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Computationally-intensive neural network applications often need to run on resource-limited low-power

devices. Numerous hardware accelerators have been developed to speed up the performance of neural network

applications and reduce power consumption; however, most focus on data centers and full-fledged systems.

Acceleration in ultra-low-power systems has been only partially addressed. In this paper, we present multiP-

ULPly, an accelerator which integrates memristive technologies within standard low-power CMOS technology,

to accelerate multiplication in neural network inference on ultra-low-power systems. This accelerator was

designated for PULP, an open-source microcontroller system that uses low-power RISC-V processors. Memris-

tors were integrated into the accelerator to enable power consumption only when the memory is active, to

continue the task with no context-restoring overhead, and to enable highly-parallel analog multiplication. To

reduce the energy consumption, we propose novel dataflows that handle common multiplication scenarios and

are tailored for our architecture. The accelerator was tested on FPGA and achieved a peak energy efficiency of

19.5 TOPS/W, outperforming state-of-the-art accelerators by 1.5× to 4.5×.
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1 INTRODUCTION
Recent advances in deep neural network (DNN) research were made possible by the AlexNet archi-

tecture [42], with its 2012 breakthrough performance on the ImageNet dataset using DNNs. Since

then, numerous other DNNs for image classification have been explored [21, 69], and other fields

have adopted neural networks (NNs) to solve problems such as face recognition [70] and machine

translation [17]. The emergence of large databases and the development of high-performance

architectures have further contributed to this trend. The former enabled reliable training of DNNs
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Table 1. Number of Multiply and Accumulate Operations in Selected Models.

Model Million MACs
FaceNet [62] 1600

1.0 MobileNet-160 [32] 286
GoogLeNet [69] 1550

1.0 MobileNet-224 [32] 569
res15 [71] 894

EdgeSpeechNet-D [49] 24.5

and demonstrated low error rates, while the latter enabled sufficiently high computational power

to perform training in a reasonable time.

NN applications perform poorly on general-purpose computers since processors are designed

to execute computational tasks, but are not tailored to a specific calculation. Hence, graphics

processing units (GPUs) are increasingly utilized for machine learning applications, thanks to their

efficient matrix operations. In addition, hardware accelerators have been developed to perform

this task with lower runtime and better energy efficiency using methods such as smart memory or

optimized mathematical operations.

Emerging non-volatile memory (NVM) technologies, such as memristors, have gained popularity

as building blocks in such accelerators, since they offer solutions to the challenges of massive data

transfer and the large number of multiply-accumulate (MAC) operations required in DNNs [16, 57].

Memristors function as memory elements and have computational capabilities. Computations can

be performed in-memory directly on the data, or near-memory using additional peripheral circuits,

thereby eliminating the data transfer bottleneck. Furthermore, a vector-matrix multiplication

(VMM) can be efficiently performed using a memristive crossbar [79].

While existing accelerators and GPUs may address the aforementioned problems in high-power

architectures such as data centers, enhanced performance comes with significant power consump-

tion [12, 34, 39]. Examples of such high-power accelerators are ISAAC [64] and Newton [53], both

of which store all the network weights in memristive crossbar arrays. The crossbar arrays, together

with additional periphery, are large and consume much energy.

Table 1 lists examples of different NN models, including mobile-dedicated models. Boldface

indicates models for embedded and mobile applications. The models include: face recognition

systems [32, 62]; image classification systems [32, 69]; and speech recognition networks [49, 71].

All of these models require a large number of MAC operations during the inference process.

However, even in the mobile-dedicated models, which require fewer parameters, the number of

MAC operations is still large, clearly illustrating the necessity for mobile-dedicated accelerators - the

number of MAC operations which can be accelerated is relatively large, but low-power constraints

prevent this in practice. Furthermore, the lower number of parameters can be utilized to develop

accelerators that are tailored for low-power devices.

In this paper, we present multiPULPly, an NN inference accelerator designed for PULP (Parallel-

Ultra-Low-Power) [60], an open-source microcontroller system that uses a low-power processor

based on RISC-V cores [77] that operate at low voltage. PULP operates on the normally-off paradigm,

i.e., it is put in a low-power mode when the core is idle, and therefore maintains a power envelope

of a few milliwatts. However, this paradigm requires use of NVM elements to avoid costly memory

refresh or data loss. Thus, the addition of NVM elements is crucial for supporting data-heavy IoT

(Internet of Things) applications.

multiPULPly uses memristor analog multiplication to accelerate common NN operations. As

opposed to other accelerators which use numerous memristive crossbar arrays, multiPULPly uses

a small number of crossbars and analog-to-digital converters (ADCs), due to power limitations.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



multiPULPly: A Multiplication Engine for Accelerating Neural Networks on Ultra-Low-Power Architectures 1:3

Since the crossbar arrays cannot accommodate all the weights, data reuse and mapping methods

suited to real-time low-power systems are applied. Efficient VMM has been widely investigated in

the literature. However, the proposed data reuse concepts in this paper are specific to memristor-

based analog multiplication, in which one vector at a time can be multiplied with a matrix. We

also distinguish between multiplication with single and multiple vectors; the order of operations

is different for the two scenarios. multiPULPly achieves an energy efficiency of 19.5 TOPS/W,

outperforming the IoT state-of-art accelerators by 1.5× to 4.5×.
This paper makes the following contributions:

• Proposing multiPULPly, the first memristor-based ultra-low-power NN accelerator for PULP.

The accelerator uses analog multiplication based onmemristive arrays. The idea of integrating

memristors in PULP was briefly mentioned earlier [59], but such architecture has never been

designed. Our accelerator is especially efficient in data-heavy IoT applications, and by smart

integration of different hardware blocks, achieves state-of-the-art energy efficiency.

• Development of novel dataflows in the absence of cache hierarchy, to minimize data transfer

between the accelerator and themainmemory. These dataflows are tailored for thememristive

crossbar, maintaining simplicity by its non-volatility, and distinguishing between single and

multiple vectors reused during a multiplication with a matrix, according to the specific NN

layer.

• Contribution to the open-source hardware community. The multiPULPly code, which was

tested on FPGA, is released and will supply an infrastructure for the development of additional

ultra-low-power accelerators.

2 BACKGROUND
2.1 Mobile Neural Networks
Mobile NNs and DNNs have a similar structure. Among their various layers, they contain fully

connected (FC) layers and convolutional (CONV) layers, which can be implemented using VMM

or matrix-matrix multiplication (MMM). However, since mobile NNs run on IoT devices, which

have a strict storage limitation, they are adapted to comply with this restriction, therefore differing

from DNNs. The total size of the parameters in such networks is a few MB, at most. To satisfy

this limitation, quantization is sometimes applied. While training today uses floating point rep-

resentation, a quantization step transforms floating-point numbers into 16-bit or 8-bit integers,

which are usually sufficient for inference [26, 31, 41] and save storage space, reduce energy, and

speed up the computation. Layer-specific precision [38] and weight compression and pruning

techniques [28, 29, 48] were also investigated. The number of layers and the number of parame-

ters in mobile NNs have also been reduced. For example, in mobileNet [32], a parameter called

width multiplier was introduced to thin a network uniformly at each layer by reducing the input

and output channels. While the dimensions of matrices in common DNNs can reach hundreds

of thousands of rows and columns [62], the dimensions in mobile NNs do not exceed several

thousands [32, 36, 49], as discussed in Section 5.4. Other methods for reducing the computation,

e.g., depthwise separable convolutions [65] and weight repetition [30], have also been applied.

To improve performance and energy consumption, the CONV layers and the FC layers – often

the most power and time-consuming layers in DNNs [13] – are accelerated. These layers are used

in many IoT applications, e.g., for face, speech, gesture and object recognition [66]. MobileNet [32]

uses 27 CONV layers and 1 FC layer out of 30 layers, and EdgeSpeechNet-A [49] uses a total of 17

layers, 14 of which are CONV layers and 1 of which is a FC layer. Other layers, such as pooling and

activation, might also be accelerated, as demonstrated in [37, 64].
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2.2 PULP
Machine learning applications usually process different data streams generated by different sensors,

and therefore require high computation performance. To address this, a new family of energy-

efficient computation platforms has recently emerged [24, 55, 63]. A strong representative of this

family is PULP [2, 60], an open-source hardware and software research and development platform

targeted for IoT applications. As such, its goal is to reduce the consumed energy as well as meet

the high computational demands of IoT applications. PULP contains a microcontroller system, a

broad set of peripherals, and a multi-core platform, based on open-source RISC-V instruction-set

architecture [77]. PULP uses a normally-off policy: when the core is idle, PULP is put into a low-

power mode. In this mode, all the devices, with the exception of the event unit, are clock-gated.

The event unit activates the cores when an event or an interrupt arrives.

A recent PULP release called PULPissimo, contains support for the addition of new accelerators

to the system. The accelerators, called hardware processing engines (HWPEs), are memory-coupled

accelerators dedicated to improving the energy efficiency or the performance of a specific calculation.

As opposed to many other accelerators, HWPEs do not depend on globally-shared, external direct

memory access (DMA) to import or export data, but operate on multi-banked scratchpad memory

shared by all of the elements in the PULP system (often referred to as TCDM [tightly coupled data

memory]) [19]. There is no address virtualization when accessing the TCDM. An HWPE contains

three main parts: the streamer, the control, and the datapath. Parts of the streamer, the control and

the datapath should be implemented in order to achieve the accelerator goal.

(1) Streamer: The streamer includes several internal DMA units that allow the accelerator to

directly and independently access the main memory without CPU help. The streamer is

responsible for transferring data into (using the store unit) and out of (using the load unit)

the memory. The streamer includes an address generator module, which is used to generate

addresses to load or store HWPE-Streams.

(2) Control: The HWPE control includes three main parts:

(a) Register File: The register file contains user-defined non-contexted registers, and user-

defined contexted registers, used to implement a queue of jobs that can be offloaded even

while the HWPE is active. The software causes context-switching when it initiates a job.

The register file also contains several mandatory registers, e.g., the trigger and the status

registers.

(b) Microcode Processor: The proprietary microcode processor supports a small set of in-

structions used only for efficient address generation, defined by the user in a high-level

fashion. This is done by letting the user define the microcode using the YAML format [3],

which is pre-compiled to a binary code.

(c) FSM: The Finite State Machine (FSM), implemented by the accelerator developer, is respon-

sible for managing the streamer, the microcode processor and the engine, according to the

input coming from the register file and the state of the machine.

(3) Datapath (engine): The engine is the core of the HWPE, and it contains the actual datapath

of the accelerator. The data comes from the streamers and is managed according to the

control signals from the control modules. The engine should be developed by the developer

to perform the computation task.

2.3 Emerging NVM Technologies
Memristors are two-terminal electrical devices that can function as both memory and computing

element. One common memristor technology is resistive RAM (RRAM) [5, 7], in which two metal

layers sandwich an oxide layer. The single-level cell memristor can change its resistance between
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Fig. 1. Memristive analog computation and its use in the ISAAC architecture. (a) Analog VMM using memris-
tive memory crossbar array. The input 𝑉𝑖 is the voltage of row 𝑖 and the output 𝐼 𝑗 is the current of column 𝑗 .
The values𝑊𝑖 𝑗 are stored in the memristors in the form of conductance. (b) ISAAC’s IMA unit. IR - input
register, OR - output register, S+A - shift and add, XB - memristive crossbar, S+H - sample and hold, DAC -
digital to analog, ADC - analog to digital, SB - shared bus.

𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 , and therefore can represent a bit value. This value is maintained when the power is

shut down, rendering the memristor a NVM element. In a multi-level cell (MLC) mode [46], the

memristor can have more than two possible resistances and as a result, can store multiple bit values.

Memristors are often arranged in a structure called a crossbar array [80], which is a memory

array consisting of metal rows and columns. A memristor is connected to the row and column of

each crosspoint in the crossbar. To avoid sneak path currents, a cell may also consist of an additional

selector (either a nonlinear device or a transistor). Memristive crossbar memory arrays are typically

extremely dense.

2.4 Analog Multiplication using Memristors
VMM can be efficiently performed using a memristive crossbar [79], as shown in Figure 1(a). The

vector values are applied as voltages on the crossbar rows, and the matrix values are stored in the

memristors in the form of conductance. The current in each memristor is determined (according

to Ohm’s law) by multiplication of the voltage on the memristor’s row with its conductance. The

current that flows in each column is the sum of all the currents in the memristors in this column

(following Kirchhoff’s Current Law, KCL). The performed calculation is therefore identical to a

VMM and is executed concurrently in the entire crossbar array.

2.5 ISAAC’s In-Situ Multiply Accumulate (IMA) Unit
ISAAC [64] is a convolutional NN accelerator based on memristive crossbars. Each ISAAC chip

consists of tiles, which include several in-situ multiply accumulate (IMA) units. The IMA contains

a few crossbar arrays of the same size (64×64, 128×128, or 256×256). Each crossbar cell stores a

2-bit value. To perform 16-bit multiplication, 16-bit value is distributed on 8 different cells and

16 calculation cycles are performed. In each cycle, 1-bit values are converted into voltages using

digital to analog converters (DACs) that are applied on the crossbar rows (starting from the most

significant bit [MSB] and ending with the least significant bit [LSB]). Then, the analog multiplication

is performed using a crossbar array. The results are stored in sample-and-hold circuits, and converted

using analog to digital (ADC) units. Results from all 16 cycles are shifted and summed up, using

shift-and-add units. The IMA also contains registers and a shared bus, shown in Figure 1(b).

The main disadvantages of analog in-situ computation using a memristive crossbar are the high

power consumption and area overhead caused by the ADCs. In Newton [53], improvements to the

ISAAC IMA were proposed to reduce computations and ADC pressure. Some of the changes in the

architecture are intra-tile optimizations, but some intra-IMA optimizations have also been proposed.
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Fig. 2. Dataflows for maximizing data reuse in a memristive crossbar during multiplication.

Modifications of the HTree interconnect network were developed to reduce the system power.

This is possible by placing constraints on the NN mapping to the tiles and IMAs. Adaptive ADCs,

which tune the ADC resolution for power reduction without degrading the performance or the

accuracy, were also proposed. Implementation of Karatsuba’s divide-and-conquer multiplication

technique was discussed to lower the power by reducing the use of ADC. Solutions to other

challenges in RRAM computing systems, e.g., accuracy and endurance, are also discussed in the

literature [35, 50, 51]. We address the endurance issue in Section 6.5.

2.6 Software Solutions for VMM and MMM
Numerous software solutions for efficient VMM and MMM have been proposed. Level-2 BLAS [23]

exposes vector-matrix operations to the compiler, to ensure efficient performance. Level-3 BLAS [22]

was developed to support efficient matrix-matrix operations and other algebraic operations for

architectures with a hierarchy of memory (e.g., caches) or parallel processing architectures. The
matrix is partitioned into blocks that can fit the cache, enabling data reuse without constant need

to fetch it from the main memory. This technique was implemented and optimized in several tools,

such as ATLAS [78] and BLIS [74].

3 EFFICIENT DATAFLOWS
The structure of the crossbar and the characteristics of memristors have given rise to the need

for new dataflows and architectures. For example, the size of the matrices to be multiplied tend

to be larger than the size of the crossbar. A typical size of a memristive array used as memory

only, is 512x512 elements, whereas a memristive array used for analog computation, is usually

smaller: 64×64, 128×128, or 256×256, due to the large and power-hungry periphery. Each memristor

can store more than a single bit [46] (for example, two bits per cell in a 128×128 crossbar in the

ISAAC IMA). The size of the multiplied matrix can reach thousands of fixed point numbers in one

of its dimensions [32, 36]; therefore, one memristive crossbar cannot store the entire matrix. As

a result, the matrix is divided into sub-matrices according to the dimensions of the memristive

crossbar, as illustrated in Figure 2(a). Input vectors are divided into sub-vectors accordingly, and

each sub-matrix is multiplied by the associated sub-vector. The matrix and vector tiling and order

of execution are managed by the software.

While other multiplication dataflows also use tiling, our approach differs in several ways. First,

some of the other dataflows focus on level-3 BLAS, since the potential for data reuse is significantly

higher at this level (O(𝑛3
) operations over O(𝑛2

) elements). The crossbar can only perform VMM,

and since MMM dataflows cannot be degenerated into sequential VMMs efficiently, they are not

optimal in our architecture. On the other hand, existing VMM dataflows have prior assumptions on

data patterns, e.g., matrix sparsity, and use them for optimization. We target generic VMM dataflow

and optimize data reuse. Second, most dataflows are designed for common architectures with cache
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hierarchy and registers. Many parameters, e.g., partition sizes and order of execution, are chosen to

fit the specific architecture on which they operate. This causes the order of sub-matrix iterations to

be different than those in our dataflow, which is intended for sequential VMM (memristive crossbar

limitation) in the absence of cache hierarchy (PULP architecture limitation). For example, these

dataflows always reuse sub-matrices, whereas in multiPULPly, this is not always optimal.

We consider two different scenarios: single-vector multiplication and multiple-vector multiplica-

tion. In each scenario, we set the order of multiplications differently to maximize data reuse and

minimize data transfers. For a single vector, the matrix is scanned from left to right, row-wise,

whereas for multiple vectors, the matrix is scanned from top to bottom, column-wise. The im-

portance of selecting the dataflow most suitable to the scenario is demonstrated by the results.

When multiplying a single vector with a matrix, the single-vector dataflow achieves 2.5× better
speedup, as compared to the multiple-vector dataflow. In the multiple-vector scenario, the multiple-

vector dataflow achieves the same 2.5× speedup, as compared to the single-vector dataflow. These

dataflows are efficient thanks to the memristor non-volatility, which enables continued calculation

without context restoring in case of a power failure.

3.1 Single Vector
In a real-time system, only a single sample is usually analyzed or classified at a time. For example,

if the system’s goal is to recognize a fingerprint, one sample arrives to the system and should be

analyzed immediately. When only a single sample is analyzed by the NN, the FC layers perform one

VMM. Therefore, in this case, efficient multiplication of a single vector with a matrix is required.

In some NNs, e.g., autoencoders, most of the layers are FC, and a specialized implementation of

this specific scenario can accelerate the performance dramatically. Convolutional networks usually

consist of a large number of CONV layers, which will be handled later on, and a small number of

FC layers. Despite their small number, the FC layers consume a non-negligible part of the energy

and runtime [13], and the dataflow can therefore accelerate such networks as well.

When multiplying one vector with a matrix, each sub-matrix can only be used once, whereas each

sub-vector can be used more than once. Thus, data reuse is maximized by reusing the sub-vectors.

In the single-vector case, the matrix is scanned row-wise so that all the sub-matrices corresponding

to a specific sub-vector are executed one after the other, ensuring maximal sub-vector reuse.

The pseudo-code is detailed in Algorithm 1. The variables matNumOfRows and matNumOfCols
represent the number of matrix rows and columns, respectively. The variables XBNumOfRows and
XBNumOfCols represent the number of crossbar rows and columns, respectively.

Algorithm 1 Single-Vector Dataflow Algorithm

𝑁 ← matNumOfRows / XBNumOfRows
𝑀 ← matNumOfCols / XBNumOfCols
// Iterate submatrices by rows
for 𝑖 = 1→ 𝑁 do

𝑠𝑢𝑏𝑉𝑒𝑐_𝑖 ← getSubVec(vec, i)
configVec(𝑠𝑢𝑏𝑉𝑒𝑐_𝑖)

// Iterate submatrices by columns
for 𝑗 = 1→ 𝑀 do

𝑠𝑢𝑏𝑀𝑎𝑡_𝑖_𝑗 ← getSubMat(mat, i, j)
configMat(𝑠𝑢𝑏𝑀𝑎𝑡_𝑖_𝑗 )

multiply(𝑟𝑒𝑠𝑢𝑙𝑡 )

addResult(𝑟𝑒𝑠𝑢𝑙𝑡, 𝑓 𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡, 𝑖, 𝑗 )

Figure 2(b) demonstrates the single-vector-matrix multiplication flow. The blue sub-vector is

multiplied by several blue sub-matrices; the green sub-vector is multiplied by several green sub-

matrices, and so on. First, the blue sub-vector is sent to the accelerator together with sub-matrix 1.

Then, to multiply the blue sub-vector with sub-matrix 2, sub-matrix 2 is sent to the accelerator
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and the blue sub-vector is not replaced. Then, sub-matrix 3 is transferred to the unit to perform a

similar calculation. After the calculation is done, the green sub-vector replaces the blue sub-vector

and is multiplied by the corresponding sub-matrices.

3.2 Multiple Vectors
In other common cases in real-time systems, several vectors must be efficiently multiplied with

a matrix, e.g., in CONV layers. Even when there is only a single input sample in the system, the

CONV layers require multiple VMMs. Since the filter should be multiplied with different regions of

the input matrix, the regions can be flattened and treated as separate input vectors.

In the multiple-vector scenario, each sub-matrix is multiplied by several sub-vectors. Both the

sub-vectors and the sub-matrices can be reused; however, to maximize data reuse, we reuse the

sub-matrices, which consist of additional elements. In this case, a sub-matrix is sent to the unit,

and then its matching sub-vectors are sent, one after another; the matrix can be scanned either

row-wise or column-wise. The chosen technique is iteration of the sub-matrices, column by column.

By iterating the columns, intermediate results of different sub-matrices in the same column can be

summed up in the accelerator, saving the energy that would be required to transfer these results

back to the CPU, thus summing up the results in a parallel and efficient way. The concept is detailed

in Algorithm 2.

Algorithm 2Multiple-Vector Dataflow Algorithm

1: 𝑀 ← matNumOfCols / XBNumOfCols
2: 𝑁 ← matNumOfRows / XBNumOfRows
3: // Iterate submatrix blocks by columns
4: for 𝑗 = 1→ 𝑀 do
5: // Iterate submatrix blocks by rows
6: for 𝑖 = 1→ 𝑁 do
7: 𝑠𝑢𝑏𝑉𝑒𝑐𝑠_𝑖 ← getAllSubVecs(vecs, i)
8: configVecs(𝑠𝑢𝑏𝑉𝑒𝑐𝑠_𝑖)

9: 𝑠𝑢𝑏𝑀𝑎𝑡_𝑖_𝑗 ← getSubMat(mat, i, j)
10: configMat(𝑠𝑢𝑏𝑀𝑎𝑡_𝑖_𝑗 )

11: multiplyAllVecs(𝑟𝑒𝑠𝑢𝑙𝑡 )

12: addResult(𝑟𝑒𝑠𝑢𝑙𝑡, 𝑓 𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡, 𝑖, 𝑗 )

An example of the algorithm operation is demonstrated in Figure 2(c). The order of execution is

as follows: sub-matrix 1 is sent to the unit with the blue sub-vectors; then sub-matrix 2 is sent with

the green sub-vectors. Then, all the remaining sub-matrices are transferred to the unit in turn.

We present here only a simplified version of both algorithms. Other factors are considered and

handled in the software code, e.g., dividing the multiplication operations between the different

crossbars, storing intermediate results in a buffer that resides in the accelerator, and complying

with the TCDM size limitations by forming vector batches and operating on each batch separately.

The register configuration is explained in Section 4.1.

Note that the data reuse in both algorithms is usually within a single sample. When several

samples of the same neural network arrive at the network one after the other, we sometimes

cannot utilize it for data reuse. In order to maintain the power constraints of our system, we use a

size-limited TCDM, and we typically cannot store all the intermediate results in the accelerator

or in the TCDM. This, of course, depends on the amount of samples and the size of the neural

network.

3.3 The Tightly Coupled Data Memory (TCDM) Organization
The order of execution is managed by the software, which initiates VMM tasks and sends them to

the accelerator. The TCDM stores the matrix and vectors of both engines, along with the results;

therefore its address space is divided between them. Two TCDM configurations are implemented:
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Fig. 3. TCDM organization.

large and small. In the large configuration, illustrated in Figure 3(a), the TCDM is sufficiently large

to accommodate the matrix, vectors and results. On our set of benchmarks, 4 MB were adequate to

store all this data. In this case, the hardware can directly access the data using the DMAs.

In the case of the small TCDM configuration (256kB), illustrated in Figure 3(b), since the matrix,

vectors and results cannot fit into the TCDM, the multiplied sub-matrix and sub-vectors are

constantly copied to the TCDM before the accelerator begins to work. The results overwrite the

sub-matrices, since these values are no longer needed (as opposed to the large TCDM configuration,

in which the matrix must be stored in the TCDM throughout the computation). If the sub-vectors

do not all fit into the TCDM, additional iterations are performed until all the results are obtained.

4 HARDWARE ARCHITECTURE
The multiPULPly architecture is similar to the general HWPE structure, as illustrated in Figure 4.

The accelerator includes a streamer, a control unit, and engines. All the white components in Figure

4 are HWPE original IPs that are used as is. The other parts were developed to fit the implemented

computation task. In the control block, additional required registers were implemented, using the

register file. In contrast to a regular HWPE, which has one FSM unit, one microcode processor and a

single engine, the multiPULPly architecture includes two of each. The FSM unit and the microcode

processor operate the engines. The number of engines was determined according to bandwidth

limitations dictated by the architecture, as explained in Section 5.1. Each engine is responsible for

performing the actual computation and was developed accordingly. The streamer, while containing

only HWPE IPs, was built to support the required number of streams. A new block, a result adder,

was added to the general architecture to manage the results coming from the engines and to save

add operations in the processor, when possible.

4.1 Control
The control block manages the accelerator according to the control signals it receives from the

peripheral port, which originate in the software. The general structure of the multiPULPly control

block is similar to the general HWPE control unit and contains three sub-blocks: a register file, FSMs

and microcode processors. However, some changes were made to these sub-blocks, as elaborated

below.

4.1.1 Register File. In multiPULPly, we use several registers to control the execution flow. We use

some of the HWPE general mandatory registers, which include an acquire register, to acquire the

lock to offload a job, a trigger register, to trigger the execution of an offloaded job, and a status
register, which returns the status of the HWPE (busy or idle).

Other user-defined registers were added to support multiPULPly functionality. These registers

are used both to control the scenario flow, by changing between different states in the FSM, and

to feed the engine with crucial data for the calculation. Each engine receives an enable signal

coming from the register file. As explained in Section 4.2, only one engine is active in some cases;

therefore the enable signals are not necessarily equal. We also pass on information about the matrix,

sub-matrix, vector and sub-vector dimensions, addresses and strides to the DMAs and microcode
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Fig. 4. multiPULPly hardware structure and execution flow.

controllers through the register file. Five additional control registers are also used and elaborated

on in Table 2.

Table 2. Register Table
Register
Name Goal

Result buffer

enable

The intermediate results of sub-matrices in the same column are

stored/not stored in a buffer that resides in the engines during

the multiple-vector scenario

Matrix transfer

enable

A new matrix should/should not be pulled from the TCDM using

the streamers

Result transfer

enable

Transfer/do not transfer the result to the streamer and back to

the TCDM

Add enable

Add/do not add the results from the different engines using the

result adder

Pooling enable Calculate/do not calculate a pooling layer

4.1.2 FSMs. The control block contains two identical FSMs, each operating a different engine.

Since the FSMs are complex and contain 12 states and 24 transitions among them, we present here

a simplified version
1
shown in Figure 5. In this section, we refer to the multiplied sub-matrix and

sub-vector as "the matrix" and "the vector", respectively, for convenience.

The FSM operation consists of four main stages: matrix transfer, vector transfer, calculation

and result transfer. The FSM enables procession through all or part of these stages according to

the multiplication scenario. First, the FSM decides whether to start the matrix transfer stage. This

stage can be skipped in the multiple-vector scenario, as described in Section 4.1. Next is the vector

transfer stage, which can be skipped in the single-vector multiplication scenario. The calculation

stage is always reached, in which the engine performs the actual VMM. When the calculation is

complete, the FSM can either transfer the result or finish (in the case of result buffering). The vector

transfer, calculation and result transfer stages are repeated, according to the number of vectors.

1
The full FSM code is available in: https://github.com/adiha/multiPULPly.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



multiPULPly: A Multiplication Engine for Accelerating Neural Networks on Ultra-Low-Power Architectures 1:11

Fig. 5. The simplified FSM.

Fig. 6. The microcodes used in the FSM.

4.1.3 Microcode Processors. There are two microcode processors residing in the control block,

one for each dot-product engine. They receive the heights and widths of the matrix and the sub-

matrix, and the number of vectors from the register file. The microcode processor is responsible

for outputting the offsets of the addresses to be copied from the memory to the engine, or vice

versa, using the streamers. It receives the microcode from the FSM, according to its state. There

are two possible microcodes implemented in the YAML format (Figure 6(a)), determined by the

FSM: one for the sub-matrix and another for the sub-vector and result. They differ by the number

of operations per loop and the number of iterations.

The matrix microcode has a single loop which adds the matrix width to the matrix offset each

time, copying a matrix row at every iteration. As illustrated in Figure 6(b), to copy the green

sub-matrix, the first row is copied using the sub-matrix offset. Then, the microcode adds the matrix

width, which in this case is 4, to the offset, to copy the next row. The number of iterations of this

loop is the sub-matrix height. The vector and result microcode has a similar loop responsible for

advancing both the sub-vector and the result addresses.

4.2 Engines
The architecture includes two engines; the number of engines is determined by bandwidth limita-

tions, as detailed in Section 4.4. The engines contain the actual datapath of the HWPE. Each engine

receives a sub-vector and sub-matrix and multiplies them, using the ISAAC IMA unit [64]. The

two engines stream their results to a result adder, which is responsible for adding the results of the

different engines in the multiple-vector scenario.
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The engine tracks the ready and valid signals of the input matrix and vector streamers, and

when the data are ready for use, they are transferred to the IMA unit. Since in some edge cases the

sub-matrix to be multiplied is smaller than the crossbar dimensions, the sub-matrix cannot simply

be copied to sequential elements in the crossbar. This is similar to the case of copying a sub-matrix

from a full matrix, as illustrated in Figure 6(b). Therefore, the indices are calculated to ensure that

the sub-matrix is copied in its original form, which is important for the analog computation.

Each engine also streams the results from the IMA to the result streamer. It checks the ready and

valid signals of the streamer to validate that it is ready to accept a new result, and confirms that

the IMA has finished calculating. If both conditions are satisfied, the result is transferred to the

streamer.

The engine also contains a result buffer of a configurable size. This buffer stores intermediate

results and sends them back to the memory only when the calculation is complete. In the multiple-

vector scenario, the multiplication results of sub-matrices in the same column are eventually

supposed to be summed up. Performing the summation in the hardware is faster and allows the

accumulative result to be saved in this buffer and sent back to the memory when the last matrix in

the column has finished calculating. We do not assume that the buffer is large enough to store all

the multiplication results for all the vectors. Hence, the results that fit into the buffer are saved in it

and returned at the end of computation; all other results are immediately sent to the memory via

the streamers.

To enable full neural network execution, the engine includes a pooling unit and an activation

function unit. The pooling unit supports max pooling. Average pooling is also supported by

normalizing the weights. The activation unit supports the ReLU function.

4.3 Result Adder
In the multiple vector scenario, the result adder is responsible for adding the results coming from

the engines, since the multiplication results of sub-matrices in the same column are supposed to be

summed. The adder block has two stream inputs, each belonging to one of the engines. The block

outputs are the original or summed results, depending on the scenario. In the multiple-vector case

(Figure 2(c)), where the sub-matrices are iterated column by column, the results of different sub-

matrices can be summed inside the unit, whereas in the single-vector case, where the sub-matrices

are iterated row by row (Figure 2(b)), the results are not summed. The block reads the ready and

valid signals that come from the input streams, which implement a simple AXI stream-like protocol.

According to the input signals, the block deduces when the results are ready to be read. If only

one dot product engine is active (i.e., there is an odd number of sub-matrices and this is the last

iteration), the result is transferred to one of the output streamers, and the ready and valid signals

are set accordingly. The ready and valid signals of the other streamer are also set accordingly, and

therefore, no data are sent. If both engines are active, the adder checks whether the results need to

be added according to the add enable register. This is determined by the scenario in the software,

i.e., when both engines process sub-matrices in the same column. In this case, results from both

streams are added and transferred to one of the output streamers. In other cases, the results are

transferred separately to an appropriate output streamer.

4.4 Streamer
As shown in Figure 4, the streamer marked in light green includes six DMAs: a matrix DMA, a

vector DMA, and a result DMA for each dot-product engine. The DMAs transfer the data from the

TCDM to the accelerator in a balanced manner. The matrix and vector DMAs transfer data from the

TCDM to the engine using a load unit, and the result DMAs transfer data from the engine to the

TCDM using a store unit. The DMAs receive addresses of data bursts from the microcode processor
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in the control block, and the burst sizes from the control FSM. The streamers do not perform

data re-layout, since there are no assumptions on data characteristics. In [20], a sparse matrix

reordering technique for memristor-based multiplication is proposed. It achieves 90% performance

improvements. Using the proposed technique in our system would yield a 1.1× speedup, according

to Amdahl’s law.

4.5 Application Offloading
The application offloading is performed in several steps, as shown in Figure 4. First, if necessary

(i.e., in small TCDM configuration), the data is written by software to the TCDM ( 1○). Then, our

API functions for single and multiple vector multiplication set the registers, according to the

multiplication scenario ( 2○). In phases 3○ and 4○, the FSM loads the different microcodes onto the

processors, which output the address offsets to the streamer. Consequently, the streamer pulls the

data from the TCDM ( 5○) and passes it on to the engines ( 6○). When the calculation is done, the

results are summed (if necessary) in stage 7○ and are then written back to the TCDM ( 8○), and can

be read by software ( 9○).

5 METHODOLOGY
5.1 Architecture Choice
Table 3 lists the different components in the architecture. We describe here these design choices

and their motivations. The technology and frequencies were determined according to [61]. Since

we target IoT applications, a single core was used. A large number of engines/crossbars can reduce

the latency and the energy of the calculation, especially when there is a relatively large number of

vectors. However, due to bandwidth limitations, the HWPE design enables only four ports from

the streamer unit to the TCDM. Since every engine requires two ports, an input port (for matrix

and vector values) and an output port (for result values), a total of two engines can be used in the

accelerator, each using two ports. In addition, most of the accelerator power was contributed by the

IMA, as discussed in Section 6.4. The addition of extra crossbars increased the power consumption

dramatically. Therefore, we limited the size of the crossbars and their number to one or two. Due

to clock gating, when the accelerator is active, the other parts of the core are not, allowing the

system to maintain a power envelope of a few milliwatts. We set the TCDM size to 4 MB, which is

the smallest size that enables use of the large TCDM configuration demonstrated in Figure 3, with

our set of benchmarks. The importance of using this configuration is demonstrated in Section 6.

Table 3. Architecture Component Specification
Component Number/Size/Value
Technology 22nm CMOS

Frequency Range 150MHz-670MHz

Core Single 32-bit in-order RISC-V Core

Number of Crossbars/Engines 1 or 2

Crossbar Size 64x64, 128×128 or 256×256
Number of DMAs 6

TCDM Size 4 MB

5.2 Modeling ISAAC IMA
To emulate the functionality and delay of the ISAAC IMA unit [64] in the system, we replaced it

with our design in both simulations and on the FPGA. For the delay calculation, we developed a

simple block which imitates the ISAAC IMA delay, but does not supply its functionality. For the

functionality check, we developed a dot product unit, shown in Figure 7, which represents the full

IMA. The dot product unit has three main components:
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Fig. 7. The dot product unit which replaces the ISAAC IMA in simulations.
(1) Dot Product Bit: This block gets a vector of bits (one bit from each vector element) and a

matrix, andmultiplies them. It replaces thememristive crossbar functionality. For performance

evaluation, the block is implemented so that it follows the ISAAC IMA unit latency.

(2) Bit Split: This unit splits the input 16-bit vector into 16 vectors of 1-bit elements, one clock

cycle each. As mentioned in [64], when applying 16-bit voltage values on each row of the

crossbar, large ADCs are needed. Therefore, we apply a 1-bit voltage value in each clock cycle

to reduce the ADC area and power. The unit output is used as an input to the dot product bit

block.

(3) Shift and Add: This block is responsible for adding the results of different voltage bits. In

the first cycle, the MSB vector voltage bits are fed into the dot product bit unit by the bit split.

When the result is ready, it arrives at the shift and add unit, which stores it. In the next cycle,

the next bits are fed into the dot product bit unit, producing new results. Then, the shift and

add unit shifts the previous result to the left and adds the new results, and so on.

5.3 Measurements
For performance evaluation of the processor and the accelerator (not including the IMA), we use

the Xilinx Zynq-7000 SoC ZC706 Evaluation Kit with HERO [44], an FPGA-based platform that

consists of programmable accelerators with RISC-V core clusters and an ARM processor. HERO

allows us to check the performance reliably and quickly (faster than simulation), using performance

counters. The system operates at a 50MHz frequency, and includes one cluster with a single core, a

4 MB TCDM and a 4 kB cache.

For area and power estimation of the PULPissimo processor, we used numbers from [61]. For

the HWPE estimation, we used the Synopsys Design Compiler with the 65nm LP LowK technology

scaled to 22nm, according to the polynomial model suggested in [67, 68]. For the ISAAC IMA design

part, we used numbers from [64] and [43]. We assumed that, due to the clock gating mechanism in

PULP, both PULP and the IMA consume power only when they are active.

5.4 Benchmarks
First, we selected layers from different mobile NNs as benchmarks, to show the acceleration within

a layer, depending on its type and the used multiplication algorithm. The layers are listed in Table

4, where m and n are the matrix height and width and p is the number of vectors. The matrix and

vector sizes varied from hundreds to thousands of elements (to assess different scenarios; some

matrices fit into the crossbar, whereas some did not). The layer types, FC or CONV, represent

the single and multiple vector cases, respectively. Later on we also show a full neural network

execution of mobileNet [32].

6 RESULTS
In this section, we evaluated the system in terms of functionality, performance, energy and area,

and compared it to state-of-the-art. We separated the architecture into two parts: the ISAAC IMA
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Table 4. Neural Network Layer Benchmarks
Network Name Layer Type m n p
MobileNet [32] FC 1024 1000 1

EdgeSpeechNet [49] FC 45 12 1

NU-LiteNet [73] FC 196 50 1

SqueezeNet [36] FC 196 1000 1

MobileNet [32] CONV 27 32 12544

MobileNet [32] CONV 256 256 784

MobileNet [32] CONV 512 1024 49

NU-LiteNet [73] CONV 9 64 3136

Fig. 8. Functionality check: filtering using a mean filter.

and the remainder of the logic. These two different parts were evaluated separately in each of the

metrics.

6.1 Functionality Check
We developed several tests, which include edge cases, to check whether the multiplication results are

correct. We compared the results with a Matlab model and verified that the results are bit-accurate.

An example of a convolution of an image with a mean filter is displayed in Figure 8.

6.2 Performance Evaluation
We ran the benchmarks with four different solutions:

(1) Baseline: Naive MMM or VMM, which runs on PULP. In the algorithm below, A (𝑛 ×𝑚
matrix) and B (𝑚 × 𝑝 matrix) are the input matrices and C is the output matrix.

Algorithm 3 Naive Matrix-Matrix Multiplication

1: for 𝑖 = 1→ 𝑛 do
2: for 𝑗 = 1→ 𝑝 do
3: 𝐶𝑖 𝑗 ← 0

4: for 𝑘 = 1→𝑚 do
5: 𝐶𝑖 𝑗 ← 𝐶𝑖 𝑗 +𝐴𝑖𝑘 · 𝐵𝑘 𝑗

(2) BLAS: Using BLAS [22, 23] for efficient MMM or VMM. Since PULP supports only pure C

programs, and the implementation should be compatible with the RISC-V ISA, we used a

simple RISC-V BLAS implementation. Other implementations, which adapt the algorithm to

the endpoint characteristics [74, 78], such as the cache size, might yield better performance;

however, we predicted that, in practice, this improvement will not be significant in our

architecture.

(3) Single: Using multiPULPly’s single-vector function.

(4) Multiple: Using multiPULPly’s multiple-vector function.

We performed a full design exploration by running the benchmarks with the different dataflows,

while changing the number and size of the memristive crossbars. Our analysis considers the write

operations to the memristive crossbar arrays. A read operation is one order of magnitude faster

than a write operation in the 1T1R cell [81]. Assume a row-by-row crossbar array programming,

in a layer where there are numerous vectors to multiply, the write latency becomes negligible

compared to the overall latency (up to 8% of the overall latency for 1000 vectors or more). In
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Fig. 9. Normalized speedup of VMM and MMM with respect to naive implementation for different matrix
widths.

addition, to reduce the write overhead, the programming operates in parallel to the weight transfer

from the TCDM to the accelerator, which is performed gradually. From energy perspective, the

write operation is roughly three times more energy consuming than the read operation [81]. We

count the number of writes and add it to the consumed energy. Similarly, as the number of vectors

grows, this energy is negligible compared to the overall computation. We also determined how the

TCDM size affected the performance.

First, we evaluated the influence of the matrix size on the speedup with synthetic examples.

Figure 9 shows the normalized speedup of VMM and MMM for a matrix with a fixed number of

rows (128) for a different number of columns using a single crossbar array. The results show that, in

general, as the size of the matrix grew, the speedup increased, since memristive crossbar parallelism

was utilized. The local peaks in the graph (marked with green arrows) were achieved when the

crossbar was fully utilized (the matrix is the exact size of the crossbar or multiple crossbars), and

a small decrease in speedup was identified when the crossbar cells were poorly utilized (marked

with purple arrows).

Next, we evaluated the influence of the TCDM size on the performance. The results of a 256kB-

sized TCDM and a non-limited sized TCDMwith two 128×128 crossbars are shown in Figure 10. The
multiPULPly dataflows are marked as "multiple" for the multiple vector dataflow and "single" for the

single vector dataflow. The geometric mean was calculated according to the relevant benchmarks

(FC benchmarks for the single-vector dataflow, and CONV benchmarks for the multiple-vector

dataflow). The non-limited sized TCDM configuration achieves 18× better speedup, as compared

to the 256kB-sized TCDM configuration, meaning that the overhead of the extra copy cycles is

non-negligible. In our simulations of the small TCDM configuration, using the HERO environment,

we update the content of the TCDM from the ARM processor. The performance could be improved

by directly connecting an off-chip memory to the TCDM bus (using DMAs). However, even the most

efficient data transfer from an off-chip memory would still introduce a non-negligible performance

and energy overhead compared to the large TCDM configuration, and would not comply with the

IoT demands and limitations. Therefore, for the rest of the analysis, we use a sufficiently large

TCDM to accommodate all the needed data.

Figure 11 shows the normalized speedup for the different benchmarks in Table 4. ThemultiPULPly

dataflows are marked as "multiple" for the multiple vector dataflow and "single" for the single vector

dataflow, together with the crossbar size: 64×64, 128×128 and 256×256. Each benchmark was run

with configurations of one and two crossbars (bottom bars with lighter colors represent the one-

crossbar configuration, and top bars with darker colors represent the two-crossbar configuration).

As expected, for the FC layers, the single-vector dataflow achieved better results (2.5×); and, for
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Fig. 10. Normalized speedup with respect to a naive implementation for different TCDM sizes with 128×128
multiple crossbars at 150MHz.

Fig. 11. Normalized speedup of different layers (FC on upper graph and CONV on lower graph) with respect
to the naive implementation for different numbers (lighter - 1 crossbar, darker - 2 crossbars) and sizes of
crossbars at 150MHz.
the CONV layers, the multiple-vector dataflow showed better performance. In general, as the

crossbar size grew, the performance improved. When the multiplied matrix was small, enlarging the

crossbar did not improve the performance. The two-crossbar configuration achieved better results

in comparison to the single-crossbar configuration, when the matrix was large enough. In addition,

use of BLAS, the software solution, on PULP, degraded the performance for small benchmarks,

since the overhead of using BLAS is significant for small matrices. In contrast, multiPULPly always

achieved better performance when using the appropriate dataflow. Our accelerator achieved 51×
better speedup than the naive software implementation, and 27× better speedup than BLAS.
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Note that our architecture targets inference of a specific neural network at a time as usually

required in IoT applications, and therefore, every benchmark was run on our architecture separately.

In our analysis, we assume that the weights are initially stored in the TCDM, as it functions as the

main memory in our system. Because of the power limitations, typically, the TCDM is not large

enough to accommodate more than one network weights. Switching applications would require

replacing the TCDM content. which is possible in other PULP architectures that include off-chip

memory [44], but not in our IoT-targeted architecture.

6.3 Area Evaluation
The area of each component is detailed in Table 5 for two 128×128 crossbars in 22nm CMOS

technology. The IMA area is negligible in comparison to the total area of the accelerator and the

total area of the system. Because of bandwidth and power limitations, we added one IMA with only

two memristive crossbars to the system. Overall, the total area overhead was 4% (the IMA area

overhead was 0.1%).

Table 5. Architecture Power and Area Analysis.
Component Param Spec Power (uW) Area (um^2)

IMA [64] [43]

ADC

resolution

frequency

number

8 bits

1.2GSps

2

600 1000

DAC

resolution

number

1 bit

2 x 128
100 19

S+H number 2 x 128 0.3 4

Crossbar

number

size

bits per cell

2

128 x 128

2

80 20

S+A

IR

OR

number

size

size

1

0.5 KB

64 B

6

40

8

27

238

87

IMA Total 834.3 1395

Other
HWPE Logic 34.3 56,000

PULPissimo 1350 1,220,000

6.4 Energy Evaluation
The power consumption for each component is detailed in Table 5. The processor components are

divided into two categories: IMA and Other. The IMA part consists of the IMA with the crossbar

arrays, specifically, two 128×128 crossbars in a 22nm CMOS technology at 25°C, with a 150MHz

operating frequency. The Other part includes the accelerator logic (HWPE logic), including all its

logic components (result adders, streamers, etc.), and the processor itself (PULPissimo). In addition,

the write operations to the memristive crossbar arrays for the weight updates are considered [82].

The most power-consuming component in the IMA, which limits the overall energy efficiency, is

the ADC [64]. This is a drawback of our (and every memristive analog-based computing) archi-

tecture. The difference between our architecture and other designs which use memristive analog

computation, is that in our architecture, we limit the amount of the ADCs and the periods of time in

which they are active by the gating technique. In other architectures, e.g., ISAAC, these components

have to be active at all times, because of the pipelining applied in it. In this manner, we significantly

reduce the power in our system, which is a critical factor in IoT systems, and also improve the

energy efficiency. Still, the ADC energy is 50% of the overall consumed energy in ISAAC, and in

our architecture it is 40%. A lower sampling rate than used in our system can be also applied. This

would degrade the performance.
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Fig. 12. Energy efficiency for different multiPULPly configurations with multiple crossbars at 150 MHz.

One technique that was suggested in ISAAC and also used in our architecture, is encoding to

reduce the ADC size. Every w-bit synaptic weight in a column is stored in its original form, or in

its “flipped” form. The flipped form of w-bit weight𝑊 is represented as �̄� = 2
𝑤 − 1 −𝑊 , and the

analog computation is performed with �̄� . This requires storing an additional bit per column, but

the ADC size requirement is lowered by one bit.

The modifications to the ISAAC IMA, suggested in Newton [53], could not be applied in this

study for several reasons. HTree modifications using weight mapping constraints and Karatsuba’s

divide-and-conquer algorithm are irrelevant, since we use a small number of crossbars. Adaptive

ADCs, also suggested in Newton, can be used in our architecture. However, the power of the

adaptive ADCs is not detailed; therefore, we could not easily adopt this modification and it is left

for future work.

Figure 12 shows the energy efficiency for different benchmarks. Using the most suitable dataflow,

i.e., multiple-vector for CONV layers and single-vector for FC layers, results in better energy

efficiency than all the other solutions. Enlarging the crossbar dimensions can increase the energy

efficiency for large-sized matrix benchmarks, but decrease the energy efficiency for the small-

sized matrix benchmarks (since the large crossbar consumes more energy, but does not contribute

additional parallelism). The dataflow can be extended to handle small matrices by duplicating

them in the crossbar. In this manner, parallelism is improved, and consequently, so are the energy

efficiency and performance. Our accelerator achieved 55× better energy efficiency than the naive

software implementation, and 19× better energy efficiency than BLAS.

6.5 Endurance Evaluation
The analog multiplication was performed by reading the memristors, and the write operations only

occurred when the weights were replaced. For the largest CONV benchmark and medium-sized

crossbar, we wrote to each cell 16 times in 5 milliseconds. The write intensity was 10× higher for the
largest FC layer as comapared to the CONV layer. However, the unit is not active and performing

FC/CONV operation nonstop [100% duty cycle]. For 10% duty cycle, the hardware will be valid for

approximately 10 years [33]).

6.6 Comparison to State-of-the-Art
We compared multiPULPly to state-of-the-art low-power CONV accelerators operating at different

voltages. We did not compare multiPULPly to RRAM accelerators, since they use many crossbars,

and therefore do not target low power (e.g., ISAAC [64]: 65.8W, PUMA [8]: 62.5W). They cannot be

degenerated to use only several crossbars since they rely on storing all the weights.
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We hereby bring a high-level estimate of ISAAC with clock gating mechanism and comparison

of such architecture to multiPULPly. One issue with gating in ISAAC is that ISAAC uses pipelining,

i.e., all the layers are executed in parallel, and therefore, it activates the memristive crossbar arrays

that participate in the execution at all times. This means that gating would be only beneficial for

deactivating arrays which are not needed for the network at all. For the more compact mobile

neural networks, some crossbar memristive arrays can be deactivated. Since we target mobile

neural networks, which are significantly smaller, the benchmarks tested on multiPULPly were

not tested in ISAAC original work, and we can only perform high-level estimate of the energy

efficiency of ISAAC for mobile neural networks.

The ratio between the number of crossbar arrays in ISAAC and the actual number of needed

arrays in a mobile neural network depends on the ISAAC configuration (as this is a hierarchical

architecture that can contain different number of tiles, IMAs and crossbar arrays) and the size of the

mobile network. We compare here the ISAAC configuration that yields the best energy efficiency

with the basic mobileNet configuration, which includes 4.2 million parameters. In this case, the

accommodated crossbar arrays will be reduced by 20×. The power will be reduced by a lower factor
than 20×, since there are components which are shared by multiple arrays, and because of the

gating mechanism. The number of calculations will roughly be reduced by 20×. Therefore, even
if we assume that the power will be reduced by 20×, the energy efficiency stays the same (644

GOPS/W), which is inferior to that of multiPULPly (19.5 TOPS/W). Even after scaling to the same

technology, the energy efficiency would not be better than this of multiPULPly.

In terms of performance, the throughput is not affected by the clock gating (41.3 TOPS for the

ISAAC-CE configuration [64] - best computational efficiency). multiPULPly (82 GOPS) cannot

compete ISAAC, since ISAAC performs all the computations in parallel. In terms of area, the ISAAC

chip is 70× larger than multiPULPly, without considering the clock gating overhead.

For multiPULPly, we used the PULP operating points in [61]. Table 6 compares the energy

efficiency and peak performance of multiPULPly and other works, both in their original design

and scaled to 22nm CMOS technology. Curly brackets indicate numbers scaled to 22nm CMOS

technology. ShiDianNao was not scaled, because the voltage was not mentioned in the paper. LV
and HV indicate a low or high voltage configuration, respectively. The peak performance was

determined as explained in [18], and was achieved for a 256x256 crossbar configuration, when

the matrix size was exactly the size of two crossbars. In terms of peak performance, multiPULPly

outperformed HWCE [18]. However, it exhibited lower peak performance than Origami [14], since

the crossbar was relatively slow compared to the operating frequencies. The multiPULPly energy

efficiency was superior to the state-of-the-art. Even after scaling, multiPULPly displayed 1.5×
better energy efficiency than Origami, and 4.5× better energy efficiency than Chain-NN. Other low-

power accelerators achieved better energy efficiency [6, 52], but supported only BNNs. Moreover,

multiPULPly accelerates FC layer computation, in addition to the CONV layer.

Table 6. Comparison to State-of-the-Art Low-Power and Ultra-Low-Power Accelerators

Accelerator Tech. Volt.
[V]

Freq
[MHz]

Power
[mW]

Peak Perf.
[GOP/S]

Peak Energy Eff. {22nm
Scaled} [TOPS/W]

ShiDianNao [25] 65nm - 1000 320 194 0.6 {-}

Eyeriss [15] 65nm 1 200 287 46 0.16 {2.3}

ChainNN [76] 28nm 0.81 700 567 806 1.42 {4.31}

HWCE LV [18] 28nm 0.4 22 0.7 1 1.37 {7.75}

HWCE HV [18] 28nm 0.8 400 142 37 0.26 {0.77}

Origami LV [14] 65nm 0.8 189 92 74 0.8 {12.51}

Origami HV [14] 65nm 1.2 500 445 196 0.44 {6}

multiPULPly LV 22nm 0.5 150 1.5 30 19.5 {19.5}

multiPULPly HV 22nm 0.8 670 8 82 10.3 {10.3}
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We also executed a full neural network, mobileNet [32], on multiPULPly, and compared it to

execution of the network on state-of-the-art commercial microcontroller units (MCUs). The input

image was of size 160 × 160 and width multiplier 𝛼 = 0.25. The depthwise separable layers are

an integral part of MobileNet, and include two sub-layers: 3×3 depthwise convolution, in which

every channel is convoluted separately, and 1×1 convolution, which merges all the channel outputs

into one output. In the depthwise convolution sub-layer, the kernels are smaller and therefore the

sum-up granularity is smaller. Unlike other architectures which store the kernels in the crossbar

arrays and do not replace them throughout the computation, we have the freedom to choose to use

either the layer input or the kernel as the matrix values, and use the other as the vector or vectors.

In this case, we map the kernel as the vector and the input as the matrix values to achieve better

parallelism. Since the vector is typically shorter than the crossbar array height, not all the matrix

rows are occupied, so we pad the vector with zeros. In this way, we do not override older matrix

values that are not used in the multiplication and save costly write operations. The matrix columns,

however, are all occupied, as the kernel is multiplied by different parts of the input channel and

massive parallelism is achieved. It is also important to mention that these sub-layers constitute

only 3% of the MAC operations in MobileNet.

The second sub-layer, 1×1 convolution, is a standard convolution that constitutes 95% of the MAC

operations. The number of channels of the input in these layers grows as the network becomes

deeper. Therefore, the kernel becomes longer in one dimension, better utilizes the crossbar array

height, and enlarges the sum-up granularity. In addition, since several kernels are multiplied by

the same input channel, as many kernels as possible are mapped to the crossbar array in different

columns, to further utilize its area and computation capabilities.

The results appear in Table 7 for the different PULP operating points and for the naive, BLAS

and multiPULPly implementations. The number of cycles is different between the operating points

since the memristive crossbar operates in a different frequency. The frames per second (FPS) value

is higher using GAP9 architecture compared to multiPULPly as it uses a larger number of cores, and

its active power is higher, accordingly. However, the wasted energy is 4 × lower in multiPULPly.

The consumed energy values are larger using PULP without multiPULPly by one or two orders of

magnitude; therefore, this results prove our accelerator effectiveness.

Table 7. Full Network Comparison of multiPULPly to State-of-the-Art Commercial Microcontrollers

Target Freq
[MHz]

Time
[ms]

Cycles
[M]

FPS
[frames/sec]

Active Power
[mW]

Consumed
Energy [mJ]

STM32 H7 [4] 400 162.5 65 6.2 170 27.6

GAP9 [1] 29 162.5 4.77 6.2 5 0.8

GAP9 [1] 400 11.925 4.77 83.9 50 0.6

PULP [60] Naive Implementation 150 6960.4 1044 0.14 1.5 10.4

PULP [60] BLAS Implementation 150 1575.8 236 0.63 1.5 2.4

multiPULPly LV 150 66.8 10.02 14.97 1.5 0.1

multiPULPly HV 670 14.74 9.88 67.84 8 0.1

As discussed in Section 3.2, we run each sample on a neural network at a time since the TCDM is

not always sufficiently large to accommodate the intermediate results of all the samples. Figure 13

shows the speedup of running a batch of samples in the case of mobileNet, taking advantage of the

data reuse that can be achieved (with inter-sample data reuse), with respect to the sample-by-sample

computation (without inter-sample data reuse). The TCDM can be enlarged at the cost of increasing

the architecture power to support such speedup.

7 RELATEDWORK
Since ISAAC [64], much work has been devoted to accelerating NNs, using memristive crossbars [40,

47, 53, 72]. However, these systems are not suitable for IoT, since the large number of memristive
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Fig. 13. Normalized speedup of sample batch computation with respect to sample-by-sample computation in
MobileNet.

crossbars, accommodating all weights, result in high energy consumption. The consumed power in

ISAAC [64] is 65W, whereas multiPULPly does not exceed a power envelope of a few milliwatts.

Attempts have been made to design low-power NN accelerators [58], some of which use memris-

tors [27]. However, only a few rely on data reuse to minimize the consumed energy. In Eyeriss [15],

a dataflow is proposed to minimize the energy consumption incurred by data spatial architectures

by reusing filter weights. Chain-NN [76] reduces the bandwidth and the energy consumption by

reusing input operands. However, both use volatile memories; as such, they are not suitable for ultra-

low-power architectures such as PULP, which uses a normally-off policy to tolerate frequent power

failures. Leveraging sparsification on DNNs was widely investigated in the literature [54, 75, 83].

In [10], the sparsification of FC layers is leveraged to reduce the resource requirements on wearables.

However, their solutions are data-type-dependent and reduce the accuracy.

All the aforementioned low-power accelerators significantly exceed the power limitations of

IoT devices. HWCE [18], an accelerator for PULP, was designed to efficiently perform convolution.

Origami [14] is an accelerator that achieves a high energy efficiency of 1.421 TOPS/W. These

accelerators, however, scale poorly to large kernels and inputs. In addition, they accelerate fixed-

sized CONV layers, do not accelerate FC layers, and do not use NVM. In [56], a System-on-Chip

is proposed for convolution network acceleration. It accelerates both CONV and FC layers, but

achieves similar energy efficiency to Origami. A 0.62mW NN face recognition processor was

suggested in [11]. It has lower energy efficiency than multiPULPly and is application-specific, while

we designed an accelerator for a general-purpose system.

In [9], a mapping method of the Binary Level-1 BLAS on a memristive crossbar array using

stateful logic is suggested. They address binary vector operations only, whereas our NN-dedicated

solution efficiently performs analog VMM.

Another solution is the software programmable architectures, which provide more flexibility in

neural network execution. Some of these MCUs fit the power envelope of IoT devices, e.g., ARM’s

STM32H7 family [4] and Greenwaves’ GAP9 [1]. Many optimized software libraries have been

developed for these architectures to cope with the limited computational and memory capabilities,

e.g., CMSIS-NN [45] for the STM32H7 family. Similar solutions have been proposed for GAP9.

8 CONCLUSIONS
This paper presented multiPULPly, a neural network accelerator for PULP, which uses a mem-

ristive crossbar for efficient multiplications. The benefits of the crossbar-based accelerator are

twofold: compatibility with the normally-off policy, and parallel computation. We also showed

novel dataflows to reduce energy consumption. The proposed accelerator achieved better energy

efficiency, compared to state-of-the-art accelerators, and enhanced the performance of neural

network applications, as compared to existing accelerators and software solutions. While not

shown in this paper, multiPULPly can accelerate other applications which perform vector-matrix

multiplication, e.g., graph analytics, assuming limited accuracy is acceptable.
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