
between resistance states is a stochastic process, but this
property limits the use of STT-MTJ device as a memory cell.
Previous works have used the stochastic behavior of the STT-
MTJ, or other memristive technologies such as Resistive RAM
(RRAM), to implement hardware accelerators for BNNs [9–
12]. In [9], the focus was on the architecture level of BNN
accelerators, but without supporting online training. Other
works have implemented hardware for bio-inspired artificial
neural networks (ANNs), using the spike-timing-dependent
plasticity (STDP) training rule [10, 11]. Although STDP is
widely used for bio-inspired ANN, common DNNs are trained
with gradient-based optimization such as stochastic gradient
descent (SGD) and adaptive moment estimation (ADAM) [13].
A recently proposed MTJ-based binary synapse composed of a
single transistor and a single MTJ device (1T1R) [12] supports
QNNs with binary weights still using real values to represent
the activations. The implementation requires two update opera-
tions to execute the SGD updates. Using real-valued activation
will require digital-to-analog converters, which will increase
the area and power consumption of the proposed solution.

In this paper, we explore the stochastic behavior of the
MTJ and use it to support GXNOR training. We leverage
the stochastic process to support the GXNOR algorithm.
We propose a four-transistor two-MTJ (4T2R) circuit for a
ternary stochastic synapse and a two-transistor single-MTJ
(2T1R) circuit for a binary stochastic synapse, where the
intrinsic stochastic switching behavior of the MTJ is used to
perform the GXNOR stochastic update function. Such a design
enables highly parallel and energy efficient accurate in-situ
computation. Our designed synapse can support various DNN
optimization algorithms, such as SGD and ADAM, which are
used regularly in practical applications.

We evaluated the TNN and BNN training using the MTJ-
based synapse with PyTorch over the MNIST [14] and
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SVHN [15] data-sets, where the circuit parameters were
extracted from SPICE simulations using a GlobalFoundries
28nm FD-SOI process. Our results show that using the MTJ-
based synapse for training yielded similar results as the ideal
GXNOR algorithm, with a small accuracy loss of 0.7% for
the TNN and 2.4% for the BNN. Moreover, the proposed
hardware design is energy efficient, achieving 18.3TOPsW for
feedforward and 3TOPsW for weight update.

This paper makes the following contributions:

• Exploit the MTJ stochastic properties to support QNN
stochastic training based on the GXNOR framework. We
showed that PNM of stochastic QNN training is possible
using the MTJ-based synapse with small accuracy reduc-
tion.

• Suggested an MTJ-based ternary and binary synapse
circuits. Those circuits 1) exploit the stochastic switching
of the MTJ device to support stochastic weight update al-
gorithm, 2) support in-situ weights update. The proposed
solution can support standard optimization algorithms
such as SGD and ADAM without reading the weight
data out of the synapse array. 3) support near memory
processing of the feedforward, and backpropagation com-
putations.

The rest of the paper is organized as follows. In Sections II
and III, background on MTJ and the GXNOR algorithm is
given. Section IV describes the proposed MTJ-based ternary
synapse. In Section V, we explain how to modify the proposed
circuits to support BNNs. In Section VI, the proposed circuits
are evaluated for their ability to support TNN training and
their energy efficiency. We conclude in Section VII.

II. GXNOR ALGORITHM

In recent years, efforts have been made to make DNN
models more efficient and hardware compatible. Compression
methods have been explored, where the DNN weights and
activation functions are constrained to discrete values such as
binary {−1, 1} or ternary {−1, 0, 1}. The MAC operations
in TNNs and BNNs are replaced with the simpler XNOR
logic operations, and the memory footprint of the network is
reduced dramatically. The GXNOR algorithm is a framework
for constraining the weights and activations to the quantized
space while training the QNN [6]. This section describes
the GXNOR framework and focuses on the framework’s
differences compared to regular DNN training.

Quantized Weights and Activations: The quantized space is
defined by

ZN = {znN |znN = (
n

2N−1
− 1), n = 0, 1..., 2N}, (1)

where N is a non-negative integer which defines the space
values and znN ∈ [−1, 1]. For example, the binary space is
given for N = 0 and the ternary space for N = 1. The
quantized space resolution, the distance between two adjacent
states, is given by

∆zN =
1

2N−1
(2)

Feedforward: The quantized activation is a step function,
where the number of steps is defined by the space. To
support backpropagation through the quantized activations, the
derivative of the activation function is approximated. In this
work we used a simple window function which replaces the
ideal derivative, given by a sum of delta functions. The window
function is given by

∂ϕr(x)

∂x
=

{
1
2a , if r − a ≤ x ≤ r + a,

0, others
(3)

where r, a are positive parameters, defining the sparsity
of the neurons and the window in the neighborhood of x,
respectively. ϕr is the discrete activation function. Using the
approximated derivative, the backpropagation algorithm, thus
the error value, compute with no further changes.

Weight Update: To support training with weights con-
strained to the discrete weight space (DWS), the GXNOR
algorithm uses a stochastic gradient-based method to update
the weights. First, a boundary function is defined to guarantee
that the updated value will not exceed the [−1, 1] range. The
boundary function is

%(∆W l
ij(k)) ={

min(1−W l
ij(k),∆W l

ij(k)), if ∆W l
ij(k) > 0,

max(−1−W l
ij(k),∆W l

ij(k)), else

(4)

where W l
ij is the synaptic weight between neuron j and neuron

i of the following layer (l + 1), ∆W l
ij is the gradient based

update value, and k is the update iteration. Then, the update
function is

W l
ij(k + 1) = W l

ij(k) + ∆wlij(k), (5)

where ∆wlij(k) = P
(
%(∆W l

ij(k))
)
∈ Z is the discrete update

value, obtained by projecting %(∆W l
ij(k)) to a quantized

weight space. P(%) is a probabilistic projection function
defined by

P(%) =

{
κij∆zN + sign(%)∆zN , w.p. τ

(
νij
)
,

κij∆zN , w.p. 1− τ
(
νij
)
,

(6)

where κij and νij are, respectively, the quotient and the
remainder values of %(∆Wij(k)) divided by ∆zN , and

τ
(
ν
)

= tanh

(
m · |ν|

∆zN

)
, τ
(
ν
)
∈ [0, 1], (7)

where m is a positive adjustment factor. Hence,

∆wlij = κij∆zN + sign(νij)Bern(τ(νij))∆zN , (8)

where Bern(τ(νij)) is a Bernoulli variable with parameter
τ(νij).
In this work, we focus on TNN and BNN. The binary weight
space (BWS) is given by N = 0 and ∆z0 = 2. The ternary
weight space (TWS) is given by N = 1 and ∆z1 = 1. Figure 1
illustrates examples of TNN and BNN weight update for W =
−1 and W = 0.
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Fig. 1. TNN examples (TWS): Ternary weight update with ∆z = 1. Given
W = −1 and ∆W = 1.5, κ = 1, ν = 0.5 and the discrete update value is
∆wl = 1+Bern(τ(0.5)). For W = 0 and ∆W = −0.5, κ = 0, ν = −0.5
and the discrete update value is ∆wl = −Bern(τ(0.5)). BNN examples
(BWS): Binary weight update with ∆z = 2. For W = −1 and ∆W = 0.8,
κ = 0, ν = 0.8 and the discrete update value is ∆wl = Bern(τ(0.8)).
Given W = −1 and ∆W = 1.8, κ = 0, ν = 1.8 and the discrete update
value is ∆wl = Bern(τ(1.8)).

III. MAGNETIC TUNNEL JUNCTION

An MTJ device is composed of two ferromagnetic layers,
a fixed magnetization layer and a free magnetization layer,
separated by an insulator layer. The resistance of the device
is defined by the relative magnetization of the free layer as
compared to the fixed layer. A parallel magnetization state
(P) leads to low resistance (Ron) and an anti-parallel state
(AP) leads to high resistance (Roff ). The device resistance
can be switched by the current flow through the device.
The switching probability of the MTJ device depends on the
current pulse, when three work regimes are defined: 1) low
current, 2) intermediate current, and 3) high current [11]. For
fast switching time, this work focuses on the high current
regime, where the current I is substantially higher than the
critical current Ic0 , given by

Ic0 =
2|e|
~
αV (1± P )

P
µ0Ms

Meff

2
, (9)

where α, Ms, V , P , Meff are, respectively, the Gilbert
damping, the saturation magnetization, the free layer volume,
the spin polarization of the current, and the effective magne-
tization [16]. The switching time is

τ =
2

αγµ0Ms

Ic0
I − Ic0

log
( π

2|θ|

)
, (10)

where γ is the gyromagnetic ratio, and θ is the initial magneti-
zation angle [16], given by a normal distribution θ ∼ N (0, θ0),
θ0 =

√
kBT/(µ0HkMsV ), where Hk is the shape anisotropy

field.

A. Stochastic Weight Update Using MTJ

The MTJ conductivity represents the quantized synapse
weight (see Section IV-A for details). Therefore, we control the
MTJ switching process to support the GXNOR weight update.
The update is done in the high current domain to guarantee fast
update operation. To switch the MTJ device a voltage pulse,
Vup is dropped over the device, for time interval, ∆t. The
resulted current direction sets the switching probability. Using

equation (10) and the voltage pulse, the switching probability
of the MTJ is given by

Psw = P (∆t > τ) = 1− erf

(
π

2
√

2θ0 exp
(

∆tVup

CR

)), (11)

where C =
2Ic0

αγµ0Ms
, and R is the resistance of the device.

IV. MTJ-BASED TERNARY SYNAPSES

In this section, we describe the proposed ternary synapse
circuit to support stochastic GXNOR training. We leverage the
stochastic behavior of the MTJ device to support the stochastic
update function. In the following section (Section V), we
explain how the proposed synapse can support binary weights
as well.

A. Proposed Synapse Circuit and Synapse Array

Synapse Circuit: The schematic of the proposed ternary
synapse is shown in Figure 2a. The ternary synapse is com-
posed of two MTJ devices connected together in their fixed
layer port. The free layer port of each MTJ is connected to
two access transistors. This synapse is similar to our previous
work [17, 18], where the RRAM is replaced by the MTJ
device, and two synapse structure are added together to support
the ternary weight. Compare to [17, 18], which supports full
precision weight values, the following section describes how
this designed is optimized to support quantized weights.

Synapse Weight: Table I lists the different values of the
synapse weight, W . This weight is defined and stored as the
combination of the two MTJs resistances. The zero state in
our ternary synapse has two representations, as opposed to
one in a regular ternary synapse. Moreover, thanks to the bi-
stability of the MTJ, the proposed synapse value is limited to
{−1, 0, 1}; thus, the boundary function in (4) is enforced by
the hardware synapse.

Synapse Array: The synapse circuit described in Fig 2a is
the basic cells of an array structure, as shown in Figure 2b. The
synapses are arranged in a M ×N array, where each synapse
is indexed by (n,m). Each synapse in column n ∈ [1, N ] is
connected to four inputs {un1, ūn1, un2, ūn2} where all the
input voltages are shared among all synapses in the same
column. Likewise, each synapse in row m ∈ [1,M ] is con-
nected to control signals {em(1,n), ēm(1,p), em(2,n), ēm(2,p)}.
The control signals are shared among all synapses in the same
row. The synapse located in (m,n) produce an output current
Imn which contrib to current through output row m. The
operations on the synapse array are done in the analog domain,
accumulated according to Kirchoff’s current law (KCL), where
the GXNOR output is represented by the current.

B. Training TNN

1) Gated XNOR and Feedforward: To perform the gated-
XNOR logic operation between the synapse and activation
values [6], we denote the input neuron values as the volt-
age sources. The logic values {−1, 0, 1} are represented by
u ∈ {−Vrd, 0, Vrd}, where Vrd is set to guarantee the low
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Fig. 2. (a) Schematic of the 4T2R MTJ-based synapse. (b) The synapse array. The MTJ symbol is replaced by the general memristor symbol. A single
synapse cell is marked in blue. The control signals are generated using a voltage comparator. (c) The data flow of the inverse read operation.

TABLE I
TERNARY SYNAPSE STATES AND OUTPUT CURRENT

Weight R1 R2 Iout

1 Ron Roff
Roff−Ron

RoffRon
u

0s Roff Roff 0

0w Ron Ron 0

−1 Roff Ron −Roff−Ron

RoffRon
u

current regime of an MTJ, so the switching probability is
negligible. During this operation, u1 = u and ū2 = −u are
connected and the synapse output node is grounded. The result
is the output current sign,

Iout = (G1 −G2)u, (12)

where G{1,2} are the conductance of the two MTJs. As listed
in Table I, the polarity of Iout depends on the input voltage
and the synapse weight. If u = 0 or W = {0w, 0s}, the
output current is Iout ≈ 0. If the weight and input have the
same polarity, then sign(Iout) = 1 else sign(Iout) = −1.

To perform feedforward with the GXNOR operation, we
need to compute

Om =

N∑
n=1

GXNOR(wmn, an),∀m ∈ [1,M ] (13)

where On is row n result. To that aim, each column voltage is
mapped to the corresponding input activation (um = V (am)
∀m ∈ [1,M ]) and the array row outputs are connected to
ground potential and the output currents from all synapses are
summed based on KCL. Thus, the current through row i is

Irow,i =

N∑
j=1

(Gij,R1
−Gij,R2

)uj =

Roff −Ron
RoffRon

(
N+1,i −N−1,i

)
Vrd,

(14)

where Gj,R{1,2} is the conductivity of each MTJ, N is the
number of synapses per row, N+1,i is the total number of
positive products in row i, and N−1,i is the total number of
negative products in row i.

2) Synapse Weight Update: Unlike updating regular DNN,
the proposed synapse supports the quantized update scheme
suggested in [6]. The synapse weight update is done in the high
current domain, guaranteed by the update input voltage Vup
for the update period marked by Tup. Tup is set to guarantee
that if ∆t = Tup then Eq. (11) results Psw = P (Tup) ≈ 1. As
mention in Section III-A, the weight update is influenced by
the current direction and the time interval in which the current
flows through the MTJs.

To update the ternary synapse weight we need to update
both MTJ devices while supporting the GXNOR update
scheme. We used the control signals to set the current direction
and the voltage pulse time interval. We consider two update
cases: 1) supporting general optimization algorithms, and
2) supporting the SGD algorithms.

Support of General Optimization Algorithms: To support
general optimization algorithms the update value, ∆W is
computed outside the synapse array. The array columns are
updated iteratively, i.e., a single synapse array column is
updated at each iteration. During this operation, the input
voltages are set to u1 = u2 = Vup > 0 for all the synapse
columns. To support the probabilistic projection (Section II),
the control signals are given by{

e1,p = −e2,p = −sign(∆Wij)Vdd, if κij 6= 0

e1,p = e2,p = Vdd, else
(15)

e1,n =

{
−sign(∆Wij)Vdd, 0 < t < |νij |Tup
−Vdd, |νij |Tup < t < Tup

(16)

e2,n =

{
sign(∆Wij)Vdd, 0 < t < |νij |Tup
−Vdd, |νij |Tup < t < Tup.

(17)

where ∆W , ν, and κ were defined in Section II. Hence,
the MTJ is updated proportionally to κij = b∆Wijc and
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νij = Remainder(∆Wij), meaning that for a single synapse,
one MTJ is updated using a pulse width of ∆t = |κij |Tup
and the other with ∆t = |νij |Tup. We assume that the κ
and ν data are inputs to the synapse array. Using this work
scheme, the synapse weight is updated as follows. κij is an
integer, so if κij 6= 0, then the MTJ switching probability is
approximately 1 and can be described as an indicator variable
sign(κij)1κ6=0. νij is a fraction, so the switching probability
of the MTJ with respect to νij is a Bernoulli variable with
probability Psw(νij). Thus, the MTJ-based synapse update is
given by ∆wij = sign(∆Wij)(1κ6=0 +Bern(Psw(νij))); see
examples in Section IV-C.

Support of Stochastic Gradient Descent: This update
scheme is similar to the update scheme proposed in [4].
When the SGD algorithm is used to train the network, all the
synapses in the array are updated in parallel. To support SGD
training, minor changes need to be made to the general update
scheme. Using SGD, the update is given by the gradient value,
and is equal to ∆W = uT y, where y is the error propagated
back to the layer, using the backpropagation algorithm, and
u is the input. For TNN and BNN the input activations are
u ∈ {−1, 0, 1} = {−Vup, 0, Vup} and u ∈ {−1, 1} =
{−Vup, Vup}, respectively; thus, ∆Wi,j = yiuj = sign(uj)yi
or ∆Wi,j = 0 for u = 0. In this scheme, the voltage sources
keep the activation values, so u1 = u2 = u (whereas in the
general scheme the voltage sources are set to u1 = u2 = Vup).
The control signals are a function of the error y, whereas in
ADAM and other optimization algorithms they are a function
of the update value ∆W . The control signal functionality for
SGD is{

e1,p = −e2,p = −sign(yi)Vdd, if κij 6= 0

e1,p = e2,p = Vdd, else
(18)

e1,n =

{
−sign(yi)Vdd, 0 < t < |νij |Tup
−Vdd, |νij |Tup < t < Tup

(19)

e2,n =

{
sign(yi)Vdd, 0 < t < |νij |Tup
−Vdd, |νij |Tup < t < Tup.

(20)

The functionality of the control signals remains unchanged,
the voltage source is selected according to y, and the voltage
sign and the effective update duration are set as a function of
κ and ν, the integer and remainder values of y, respectively.
Therefore, the update equation is given by

∆wij = sign(yi)sign(uj)(1κ 6=0 +Bern(Psw(νij))) (21)

3) Inverse Read: To train the TNN, backpropagation of
the error must be performed. Thus, an inverse matrix vector
multiplication WT y is supported. Similarly to [4], we use
the output row interface as an input. This allows reusing the
same synapse array. Due to the synapse structure, the data is
separated into two columns, as shown in Figure 2c. The output
current, Ii,R1

− Ii,R2
, is converted to voltage using a voltage

comparator.

C. Ternary Synapse Update Examples
To clarify the update scheme proposed in this paper, two

examples of synapse updates are given.

1) Example 1: Figure 3a shows the case where a synapse
weight is −1, and the update value is 1.5. Thus, k = 1 and
v = 0.5. In that case, b∆W c 6= 0 and sign(∆W ) = 1. Hence,
e1,p = −e2,p = −Vdd; therefore, P1 is ON and P2 is OFF for
time interval Tup. Hence, Psw,1 ≈ 1. e1,n = −Vdd for Tup
and e2,n is ON for 0.5Tup, as given by

e2,n =

{
Vdd 0 < t < 0.5Tup

−Vdd 0.5Tup < t < Tup.
(22)

Therefore, R2 will switch with probability Psw,2 =

P (
0.5TupVup

Ron
). In this example, the synapse weight will be

updated from −1→ 0 with probability

P−1→0 = P−1→0w
+ P−1→0s

=
Psw,1(1− Psw,2) + (1− Psw,1)(1− Psw,2)
≈ (1− Psw,2),

(23)

and might switch to 1 with probability

P−1→1 = Psw,1Psw,2 ≈ Psw,2. (24)

Note that when W = −1, {R1, R2} = {Roff , Ron}. Thus, if
∆W < 0, the current flow direction will be from R2 to R1

and the MTJ cannot switch.
2) Example 2: Figure 3b shows the case where a synapse

weight is 0w, and the update value is −0.5. Thus, k = 0
and v = −0.5. Hence, b∆W c 6= 0 and sign(∆W ) = −1.
Consequently, e1,p = e2,p = Vdd, so both P1 and P2 are
closed for Tup. e2,n = −Vdd for Tup and e1,n is open for
0.5Tup, as given by

e1,n =

{
Vdd 0 < t < 0.5Tup

−Vdd 0.5Tup < t < Tup.
(25)

Therefore, R1 will switch with probability Psw,1 =

P (
0.5TupVup

Ron
). In this example, the synapse weight is updated

from 0w → −1 with probability P = Psw,1. Although theo-
retically no current should flow through R2, with probability
Psw,2 ≈ 0 it might switch from Ron to Roff due to leakage
currents. It is important to note that the switching probability
is a function of the resistance; therefore, the switching proba-
bility of 0s = {Roff , Roff} is lower than 0w = {Ron, Ron}.

V. SUPPORT FOR BINARY NEURAL NETWORKS

In this section, we discuss how the proposed ternary synapse
can support BNN. We address the changes that must be applied
to the circuits to support binary weights.

A. MTJ-Based Binary Synapses

To support BNN instead of TNN, the GXNOR operation
is replaced by a simple XNOR operation and the quantized
space resolution is ∆z0 = 2.

1) Proposed Synapse Circuit and Synapse Array:
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Fig. 3. Examples of synapse update. The blue circle represents the logic state
of the weights, where the initial state is marked by an orange outline.

Synapse Circuit: To support BWS, a 2T1R synapse is used
as illustrated in Figure 4a. This synapse structure is similar
to the synapse circuit suggested in our previous work, which
used a resistive RAM device (RRAM) instead of an MTJ
device [19, 20]. To reuse the ternary synapse proposed in this
work to support binary weights, one ”branch” of the synapse
array is deactivated (see Figure 4b). To represent ±1 values, a
reference resistor Rref = (

Gon+Goff

2 )−1 is added per synapse,
and is connected in parallel to ū of the corresponding synapse.

It seems that the ternary synapse could have been separated
to two binary synapses with e1,n = e2,n and e1,p = e2,p.
Unfortunately, due to the use of the comparator, the ternary
array cannot support the inverse read from all the columns;
thus, it cannot support the backpropagation when the ternary
synapse is split to two binary synapses (see Figure 4c). The
2T1R synapse can be used to design a dedicated engine for
BNN; such a design does not need the comparators.

Synapse Weight: Table II defines the values of the weights
when a 2T1R synapse is used. MTJ resistance of Ron leads to
W = 1 and resistance of Roff leads to W = −1. To compute
the XNOR operation between the weights and activation ,u,
the synapse current is compared to the reference value Iref =

−uGref = −uGon+Goff

2 . The result of the XNOR operation
is given in the right column of Table II. While other methods
to support binary weights can be considered (for example,
using the resistance threshold value to separate the ±1 weight
values), this solution was chosen due to the low ratio between
Roff and Ron, which is a common property of MTJ devices.

Synapse Array: If the proposed synapse array is used, each
weight can use only one branch of the ternary synapse; thus the
synapse can represent only a single bit, and half of the array is
deactivated using binary mode. Similarly to the method in [19],
the reference resistors added to each row are located together
(see Figure 4b) and are active only during the feedforward
phase of the BNN (ebr =′ 1′).

B. Training BNN

1) XNOR and Feedforward: As in the GXNOR operation,
we denote the input neuron values as the voltage sources. The

logic values {−1, 1} are represented by u ∈ {−Vrd, Vrd}. The
result of each XNOR operation is

Iout = Gu, (26)

where G is the conductance of the MTJ. During feedforward,
the control signal ebr =′ 1′, and hence the reference resistors
are connected and the current through each row is

Irow,i =

N∑
j=1

Gijuj +

N∑
j=1

Gij ūj =

Roff −Ron
2RoffRon

(
N+1,i −N−1,i

)
Vrd,

(27)

where Gij is the MTJ conductivity of synapse j in row i, M
is the number of synapses per row, M+1,i is the total number
of positive products in row i, and M−1,i is the total number
of negative products in row i.

2) Weight Update: In a manner similar to the TNN update
scheme suggested in the paper, the MTJ device of each binary
synapse is updated to support the GXNOR algorithm [6].
Figure 1 illustrates two update examples for the binary weights
using the GXNOR algorithm.

The control signal must have the following functionality: if
κij = b∆Wij/2c 6= 0, a switch will occur with probability
Psw ≈ 1; otherwise the switching probability is a function of
νij = reminder

(
∆Wij/2

)
.

The control signals are set as follows. First, the reference
resistors are disconnected, and thus

ebr =′ 0′. (28)

The row control signals are{
e2,n = −Vdd,
e2,p = Vdd,

(29)

so branch 2 of each synapse is deactivated. Signals e1,p and
e1,n, which control the weight update, are given by

e1,p =

{
−sign(∆Wij)Vdd, 0 < t < ψTup

Vdd, ψTup < t < Tup
(30)

e1,n =

{
−sign(∆Wij)Vdd, 0 < t < ψTup

−Vdd, ψTup < t < Tup
(31)

where ψ = max(|κij |, |νij |).
3) Inverse Read: To compute the value of each multiplica-

tion, the current read from the activated synapse must be com-
pared to the reference value Iref = −yGref = −yGon+Goff

2 .
As in the feedforward solution, a reference resistor is added
per synapse in the column, and voltage y is applied across it.
The resistors are located together as illustrated in Figure 4c
and are connected to the row only if eBBP

=′ 1′. Thus, the
current comparator will compute

M∑
i=1

(Ii,R1 − Ii,ref ) =

M∑
i=1

(
Gij −

Gon +Goff
2

)
yi, (32)

where N is the number of synapses per column.
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(c) Binary inverse read.

Fig. 4. (a) Binary synapse, a reference resistor is added for each synapse. This concept is similar to our previous work for RRAM synapses [19]. (b) Binary
synapse array. To support binary weights with the ternary synapse, only one ”branch” of the synapse is used; the deactivated branch is marked in grey. (c)
The data flow of the inverse read operation.

TABLE II
BINARY SYNAPSE STATES AND OUTPUT CURRENT

Weight R Iout Iout − uGref

1 Ron Gonu u
Roff−Ron

2RoffRon

−1 Roff Goffu −uRoff−Ron

2RoffRon

VI. EVALUATION AND DESIGN CONSIDERATIONS

This section presents the evaluation of the MTJ-based train-
ing performance. The synapse circuit and array are evaluated
and the circuit parameters and behavior were extracted and
used for the training simulations. In this section, the software
and the MTJ-based implementations of the GXNOR algorithm
are referred to as GXNOR and MTJ-GXNOR, respectively.

A. Circuit Evaluation

The synapse circuit was designed and evaluated in Cadence
Virtuoso for the GlobalFoundries 28nm FD-SOI process. The
MTJ device is based on device C from [16] and its parameters
are listed in Table III. To achieve higher switching probability,
the magnetization saturation (µ0Ms) was changed according
to [21]. The read voltage, Vrd, was set to guarantee a low-
current regime and negligible switching probability for the
feedforward and inverse read operations. Likewise, the update
voltage, Vup, was set to guarantee a high-current regime. The
update time period was set to match Psw

(
Tup
)
≈ 1.

1) MTJ Switching Simulation: To evaluate the MTJ transi-
tion resistance and the impact of the MTJ transient response on
the synapse circuit operation, we ran a Monte-Carlo simulation
of the MTJ operation. The simulation numerically solves the
Landau–Lifshitz–Gilbert (LLG) [11, 22] differential equation
(assuming the MTJ is a single magnetic domain) with the
addition of a stochastic term for the thermal fluctuations [23]
and Slonczewski’s STT term [24]. For each iteration of the
Monte-Carlo simulation, a different random sequence was in-
troduced to the LLG equation and the resulting MTJ resistance

𝐶𝑤
2
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2

𝑅𝑤
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2

𝐶𝑤
2
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Fig. 5. The circuit schematic model considers the parasitic capacitance and
resistance of the wires and transistors, which are dependent on the cell location
within the synapse array.

trace was retrieved. The equation was solved using a standard
midpoint scheme [25] and was interpreted in the sense of
Stratonovich, assuming no external magnetic field [26] and
a voltage pulse waveform. The resistance of the MTJ was
taken as Ron

1+P 2

1+P 2cosθ [27], where θ is the angle between
magnetization moments of the free and fixed layers and P
is the spin polarization of the current. To approximate the
time-variation resistance of an MTJ during the switch between
states, all the traces from the Monte-Carlo simulation were
aligned using the first time that the resistance of the MTJ
reached Ron+Roff

2 . After the alignment, a mean trace was
extracted and used for the fit. This fit was used as the time-
variation resistance when the MTJ made a state switch.

2) Circuit Schematic Model: The transistor and the inter-
connect affect the circuit performance and operations. There-
fore, we adopt the circuit model illustrated in Figure 5,
which considers the parasitic resistance and capacitance. We
considered the corner cases (i.e., the synapses located at the
four corners of the synapse array) to evaluate the effect of
the wires and transistors on operation results, latency and
power consumption. For the following circuit simulations,
we considered the worst case where the wire resistance and
capacitance are the most significant (i.e., for an array of size
M ×N , the synapse located at [M,1]).
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TABLE III
CIRCUIT PARAMETERS [16]

MTJ, device C [16]
Parameter Value Parameter Value
a[nm] 50 Temp. [K] 300
b[nm] 20 Ron[Ω] 1500
tf [nm] 2.0 Roff [Ω] 2500

µ0Ms[T]1 0.5 α 0.01

CMOS
Parameter Value Parameter Value
VDD[V] 1 W/LPMOS 33

VSS [V] −1 W/LNMOS 20

Vup[V] 1 Tup[ns] 2
Vrd[V] 0.1 Trd[ns] 0.5

1 To achieve higher switching probability, the value
of µ0Ms was changed according to [21].

TABLE IV
ACCURACY OF STATE-OF-THE-ART ALGORITHMS

Methods Datasets
MNIST SVHN

BNNs [7] 98.6% 97.20%

BWNs [8] 98.82% 97.70%

GXNOR TNN [6] 99.32% 94.12%

GXNOR BNN [6] 98.54% 91.68%

MTJ-GXNOR TNN 98.61% 93.99%
MTJ-GXNOR Bin-Activation 98.6% 93.62%

MTJ-GXNOR BNN Full 97.84% 89.46%

B. MTJ-GXNOR Training Simulation

To evaluate the training performance of the MTJ-based
synapse, we simulated the training of two TNN and BNN ar-
chitectures using the MTJ-based synapse over the MNIST and
SVHN datasets [14, 15] in PyTorch. The network architecture
for MNIST is “32C5-MP2-64C5-MP2-512FC-SVM,” and for
SVHN it is “2×(128C3)-MP2-2×(256C3)-MP2-2×(512C3)-
MP2-1024FC-SVM” [6]. All the training parameters were set
to match the settings in [6]. The synapse circuit parameters
were extracted from the SPICE simulations. Table IV lists
the test accuracy of MTJ-GXNOR as compared to GXNOR
and other state-of-the-art algorithms. BNNs [7] and BWNs [8]
constrain the weights and activation to the ternary and binary
spaces. However, in contrast to GXNOR, these networks
keep the full-precision weights during the training phase,
which increases the frequency of memory access and requires
supporting full-precision arithmetic. The results of the TNN
training using the MTJ-based synapse (MTJ-GXNOR TNN)
are similar to the results of the GXNOR training. When the
ternary synapse is used, the activation can be constrained to
binary values using a sign function [6], although the weights
cannot be constrained to the binary space. Therefore, we also
explore a mixed precision network that uses binary activations
with ternary weights (MTJ-GXNOR Bin-Activation). When
trained on the SVHN dataset, the test accuracy of MTJ-
GXNOR BNN is lower than that of GXNOR BNN, while
the test accuracy of MTJ-GXNOR Bin-Activation is closer to
that of GXNOR TNN.

TABLE V
TEST ACCURACY VS. PROCESS

VARIATION FOR MNIST

RSD Resistance θ0
Variation Variation

0% 98.61% 98.61%

1% 98.13% 97.98%

5% 98.13% 97.92%

10% 98.1% 97.98%

30% 98.15% 98.05%

35% 97.94% 98.05%

TABLE VI
TEST ACCURACY VS. θ0

θ0[rad] Test Accu.
0.0913 94.28%

0.1141 94.98%

0.2739 97.39%

0.345 98.61%

C. Sensitivity to Process Variation

Variation in the device parameters and environment may
affect the performance of the proposed circuits. In this section,
we evaluate the sensitivity of the TNN training performance
to process variation.

1) Resistance Variation and θ Distribution Variation: Two
cases of process variation were considered: 1) resistance vari-
ation; and 2) variation in θ distribution. Variation in the device
resistance and θ distribution may lead to different switching
probability per MTJ device. To evaluate the sensitivity of
the training to the device-to-device variation, we simulated
the MNIST-architecture training with variations in the resis-
tance and θ distributions. Several Gaussian variabilities were
examined with different relative standard deviations (RSD).
Table V lists the training accuracy for resistance variation and
θ variation. According to [11], the resistance RSD was found
to be approximately 5%, while our simulations show that the
training accuracy is robust to the resistance variation even
for higher RSD values (e.g. only 0.46% accuracy degradation
for RSD= 30%). The training accuracy is more sensitive to
variations in θ. Nevertheless, high standard deviation of θ
values results in better training accuracy. We concluded that
the performance of the MTJ-GXNOR algorithm improves for
higher variations in θ. Table VI lists the training results for
different θ0 values; the θ0 value used in this work is marked
in bold. Larger θ0 values, which correspond to higher ran-
domness of the MTJ switching process, yield better accuracy.

2) Sensitivity to Voltage Non-Ideality: The operation most
sensitive to voltage variation is the weight update operation,
where the update probability is a function of the voltage drop
across the MTJ device. Therefore, in this section we evaluate
the test accuracy obtained for variation in the voltage source.
Increasing the voltage leads to higher switching probability
and θ0 variance. Hence, increasing the voltage magnitude
increases the randomness of the MTJ switching. Therefore,
the voltage magnitude can be used to improve the stochastic
switching process and to improve the network training per-
formance when using an MTJ device with low θ0 variance.
In the case simulated in this work, increasing the voltage
magnitude above Vup = 1.1V only slightly improves test
accuracy; hence, in this work we set Vup = 1V to constrain
the power consumption of our design.

3) Sensitivity to Temperature: The ambient temperature
affects the switching behavior of the MTJ [28]. When the
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TABLE VII
TEMPERATURE EFFECT ON TEST ACCURACY FOR MNIST

T[K] 260 273 300 333 373

Roff [Ω] 2750 2650 2500 2150 2000

θ0[rad] 0.3187 0.3266 0.345 0.3617 0.3827

Test Accuracy(%) 98.14 98.32 98.66 98.82 98.88
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Fig. 6. Test accuracy during the training phase for temperature range
[273K, 373K]. Increasing the temperature leads to larger θ0 variance; thus,
it increases the randomness of the MTJ switching time. Therefore, higher
temperature leads to faster convergence.

temperature increases, the Roff resistance decreases. The Ron
resistance value has a much weaker temperature dependency
and it is nearly constant [29]. The transistors can be described
as variable current sources, where for high temperatures the
drivability of the MOS transistor is degraded because the
electron mobility decreases. Hence, the ambient temperature
has opposite effects on the Roff of the MTJ and the drivability
of the MOS transistor, which affect the switching probability.
Additionally, the initial magnetization angle, θ, depends on the
temperature by the normal distribution θ ∼ N (0, θ0), where
the standard deviation is θ0 =

√
kBT/(µ0HkMsV ). Hence,

θ0 increases for higher temperature.
As mentioned in Section VI-C, the training performance

is highly dependent on the variance of θ. Thus, to evaluate
the sensitivity of the MTJ-GXNOR training to the ambient
temperature, we focused on θ0, and left the resistance and driv-
ability evaluation for future work. To estimate the sensitivity
of the MTJ-based synapse to the temperature, we simulated
MTJ-based training with different temperatures in the range
[260K, 373K], where the resistances are extrapolated to emu-
late the temperature dependence. Table VII lists the test accu-
racy obtained for different temperatures. Although better ac-
curacy is obtained for higher temperatures, the training phase
and network accuracy are robust to temperature variations.
Figure 6 shows the test accuracy over the training phase for
the MNIST network. Higher temperatures, which correspond
to higher θ0, increase the convergence rate of the network
while the network converges to similar test accuracy for all
the temperatures in the examined range. Further research on
how the ambient temperature affects the synapse circuit and
array is left for future work.

D. Performance Evaluation

In this section, the power and area of TNNs execution is
presented.

TABLE VIII
AREA AND POWER

Cell Area Power
XNOR+sum Update

Single Synapse 3.63µm2 1.89µW 2.72µW

64× 64 Syn. array 0.015mm2 7.31mW 1.64mW

128× 128 Syn. array 0.059mm2 28.5mW 3.25mW

1) TNN Power and Area: The power consumption and
area were evaluated for a single synapse and synapse array,
including the interconnect parasitics. The results are listed in
Table VIII. During the read operation, all the synapses are read
in parallel; therefore, the feedforward power is higher than the
write power, where the columns are updated serially.

2) Potential Performance: QNNs were proposed as a way
to reduce the overall power consumption and complexity of the
full precision DNNs; hence, we evaluated the energy efficiency
(in units of TOPs

W ) of our design. For the feedforward phase
in a 128 × 128 synapse array, 128 × (128 + 128) GXNOR
and accumulate operations are done in parallel (1OP= 1b
GXNOR/Accumulate/update). Therefore, the synapse array
can reach 2299TOPsW in this phase. When performing update,
we count each update as a single operation; the energy
efficiency when updating the weights is thus 39TOPsW . During
the update phase the voltage source is set to guarantee a high
current domain; the energy efficiency of the update operation
is therefore bounded by the MTJ device properties.

3) System Performance (Test Case): To evaluate the per-
formance of the synapse array when integrating our design
to a full system, we consider the following (but not the
only possible) setup, when the performance will change for
different setups. A 128 × 128 synapse array is used. The
synapse array is used as an analog computation engine and
as memory for the weights; hence, the input and output to the
array are converted to using 1-bit DAC and 8-bit ADC (for
the array dimensions the output of each row is in [−128, 128]
and a 9 bit ADC is needed. To reduce the overhead, we
assumes for this discussion that [−127, 127] is sufficient,
hence, a 8 bit ADC is sufficient). In the inverse read phase,
we consider the bit-streaming method as suggested in [30] to
compute the multiplication with the full-precision error data;
thus, only a 1-bit DAC a 8-bit ADC are needed. To generate
the control signals, an 8-bit DAC, and voltage comperators
are needed. The power and area of those components are
listed in Table IX. The respective energy efficiency in the
feedforward and update phases is 18.3TOPsW and 3TOPsW ,
where the power consumption of the data converters limits
the overall performance. For the bit-streaming method [30]
with 8-bit precision for the error data, the energy efficiency of
the inverse read operation is 1.43TOPsW .

E. Comparison to Previous Work

Previous works that propose in-situ hardware implementa-
tions of BNN and TNN support only inference. In [32], a
CMOS-based computation-near-memory (CNM) engine was
designed and fabricated. The design’s energy efficiency during
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TABLE IX
TEST CASE MODEL

Component Number Power [mW]

ADC 8-bit [30] 8 16

DAC 8-bit [31] 2× 128 5.52

DAC 1-bit [30] 2× 128 1

inference is 532TOPsW . They assumed that the binary activation
can be done immediately after the convolution, thus eliminat-
ing the ADC. Similar assumption for our setup will increase
the inference energy efficiency of our design to 180TOPsW .
BNN inference without the need for an ADC is also supported
in [33], where energy efficiency of 1326TOPsW was reported.
In that work, a RRAM device is used instead of an MTJ. The
RRAM-based synapse can use smaller access transistors than
the MTJ-based device, which is current driven. Moreover, a
1T1R synapse is sufficient when supporting only inference,
thus reducing the complexity and overall power consumption
of each synapse.

In [12], a 1T1R and 1R structure were proposed, and the
stochastic behavior of the MTJ was also leveraged to support
in situ BNN training. Two update operations are required
for the 1T1R and four for the 1R, whereas our synapse
can perform positive and negative operations in parallel, thus
requiring only one update operation. Moreover, full precision
activations are used in [12]. As a result, a high resolution DAC
is still necessary to convert the input value to voltages. Using
the DAC circuits listed at Table IX, the 8-bit DAC consume
5× more energy than the 1-bit DAC. The power consumption
and complexity of the synapse array are greater as a result.

VII. CONCLUSIONS

In this paper, we proposed a novel MTJ-based synapse
circuit and showed that a QNN, and especially a TNN and
BNN, can be trained using the MTJ-based synapse, without
sacrificing accuracy. The proposed circuit enables in-situ,
highly parallel and energy efficient execution of weight-related
computation. Such a circuit can accelerate TNN inference
and training execution on low-power devices, such as IoT
and consumer devices. To fulfill the potential of the MTJ-
based synapse, the next step is to integrate it into a full
system design. Further research on the effects of environmental
factors, such as temperature and magnetic fields, on circuit
performance will be explored in future work.
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