
The PULP Processor
Parallel-Ultra-Low-Power

Adi Hayon

12/03/2018

Parallel Ultra Low Power (PULP)

• The project started in 2013 by Luca Benini

• A collaboration between University of Bologna and ETH Zurich

• The key goal is: How to get the highest performance for the ENERGY
consumed in a computing system.

Energy efficiency is the key driver in the PULP
project

PULP Goals

• Concentrating on programmable systems
• Cannot have custom hardware, need to be scalable

• Making the system accessible to application developers

• Scalable over a wide operating range
• Work just as well when processing 0.001 GOPS as 1000 GOPS

• Don’t waste idle energy
• Eliminate sources where cores and systems are idly wasting energy

• Take advantage of heterogeneous acceleration
• Allow an architecture where accelerators can be added efficiently

Why is Open Hardware Different than Open
Software?
• From gnu.org www site:

http://www.gnu.org/philosophy/free-hardware-designs.html

• Software is the operational part of a device that can be copied and

changed in a computer

• Hardware is the operational part that can't be.

• You can not produce HW directly, you need
• manufacturing plants

• know-how

• and volume

to be able to manufacture HW with reasonable cost.

Open Hardware is a necessity, not an
ideological crusade
• The way we design ICs has changed, big part is now infrastructure

• Processors, peripherals, memory subsystems are now considered
infrastructure

• Very few (if any) groups design complete IC from scratch

• High quality building blocks (IP) needed

Open Hardware is a necessity, not an
ideological crusade
• The way we design ICs has changed, big part is now infrastructure

• Processors, peripherals, memory subsystems are now considered
infrastructure

• Very few (if any) groups design complete IC from scratch

• High quality building blocks (IP) needed

• We need an easy and fast way to collaborate with people
• Currently complicated agreements have to be made between all partners

• In many cases, too difficult for academia and SMEs

Open Hardware is a necessity, not an
ideological crusade
• The way we design ICs has changed, big part is now infrastructure

• Processors, peripherals, memory subsystems are now considered
infrastructure

• Very few (if any) groups design complete IC from scratch

• High quality building blocks (IP) needed

• We need an easy and fast way to collaborate with people
• Currently complicated agreements have to be made between all partners

• In many cases, too difficult for academia and SMEs

• Hardware is a critical for security, we need to ensure it is secure
• Being able to see what is really inside will improve security

• Having a way to design open HW, will not prevent people from keeping
secrets.

Current HW only supports security through
obscurity
• Systems are built on hardware blocks where you do not know what

exactly is inside
• Open standards have proven themselves in SW. Why should HW be any

different?

• If you really want, you can still ‘obscure’ HW, but open HW gives you a
choice!

• Many bugs, features with unintentional consequences are hiding inside HW

• Open HW will allow a larger community to verify building blocks
• Better verification, more reliable hardware

Open Hardware

PULP Bundle

• ZIP file from github includes:
• RTL Code

PULP Bundle

• ZIP file from github includes:
• RTL Code

• Testbench

PULP Bundle

• ZIP file from github includes:
• RTL Code

• Testbench

• Example C code

PULP Bundle

• ZIP file from github includes:
• RTL Code

• Testbench

• Example C code

• Makefile

Modelsim Simulation

RISC-V cores under development

PULP Open-Source Releases and External
Contributions

PULP Success

• Many companies (we know of) are actively using PULP
• They value that it is silicon proven

• They like that it uses a permissive open source license

A Few Words about My Project

• Design new application-dedicated logic elements, that will be energy
efficient, and integrate them in the PULP processor:
• A CCLO (Configurable Combinational Logic Operator) unit

• enables the realization of application specific operations and software customization. For
example, LUTs

• A dot-product unit, which calculates matrix and vector multiplication
• Uses a memristors crossbar

• Useful for machine-learning applications

Calculating Multiplication using a Crossbar

Processor

The Problem: Multiplying Large Vector and
Large Matrix
• The Dot-Product unit is not large enough to store large vectors and

large matrices.

vector matrix

Dot-Product Unit

vector matrix

The Solution: Dividing The Vector & Matrix

• Dividing the vector to sub-vectors, and the matrix to sub-matrices:

• The blue sub-matrices are multiplied by the blue sub-vector, the
green ones with the green vector, etc.

• Additional calculations (summing the results) are performed in the
processor.

vector matrix

sub-vector

sub-matrix

Software
Decision:

How Many
Vectors?

V=1V>1

Sub-Vectors ReuseHardware
Decision:

How Many
Vectors?

V>=T
V<T

Sub-Vectors BufferMultiple DP Units

Multiplication Flow

Software
Decision:

How Many
Vectors?

V=1V>1

Sub-Vectors ReuseHardware
Decision:

How Many
Vectors?

V>=T
V<T

Sub-Vectors BufferMultiple DP Units

Multiplication Flow

One Vector: Sub-Vectors Reuse
• A simple example:

• The blue sub-matrices are multiplied by the blue sub-vector, the
green ones with the green vector, etc.

• Each sub-matrix is used once. Each sub-vector is used 3 times.

vector matrix

sub-vector

sub-matrix

One Vector: Sub-Vectors Reuse
• We first write a sub-vector and then all the relevant row sub-

matrices:

Dot-Product
Unit

Processor

vector matrix

result

Sub-vector

Sub-matrix

result

Software
Decision:

How Many
Vectors?

V=1V>1

Sub-Vectors ReuseHardware
Decision:

How Many
Vectors?

V>=T
V<T

Sub-Vectors BufferMultiple DP Units

Multiplication Flow

Multiple Vectors: Sub-Matrices Reuse
• When having multiple vectors, each sub-matrix is used more than

once.

• In the following example, the blue sub-matrix is multiplied by all the
blue sub-vectors:

• Since matrices are larger than vectors, we’d rather reuse sub-matrices
rather then reuse sub-vectors, like before.

Software
Decision:

How Many
Vectors?

V=1V>1

Sub-Vectors ReuseHardware
Decision:

How Many
Vectors?

V>=T
V<T

Sub-Vectors BufferMultiple DP Units

Multiplication Flow

Sub-Vectors Buffer
• We first write a sub-matrix and then all the relevant sub-vectors:

Dot-Product Unit

Processor

111

vectors matrix

results
Sub-matrix

results

Sub-Vectors Buffer
222

333

444
111

3

2

1

4

222

333

444

1 23 43 4

1

2

1 2

Sub-Vectors Buffer - Issues
• When the number of vectors isn’t a multiplication of the buffer size,

the last group of vectors will take only part of the buffer. The reused
sub-vectors in the next sub-matrix are not sorted, therefore the
results should be placed in the right location:

Sub-Vectors Buffer111

vectors

222

333

1

2

3

Software
Decision:

How Many
Vectors?

V=1V>1

Sub-Vectors ReuseHardware
Decision:

How Many
Vectors?

V>=T
V<T

Sub-Vectors BufferMultiple DP Units

Multiplication Flow

Multiple DP Units
• We first write a sub-matrix and then all the relevant sub-vectors:

Processor

111

vectors matrix

results

222

333

444
111

3

2

4

222

333

444

result
Dot-Product

Unit

Sub-matrix

Sub-vector

111

result
Dot-Product

Unit

Sub-matrix

Sub-vector

result
Dot-Product

Unit

Sub-matrix

Sub-vector

1

1

1

1

What’s Next?

•Developing an accelerator “by the book”
•Using the accelerator DMA

•Cache prefetching

•Reducing the number of add cycles

•Real performance analysis

Thank You!

