
X-MAGIC: Enhancing PIM using Input Overwriting
Capabilities

Natan Peled, Rotem Ben-Hur, Ronny Ronen, and Shahar Kvatinsky
Andrew and Erna Viterbi Faculty of Electrical Engineering

Technion - Israel Institute of Technology
Haifa, Israel 3200003

{natanpeled, rotembenhur}@campus.technion.ac.il, ronny.ronen@ef.technion.ac.il, shahar@ee.technion.ac.il

Abstract—Processing-in-memory (PIM) using memristive tech-
nologies is an attractive solution for the memory wall problem.
PIM can improve the performance and energy efficiency of
computing systems by reducing the data transfer between the
memory and the processor. Memristor Aided loGIC (MAGIC) is
a popular memristive PIM technique that can perform any com-
binational logic as a sequence of atomic NOR/NOT operations.
These NOR/NOT operations rely on initializing their output cell
prior to computation. In this paper, we explore input overwriting:
the use of the MAGIC gate output cell as an additional input
without initializing it. We extend MAGIC and introduce X-
MAGIC (eXtended MAGIC) which uses input overwriting, and
demonstrate it by two gates, A · (B + C) and A ·B, where A is
an overwritten input. We show that input overwriting improves
functionality, performance, and effective lifetime of the system.

Due to algorithmic difficulties, available PIM synthesis tools
do not support input overwriting. We address these difficulties
by modifying an existing synthesis tool for MAGIC (SIMPLER),
and presenting several general principles and methods for sup-
porting input overwriting. We examine two configurations of
the modified synthesis tool using X-MAGIC gates, differing in
their performance/area trade-off. Both configurations achieve a
geomean improvement of over 16.5% in performance, and over
20% in effective lifetime compared to standard MAGIC.

Index Terms—memristor, logic synthesis, PIM, memory

I. INTRODUCTION

In recent years, data transfer between the computation
unit and the memory has become the main bottleneck in
computer architecture [1]. One possible approach to alleviate
this bottleneck, so to improve performance and reduce energy
consumption, is the decades-old concept of processing-in-
memory (PIM). Recent advances in memory technologies, and
specifically, the emergence of new electronic devices, have
brought PIM to the center-stage of contemporary computer
systems research.

One example of such an emerging electronic device is the
memristor [2]. In memristors, the resistance can be varied
by applying current or voltage across the device. Hence,
memristors can modulate data into resistance. Memristors
can be used to build standard memories [3], and can even
implement logic gates [4]–[6]. Furthermore, memristors can
combine both capabilities [7], [8], i.e., they can integrate data
storage and computation to perform PIM.

Memristor aided logic (MAGIC) [4] is a technique which
uses memristors to perform logic, and is compatible with
memristive crossbar memory arrays. The inputs and outputs

of MAGIC gates are stored within the memory array, in the
same cells that are used for computation; that is, the entire
computation is performed within the memory cells. MAGIC
gates can form a complete logic structure using NOR/NOT
operations, which means that any function can be broken down
into a sequence of MAGIC operations.

MAGIC gates rely on initialization of their output cells to a
specific logical state prior to the computation. Then, based on
the input values, the output cell either switches or retains its
value. In fact, MAGIC gates can skip the initialization step and
use their output cells as an additional input variable. FELIX [9]
presented a two-cycle MAGIC-based XOR gate. Both cycles
use the same cell as an output, without a cell initialization
between the cycles. By avoiding this initialization, the output
value generated in the first cycle serves as an input for the
second cycle, and the result of the second cycle overwrites the
value stored in the output cell in the first cycle. By referring
to the second cycle operation as a new MAGIC gate, i.e.,
a MAGIC NOR gate without initialization, the idea of input
overwriting with MAGIC can be leveraged.

Input overwriting, as referred in this paper, is the ability of
a logic operation to replace one of its inputs with the operation
result. We show that input overwriting provides additional
functionality that improves the performance and extends the
effective lifetime of the system.

The integration of input overwriting into the execution
sequence of a full and complex combinational logic raises
several challenges and difficulties. Existing PIM synthesis
tools do not support the integration of input overwriting and
therefore face these challenges. In this paper, we propose
several principles and methods to address these challenges
for different tools and algorithms. To demonstrate the impact
of input overwriting in PIM, we introduce two eXtended
MAGIC (X-MAGIC) gates with input overwriting capability,
and modify an existing MAGIC synthesis tool by adding input
overwriting support to it. We test two synthesis configurations,
differing in their performance/area trade-off, using the modi-
fied synthesis tool and compare the results to a state-of-the-art
synthesis process that does not support the integration of input
overwriting.

This paper makes the following contributions:
• Identification of principles and development of methods

to support input overwriting in PIM.

Fig. 1. (a) Schematic of a MAGIC NOR gate and (b) its mapping into
a memory crossbar array. To perform a logical NOR operation using the
gate, the output cell is initialized to Ron. Then, a voltage is applied at the
negative terminals of input memristors and the negative terminal of the output
memristor is grounded. The operation relies on a voltage divider between the
input and output memristors.

• Proposing two new MAGIC gates that overwrite one of
their inputs and store their outputs instead of it.

• Demonstration of the performance and effective lifetime
benefits of the proposed gates.

The rest of the paper is organized as follows. Section
II provides the background about MAGIC and the relevant
synthesis tool. Section III introduces the concept of input
overwriting, describes its general principles, and shows how to
apply it to extend MAGIC. The methodology and evaluation
are presented in Section IV, and Section V concludes the
paper.

II. BACKGROUND

The concept of input overwriting may be useful for a
diversity of technologies, algorithms, and tools. In this work,
we focus on the MAGIC technique and the synthesis tool
called SIMPLER.

A. MAGIC

Memristor aided logic (MAGIC) [4] is a technique which
uses memristors to perform logic operations, including logical
NOR and NOT. Since NOR constitutes a functionally complete
set, MAGIC gates can implement any combinational logic se-
quence. MAGIC gates work with the same data representation
of the stored data in memristive memories, where logical ’1’
is represented as a low resistive state (Ron) and logical ’0’ is
represented as a high resistive state (Roff). Fig. 1 shows the
schematic of a single MAGIC NOR gate and its mapping into
a memory crossbar. The operation of this gate (as well as the
NOT gate) consists of two steps. At the first step, the output
memristor is initialized to Ron. At the second step, a voltage is
applied to the negative terminals of the input memristors, while
the negative terminal of the output memristor is grounded. By
applying the voltage, the resistance of the output memristor is
changed depending on the ratio between the resistances of the
input and the output memristors.

Operation of MAGIC gates is compatible with memristive
memory crossbars, allowing for performance of single instruc-
tion multiple data (SIMD) operations. By selecting the same
columns as inputs and output in multiple rows, all the selected
rows behave as the same logic gate, but with different input
values. Furthermore, the initialization stage can be performed
simultaneously on multiple columns within all selected rows.

B. SIMPLER

To perform different logical functions with MAGIC, the
MAGIC gates must be sequenced and then mapped into
specific locations within the memory. SIMPLER [10] is a
state-of-the-art synthesis and mapping tool for the conversion
of combinational netlist files into PIM execution sequences,
where each sequence can be executed within a single row
in the crossbar array. The execution sequence created by
SIMPLER is composed of MAGIC instructions, where each
instruction includes the operation type (NOR or NOT), the
location of its inputs, and the location where its result should
be placed within the memory row. The tool also minimizes
the number of memory cells participating in the computation.

III. INPUT OVERWRITING

As explained above, input overwriting is the ability of an
operation to replace one of its inputs with its result, i.e.,
the ability to overwrite an input with the operation output.
Input overwriting introduces new functionality based on the
same operation, which may improve the performance, area,
and effective lifetime of the system. However, using input
overwriting raises several limitations and implications. In this
section, we discuss some of the challenges caused by input
overwriting, and describe principles and methods to handle
them. Then, we describe how to use input overwriting with
MAGIC and how to integrate it in logic synthesis.

For our discussion, we describe combinational logic as a
dependency Directed Acyclic Graph (DAG) [10]. The combi-
national logic is synthesized using an existing CMOS synthesis
tool that generates a list of logic gates and their connections.
For a given netlist, each logic gate is represented as a node
(where the node is associated with the gate’s logic operation),
and a wire between logic gates is represented as an edge. The
inputs of each gate are referred as its child nodes, while the
gates that are connected to its output are referred to as its
parent nodes. The number of parents a node has is termed as
the Fan Out (FO) of the node. To perform the logic operation
associated with a node, all the operations associated with its
child nodes must be performed prior to the node operation,
i.e., the node depends on its children in term of execution
order. Wires (i.e., edges) describe true dependencies between
the nodes they connect. The roots of each DAG are the outputs
of the netlist, and the leafs of the DAG are the inputs of the
netlist. Besides a logic operation, each node is associated with
the operation value (its result). In this paper, an overwriting
relation (dependency) between two nodes means that the result
of the parent node operation replaces the original value that
is associated with the child node.

To distinguish between overwriting dependencies and non-
overwriting dependencies, we use two types of edges in
the dependency DAG. The first edge type, named regular
edge, represents a non-overwriting dependency. The second
edge type, named overwriting edge, represents an overwriting
relation between a child node and a parent node, namely, the
value stored in the child node is overwritten by the parent
operation. Fig. 2(a) shows the two different types of edges.

Fig. 2. DAG of three logic gates, demonstrating the different types of edges.
Nodes u and h consume the output of node v. Node u is connected to v via
a regular edge (black), and node h is connected to v via an overwriting edge
(green). (a) Execution order impact. If h is executed before u, the original
value of v is overwritten; hence it is invalid as an input of node u. (b) Use
of a sequencing edge. To ensure u is executed before h, a sequencing edge
(red) is added.

Note that in this work, a parent node can have, at most, one
child connected to it via an overwriting edge.

A. Input Overwriting Principles

In this section, we describe several principles that an input
overwriting DAG should follow, explain why these principles
are needed, and describe methods to ensure that a given DAG
is following these principles.

The first principle for working with input overwriting is
to check that each node has no more than one parent
connected to it via an overwriting edge. Otherwise, each one
of its overwriting parents will try to overwrite the value stored
in the node. Let h, u, f, and v be nodes in the DAG, as shown
in Fig. 3(a). If h is executed before f , the value that is stored
in v will be overwritten, hence one of inputs that belongs
to f will contain an incorrect value. The same phenomenon
will occur if the execution order of h and f is reversed.
This case can be further generalized by having more than two
parents connected to v via overwriting edges. Our method for
overcoming this challenge is based on the relation between v
and its children. If v is not connected to any of its own children
via an overwriting edge, we duplicate v into a new node, v′,
where v and v′ have the same children. Then, we choose one of
v’s overwriting parents and move the connecting overwriting
edge to connect between v′ and the parent instead, as shown in
Fig 3(b). We repeat this process until v has only a single parent
connected via an overwriting edge. If v is connected to one of
its own children via an overwriting edge, the duplication of v
will also require duplication of the overwritten child of v. That
is, at least two nodes will be duplicated, and even more than
two if v’s child is also connected to one of v’s grandchildren
via an overwriting edge. Hence, instead of duplication, a buffer
is inserted between v to all but one of its overwriting parents.
Fig. 3(c) demonstrates the insertion of the buffer nodes.

Another principle to follow is that the overwriting parent
should be the last parent that is executed. Assume there
are two parent nodes with a shared child node, where the first
parent node is connected to the child node via an overwriting
edge, and the second node is connected via a regular edge, as
shown in Fig. 2(a). If the overwriting parent node is executed
before the other parent node, the value of the child will
be changed, and hence, it will hold an incorrect value as
an input for the second parent node. This ordering problem
may become even worse if there are several parents that are
connected to the same child via regular edges. The method

Fig. 3. Example of several overwriting parents. The nodes in the DAG are
v, h, u and f . Node u is a parent of v connected via a regular edge (black).
Nodes h and f are parents of v connected via overwriting edges (green).
(a) Several overwriting parents. Without intervention, f and h will overwrite
the value stored in v, where the first node that is executed will make the
value invalid for the other. (b) The solution if v is not connected to any of
its children via an overwriting edge. v is duplicated into v′ (blue node), and
the edge from h to v is replaced by an edge from h to v′. (c) The solution
if v is connected to one of its own children via an overwriting edge. Two
inverter nodes in a row (a buffer) are inserted between v and f (f → blue
node → red node → v). If u is associated with an inverter, u operates as
the first buffer’s inverter, and only the second inverter is inserted (f → blue
node → u → v).

to solve this issue consists of defining a third type of edge
- a sequencing edge. The purpose of this edge is to ensure
that the parent that is connected to the mutual child via an
overwriting edge, is the last one to be executed. Sequencing
edges create artificial dependencies among all the parents that
are connected to the child via regular edges and the parent
node that is connected to the child via an overwriting edge, as
illustrated in Fig. 2(b). Sequencing edges are added only after
it was ensured that each node has no more than one parent
connected to it via an overwriting edge (as described in the
first principle).

The third principle is that sequencing edges must not
create cycles in the DAG. Let v, h, and u be nodes in the
DAG, as shown in Fig. 4(a). The addition of the sequencing
edge from h to u creates a cycle, since a path between u and h
exists. The existence of this cycle contradicts the fact that the
dependency graph is a DAG and creates a cyclic dependency.
We call this problem the cyclic dependency problem. To avoid
the cyclic dependency problem, we check each node for a
connection to one of its parents via an overwriting edge. If
an overwriting edge exists, we search for a path from any
of the other parents (u) to the one which overwrites (h) the
mutual child. If a path is found, we distinguish between the
same cases as we did in the single overwriting parent check,
as shown in Fig. 4(b) and Fig. 4(c).

The last principle is that overwriting the inputs of the
original netlist is prohibited. If one of the input nodes of
the netlist is connected to its parent via an overwriting edge,
the execution of this parent will change the input value, and
it will not be available to other netlists which use this input
or as general data. Hence, it is necessary to protect the value
of this input. To support this, we use an approach similar to
those shown in Fig. 3 and Fig. 4.

We combine all the above methods into a single process,
and apply it to the initial DAG. We name the entire process
the Pre-Processing Stage. To analyze the time complexity
of the Pre-Processing Stage, assume the number of nodes
in the initial DAG is |V |, and the number of edges is |E|.
The time complexity of assuring that each node has at most
one parent connected to it via an overwriting edge, adding

Fig. 4. The cyclic dependency problem and the proposed solution. The nodes
in the DAG are v, h, and u. Node u is a parent of v and is connected to v
via a regular edge (black), h is a parent of v and is connected to v via an
overwriting edge (green). Let p be a path from u to h, represented by the
blue edge. (a) A cyclic dependency. Adding a sequencing edge (red) from
h to u creates a dependency cycle, composed of p and the edge. (b) The
solution if v is not connected to any of its children via an overwriting edge.
v is duplicated into v′ (blue node), and the overwriting edge from h to v is
replaced by an edge from h to v′. (c) The solution if v is connected to one
of its own children via an overwriting edge. Two inverters (as a buffer) are
inserted between v and h. If v has one inverter as a parent (red node), only
one inverter is inserted (blue node).

the sequencing edges, and protecting the netlist’s inputs, is
O(|V | + |E|). To solve the cyclic dependency problem, we
use the DFS algorithm for checking the existence of paths to
each overwriting node, which makes the time complexity of
this method to be O(|V | · (|V |+ |E|)) = O(|V |2 + |V ||E|).
Hence, the time complexity of the entire Pre-Processing Stage
is O(|V |2 + |V ||E|).

B. Input Overwriting using MAGIC

As described in Section II-A, to perform a NOR/NOT
operation using MAGIC, the output cell must be initialized
to Ron prior to computation. FELIX [9] introduces a two-
cycle MAGIC XOR gate, which uses the same output cell for
both cycles without a re-initialization between the cycles. By
avoiding this initialization, FELIX makes use of the input over-
writing concept, but only as an intermediate computation step.
FELIX does not show the potential of MAGIC-based input
overwriting beyond small and handcrafted logic circuits, nor
does it address the challenges introduced by input overwriting.
FELIX does not discuss how to integrate input overwriting
in a full synthesis flow. In FELIX, the intermediate value is
unavailable as an input for other MAGIC gates, which may
result in some re-computations. By defining new MAGIC-
based gates which use the input overwriting capacity, applying
the Pre-Processing Stage to any given combinational netlist
that uses the new gates, and adding the relevant support to
SIMPLER, we present a full synthesis flow for any function,
that supports both the new and the old MAGIC gates.

Assume a MAGIC NOR operation is performed on inputs
B and C, and the operation result is stored in an uninitialized
cell, A. Table I lists the possible results for different input
combinations. If the value of A before the computation is
logical ′0′ (Roff), the output value, i.e., the value stored in
A after the computation, marked as A∗, is logical ′0′ (Roff)
regardless of the values of B and C. The value that is stored
in A does not change owing to the output memristor polarity
and under the voltage constraints for proper operation [4].
Conversely, if the value of A prior the computation is logical

TABLE I
X-MAGIC NOR TRUTH TABLE

A B C Output (A∗)
0 (Roff) φ 0 (Roff)
1 (Ron) 0 (Roff) 0 (Roff) 1 (Ron)
1 (Ron) 0 (Roff) 1 (Ron) 0 (Roff)
1 (Ron) 1 (Ron) 0 (Roff) 0 (Roff)
1 (Ron) 1 (Ron) 1 (Ron) 0 (Roff)

′1′ (Ron), the gate operates as a standard MAGIC NOR
gate. Overall, A can be viewed as an input of a gate that
implements the A · (B + C) logic function, where the output
value (A∗) and input A must share the same memory cell.
In other words, the result value overwrites the value stored in
A. Similarly, performing a MAGIC NOT operation with an
uninitialized output cell implements the A ·B logic function.
We named these overwriting MAGIC gates as X-MAGIC
(eXtended MAGIC) gates.

X-MAGIC gates provide additional capable logic on top
of the standard MAGIC NOR/NOT gates; the enhanced func-
tionality of the new gates may reduce the number of total
gates needed to implement a given combinational function.
To perform the same logic operation of X-MAGIC gates with
MAGIC NOR/NOT, four clock cycles are required instead
of the single clock cycle required in X-MAGIC. Hence,
using X-MAGIC may lower the number of gates and reduce
execution time. Furthermore, since X-MAGIC gates avoid the
initialization of the output cell, and since fewer gates are
used to execute a function, the number of write operations to
the memory cells is also lowered, lengthening the effective
lifetime of the system due to endurance limitations. The
effective increase in lifetime is proportional to the relative
reduction in the number of writes.

IV. EVALUATION AND RESULTS

To evaluate the impact of X-MAGIC gates, we developed X-
SIMPLER, a modified version of the Python-based implemen-
tation of SIMPLER to support the new gates. We also devel-
oped and integrated the Pre-Processing Stage as the first stage
of X-SIMPLER flow, that is, before the synthesis and mapping
stages. We examined the outputs produced by X-SIMPLER by
comparing the performance (execution latency), area (required
memory row size), and effective lifetime (correlates with the
number of write operations per cell) of each tested benchmark
to those of the of SIMPLER (using only NOR/NOT gates). In
this paper, we evaluated the impact of the A · (B + C) gate
only, since its functionality includes the functionality of the
second X-MAGIC gate. This section describes the evaluation
methodology and results.

A. Environment and Methodology

Synthesis constraints and optimization. The first stage
of the X-SIMPLER flow is synthesis based on a standard
synthesis flow (typically used for CMOS logic). To generate
a netlist that contains X-MAGIC gates, the X-MAGIC gate
was modeled as a three-input gate. A specific input port was

defined as the overwriting port (corresponds to A). Since
the number of gates directly determines the latency, we
attempted to reduce the number of nodes added during the
Pre-Processing Stage by using the optimization capabilities
of the synthesis tool. The synthesis was optimized for area,
where all gates were assigned equal area. To ensure that each
gate drives, at most, one overwriting input port, we use Fan-
Out (FO) constraints during the synthesis process through the
gates definition file. The X-MAGIC overwriting input port was
assigned a high FO load value, while all the other input ports
(whether they belong to an X-MAGIC or NOR/NOT), were
assigned a low FO load value. The output ports of all gates
were assigned a FO value that ensured that no more than a
single overwriting input port will be connected to each gate
output.

CMOS synthesis tool. SIMPLER used the ABC synthesis
tool (ABC) [11]. Since ABC cannot apply any FO constraints,
this work uses the Synopsis Design Compiler (DC) [12] as
the synthesis tool. The gates definition file used by DC is
written in Liberty format. To make a fair comparison, all
workloads [13] were re-synthesized using DC. For a given
set of design constraints, DC makes the ”best-effort” for
applying them. The constraints defined in the Liberty file
may therefore be violated in the netlist created by the tool.
The Pre-Processing stage was built in a way that checks if
violations exist, and solves these violations during its different
sub-stages.

Synthesis configurations. We examined two synthesis con-
figurations for the integration of the X-MAGIC gates (each
configuration is defined by a different Liberty file). The first
configuration allows each gate to drive, at most, a single X-
MAGIC node via an overwriting port (edge) and to drive
several additional gates via regular ports (including X-MAGIC
gates, to their regular ports), as shown in Fig. 5(a). In the
second configuration, each node can only drive either a single
overwriting port or several regular ports, as shown in Fig. 5(b).
The configurations are named Different-Edge Types (DET) and
Same-Edge Types (SET), respectively.

Benchmarks, baseline, and comparison. To evaluate the
impact of the X-MAGIC gates in both configurations, we used
the EPFL benchmark suit [13]. We applied SIMPLER on the
re-synthesized files (without X-MAGIC), where the results
serve as the baseline for the comparison between the two
X-MAGIC synthesis configurations. To evaluate the potential
effective lifetime improvement, we assumed the operations
are uniformly distributed among all cells within each memory
row (as proposed in, e.g., RRAM Endurance Resiliency [14]).
Under this assumption, we measured only the reduction in
the number of write operations for each tested benchmark.
To assess the impact of X-MAGIC on area, we measured,
for each configuration, the minimum row size needed for
the computation of the different benchmarks. To make a fair
latency comparison between SIMPLER and X-SIMPLER (for
both SET and DET), the memory row size each tool uses
should be the same. For the comparison between each X-
MAGIC configuration (SET or DET) and SIMPLER, we

Fig. 5. The two tested synthesis configurations. f, g, h, u, k, and v are
nodes in the DAGs. Nodes h, u, k, and v are regular MAGIC nodes (i.e.,
NOT or NOR), and f and g are X-MAGIC nodes (marked in orange). (a)
Different-Edge Types (DET). Each child can be connected to both regular and
overwriting edges. (b) Same-Edge Types (SET). Each child can be connected
to only a single edge type. After the Pre-Processing Stage, the child node can
be connected to several regular edges, or to a single overwriting edge.

Fig. 6. Row size increase relative to SIMPLER (lower is better).

set the size to the highest of the two minimum row sizes
SIMPLER and X-SIMPLER require, where SIMPLER serves
as the baseline. To make a fair latency comparison between
SET and DET, we set the row size to the highest of the three
minimum sizes SIMPLER and X-SIMPLER (SET and DET)
require, where SIMPLER serves as the baseline.

B. Results

Area. SIMPLER uses a heuristic technique to reuse cells
and reduce the row size. This heuristic is not fully compatible
with the case where the execution order influences the correct-
ness of the logic. Hence, X-MAGIC increases the row size.
Fig. 6 shows the increase in the minimum required row size
for each configuration compared to SIMPLER minimum row
size. The geomeans of DET and SET configurations, relative
to SIMPLER, are 20.5% and 2.1%, respectively. The increase
in the row size for SET is relatively low, and is even lower
than the baseline in one case (arbiter). Conversely, the DET
configuration incurs a non-negligible area increase. The zero
row-size increase in adder and dec stems from the fact that
these two benchmarks do not use X-MAGIC gates at all.

Latency. A netlist consisting of both X-MAGIC gates and
standard MAGIC gates has fewer gates than a netlist consisting
of MAGIC gates only. Since the latency is proportional to the
number of gates, the latency is lower when X-MAGIC gates
are used. Fig. 7 shows the latency relative to the baseline.
Note that for benchmarks which do not use X-MAGIC gates
(adder and dec), there is no improvement. The comparisons
between each configuration and its SIMPLER baseline are
shown in blue for DET and in orange for SET. The geomean
latency improvements are 18% for DET and 16.2% for SET.
We select the row size to be the maximum between the sizes

Fig. 7. Latency relative to SIMPLER (lower is better).

Fig. 8. Effective lifetime improvement relative to SIMPLER, measured as
reduction in the number of write operations (higher is better).

of SIMPLER and the compared SET or DET configuration.
To compare between DET and SET, we set the same row size
for both configurations. Since the highest size is always the
size in DET, only SET is re-executed using the row size of
DET. The results for SET with this row size are shown in
gray, where the geomean latency improvement is 16.5%.

Lifetime. We approximate the lifetime improvement by
counting the number of write operations associated with each
benchmark. We count each occurrence of a standard MAGIC
gate (NOR/NOT) twice, once for the output initialization and
once for the gate operation. Each X-MAGIC gate is counted
once, as they do not require initialization. Fig. 8 shows the
effective lifetime improvement (measured as reduction in the
number of write operations) relative to SIMPLER. The ge-
omean improvement for DET is 23.4% and for SET is 20.2%.
This shows that both configurations fulfill our expectations for
a nice improvement in the effective lifetime of the system.

The differences between the DET and SET configurations
relative to SIMPLER are clear. Both configurations signifi-
cantly improve latency and reduce number of write operations,
but need a larger row. Among the DET and SET configu-
rations, when both are allocated the same row size, DET is
slightly better than SET in both latency and number of writes,
but DET needs a larger minimal row size to operate. Based on
these findings, it is reasonable to conclude that DET is likely
a better choice in general, unless area is so scarce that saving
several cells makes a difference.

Finally, the computational complexity of the Pre-Processing
stage is O(|V |2 + |V ||E|), higher than SIMPLER compu-
tational complexity of O(|V | + |E|). This increase is less
significant in practice since (1) the modified tool is still
quite fast, taking less than one minute to process the largest
benchmark (which contains over 14K gates), (2) the Pre-

Processing stage is only a small part of the entire synthesis
flow, hence, its longer runtime does not significantly affect the
entire synthesis runtime.

V. CONCLUSION

This paper presents several principles and methods for
working with input overwriting in PIM. It defines X-MAGIC,
two MAGIC-based logic gates which overwrite one of their
inputs. X-MAGIC gates implement the A · (B + C) and
A · B logic functions. In both functions, the operation result
overwrites the same memory cell used to store the input
value A. To demonstrate the impact of input overwriting on
PIM, we added support for X-MAGIC gates in the synthesis
of combinational logic for PIM. The results show a decent
improvement in the latency and the effective lifetime, while
the minimal area is slightly higher in one of the configurations.
We examined two X-MAGIC synthesis configurations, and our
experimental results show a geomean latency improvement of
over 16.5% and a geomean improvement of over 20% in the
effective lifetime for the same row size as the baseline.

ACKNOWLEDGMENT

This research is supported by the ERC under the European
Unions Horizon 2020 Research and Innovation Programme
(grant agreement no. 757259).

REFERENCES

[1] Pedram et al., “Dark Memory and Accelerator-Rich System Optimiza-
tion in the Dark Silicon Era,” IEEE Design Test, vol. 34, pp. 39–50,
April 2017.

[2] L. Chua, “Memristor-The Missing Circuit Element,” IEEE Transactions
on Circuit Theory, vol. 18, pp. 507–519, September 1971.

[3] C. Xu et al., “Overcoming the Challenges of Crossbar Resistive Memory
Architectures,” 2015 IEEE 21st International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 476–488, February 2015.

[4] S. Kvatinsky et al., “MAGIC-Memristor-Aided Logic,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 61, pp. 895–899,
November 2014.

[5] Borghetti et al., “’Memristive’ Switches Enable ’Stateful’ Logic Oper-
ations via Material Implication,” Nature, vol. 464, pp. 873–876, April
2010.

[6] S. Kvatinsky et al., “Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 22, pp. 2054–2066,
October 2014.

[7] Linn et al., “Beyond von Neumann—Logic Operations in Passive Cross-
bar Arrays Alongside Memory Operations,” Nanotechnology, vol. 23,
July 2012.

[8] Y. Levy et al., “Logic operations in memory using a memristive Akers
array,” Microelectronics Journal, vol. 45, no. 11, pp. 1429 – 1437, 2014.

[9] S. Gupta et al., “FELIX: Fast and Energy-Efficient Logic in Memory,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–7, 2018.

[10] R. Ben-Hur et al., “SIMPLER MAGIC: Synthesis and Mapping of In-
Memory Logic Executed in a Single Row to Improve Throughput,” IEEE
TCAD, July 2019.

[11] A. Mishchenko, “ABC: A System for Sequential Synthesis and Verifi-
cation,” Berkeley Logic Synthesis and Verification Group, 2012.

[12] H. Bhatnagar, Advanced ASIC Chip Synthesis: Using Synopsys’ Design
Compiler and PrimeTime. USA: Kluwer Academic Publishers, 1999.

[13] L. Amarù et al., “The EPFL Combinational Benchmark Suite,” in
Proceedings of the 24th International Workshop on Logic Synthesis
(IWLS), 2015.

[14] M. M. Sabry Aly et al., “The N3XT Approach to Energy-Efficient
Abundant-Data Computing,” Proceedings of the IEEE, vol. 107, no. 1,
pp. 19–48, 2019.

