
Journal of Systems Architecture 119 (2021) 102232

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Improving Efficiency and Lifetime of Logic-in-Memory by Combining IMPLY
and MAGIC Families
Minhui Zou a, Junlong Zhou a,∗, Jin Sun a, Chengliang Wang b, Shahar Kvatinsky c

a School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
b School of Computer Science, Chongqing University, Chongqing, 400044, China
c Electrical and Computer Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel

A R T I C L E I N F O

Keywords:
Memristor
In-memory computing
Logic in memory
Synthesize and mapping
Efficiency
Lifetime

A B S T R A C T

Memristor-based memory computing has attracted much attention recently. By combining the storability and
computability of memristor devices together, the memristor-based in-memory computing could break the so-
called von Neumann bottleneck. Logic-in-memory (LIM) aims at implementing any computing task in memory.
IMPLY family and MAGIC family are two of the most popular stateful logic families of LIM. The two families
have their own respective advantages and disadvantages. However, there is few work combining the two
family gates together in a same memristor crossbar. In this paper, we would present X-IMPLY family gates
that eliminates the required external resistors of conventional IMPLY family gates. We then show by combining
X-IMPLY and MAGIC family gates, the advantages of both logic families are exploited. At last, we evaluate the
proposed method on state-of-art benchmarks. The results show, averagely, our method saves more than 15%
of cell usage and is more than 22% faster and increases lifetime by more than 41% compared with MAGIC
SIMPLER for different size constrains of crossbar row/column.
1. Introduction

The past decades have seen magnitude orders’ improvement of
energy efficiency brought by the scaling of the CMOS technology as
predicted by the Moore’s law. However, as the scaling of transistor
size approaching to its physical limit, it is increasingly harder for
the conventional computer architecture to continue improving energy
efficiency through process advancement [1]. Besides, the data-intensive
applications requiring huge amount of data movement between the
computing units and the memory units become more and more popular
[2–4]. The traditional computer architecture that separates computing
units and memory units is challenged [5].

Memristor-based in-memory computing (IMC) has been a potential
solution to the aforementioned challenges. By combining the storability
and computability together, the memristor-based IMC could process
the data where it is to avoid the data movement between the com-
puting units and the memory units. The memristor-based IMC could
be broadly categorized as neuromorphic computing (NC) and Logic-
in-memory (LIM). The former takes advantage of analogous matrix–
vector-multiplications with memristor crossbars to boost the processing
of neural network computing [6–9]. However, NC is a specific task and
cannot be used for other tasks. The latter is for general IMC, which

∗ Corresponding author.
E-mail addresses: zouminhui@njust.edu.cn (M. Zou), jlzhou@njust.edu.cn (J. Zhou), sunj@njust.edu.cn (J. Sun), wangcl@cqu.edu.cn (C. Wang),

shahar@ee.technion.ac.il (S. Kvatinsky).

aims at implementing any logic function with memristor devices [10–
13]. The first work of LIM is IMPLY [10], which implemented an IMP
gate with two memristor cells and one resistor, as shown in Fig. 3(a).
The inputs and output of the IMP gate are purely stored in memristor
devices. [14] extended the IMP gate and put forwards three other IMP-
like gates also implemented with two memristor cells and one resistor,
which are OR gate, AND gate, and NIMP gate. Let us collectively denote
the IMP gate and the extended IMP-like gates as IMPLY family gates.
The IMPLY family gates do not need initialization steps. However, an
IMPLY family gate overwrites one of its inputs, which could be a barrier
for multi-cascading.

To overcome the problem of input overwriting of IMPLY family
gates, [15] proposed to insert additional gates in gate-level netlists to
avoid fan-out. The method causes heavy overhead when the fan-out
exists in higher layers of the netlists. [12,14] proposed to copy the
inputs before they are overwrittern. However, the execution of a copy
operation in LIM takes two steps, either an initialization step plus an
operation step or a readout step plus a write step. Too many copy
operations could affect the computing latency greatly. MAGIC [11] put
forward a memristor-based NOR gate, which avoids the problem of
input overwriting, as is shown in Fig. 3(c). The MAGIC NOR gate is
vailable online 9 July 2021
383-7621/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2021.102232
Received 20 February 2021; Received in revised form 26 May 2021; Accepted 28 J
une 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:zouminhui@njust.edu.cn
mailto:jlzhou@njust.edu.cn
mailto:sunj@njust.edu.cn
mailto:wangcl@cqu.edu.cn
mailto:shahar@ee.technion.ac.il
https://doi.org/10.1016/j.sysarc.2021.102232
https://doi.org/10.1016/j.sysarc.2021.102232
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102232&domain=pdf

Journal of Systems Architecture 119 (2021) 102232M. Zou et al.
Fig. 1. The workflow of the proposed method: the HDL netlist is synthesized by using ABC synthesize tool with 𝐿 different cell libraries; then individually map each generated
gate-level netlist to a crossbar row/column with both X-IMPLY and MAGIC family gates to generate a list of execution sequences; at last choose the optimal list of execution

sequences with the least cell usage or latency.
implemented with three memristor cells, one of which is dedicated for
storing the operation output. Thus the inputs remain unchanged after
the execution of the gate. [16,17] extended the MAGIC NOR gate and
put forwards some other MAGIC-like gates, such as OR gate and NIMP
gate. Let us collectively denote the MAGIC NOR gate and the extended
MAGIC-like gates as MAGIC family gates. Although a MAGIC family
gate does not overwrite its inputs, it needs one additional initialization
step and three memristor cells, which cost more time and memristor
cells compared with an IMPLY family gate.

From above, we can see that both IMPLY family gates and MAGIC
family gates have their own respective advantages and disadvantages
and the two logic families complement each other. Based on this
observation, we propose to combine the two logic families to exploit the
advantages of them both. Both families are compatible with memristor
crossbars. However, the IMPLY family gates require external resistors
connected to the bitlines or writelines of the memristor crossbars. A
straightforward method to adding the compatibility of IMPLY family
gates to MAGIC family gates is connecting external resistors to the
memristor crossbars. However, external resistors bring in additional
hardware overhead. Also, the resistors will be in the periphery and
not inside the memristor crossbars, and will be connected through the
crossbar row/column decoder, which complicates the decode. In this
paper, we propose X-IMPLY family gates by replacing the resistors
of the IMPLY family gates with in-crossbar memristor cells so that
the compatibility of X-IMPLY family gates and MAGIC family gates is
enabled without additional hardware overhead. Besides, in order to
better exploit the combination of X-IMPLY family gates and MAGIC
family gates, a new mapping method is required. The mapping tool
MAGIC SIMPLER [13] maps a gate-level netlist into a single memristor
crossbar row/column, which outperforms other mapping tools, such as
SIMPLE [18] and SAID [19] in terms of throughput and parallelism.
We follow MAGIC SIMPLER’s idea of single-row/column mapping, but
we improve it to fit for the combination of X-IMPLY family and MAGIC
family within a same memristor crossbar.

The contributions of this work are summarized below:

• This work first proposes X-IMPLY family gates by replacing the
resistors of the IMPLY family gates with in-crossbar memristor
cells. To the best of our knowledge, this is the first work on this
topic. We also examine the compatibility of X-IMPLY family gates
and MAGIC family gates within a same memristor crossbar.

• This work then shows an improved single-row/column mapping
method to combine both family gates in a same crossbar to reduce
cell usage and latency.

• At last, the proposed technique is tested on benchmark circuits.
Comparing to MAGIC SIMPLER, the proposed technique aver-
agely saves more than 15% of cell usage and reduces more than
22% of latency and increases lifetime by more than 41% for
different size constrains of crossbar row/column.
2

Fig. 2. (a) A memristor device; (b) State switching of memristor devices.

The rest of the paper is organized as follows. Section 2 provides
the background about the memristor devices and the memristor-based
IMPLY and MAGIC family gates. Section 3 presents the X-IMPLY family
and its compatibility with MAGIC family. Section 4 proposes the syn-
thesis and mapping method of combining X-IMPLY and MAGIC family
gates. Section 5 shows the experimental results and Section 6 concludes
this paper.

2. Background and definitions

2.1. Background

2.1.1. RRAM devices and threshold-based switching
To our best knowledge, all the stateful memristor logic families take

use of the characteristic of threshold-switching memristor [10,11,14,
17]. The voltage-threshold memristor model of this paper is similar
to [14]. As shown in Fig. 2(a), the polar with thicker line of a memristor
device is labeled as positive polar and the other polar is labeled as
negative polar. The resistance of a memristor device is controlled by
the voltage across it, which is denoted as 𝑣𝑝𝑛. The resistance of the
memristor device is denoted as 𝑅. The values of 𝑅 are denoted as 𝑅𝑜𝑓𝑓
and 𝑅𝑜𝑛 when the memristor device is in the highest resistance state and
the lowest resistance state, respectively. In this paper, 𝑅𝑜𝑓𝑓 represents
logic 0 and 𝑅𝑜𝑛 represents logic 1. The process of a memristor device’s
resistance changing from 𝑅𝑜𝑓𝑓 to 𝑅𝑜𝑛 is called 𝑆𝑒𝑡 and the opposite
process is called 𝑅𝑒𝑠𝑒𝑡, which is shown as in Fig. 2(b).

There are four threshold voltages for the memristor device: 𝑉𝑜𝑛,
𝑉𝑜𝑓𝑓 , 𝑉𝑆𝑒𝑡, and 𝑉𝑅𝑒𝑠𝑒𝑡. Note that, 𝑉𝑜𝑓𝑓 and 𝑉𝑅𝑒𝑠𝑒𝑡 are forward-directed
and 𝑉𝑜𝑛 and 𝑉𝑆𝑒𝑡 are reverse-directed. The magnitude of 𝑉𝑅𝑒𝑠𝑒𝑡 (𝑉𝑆𝑒𝑡) is
higher than that of 𝑉𝑜𝑓𝑓 (𝑉𝑜𝑛). 𝑉𝑅𝑒𝑠𝑒𝑡 and 𝑉𝑆𝑒𝑡 are for guaranteed 𝑅𝑒𝑠𝑒𝑡
and 𝑆𝑒𝑡 initializations, respectively. The behavior of the memristor

model is explained as below:

Journal of Systems Architecture 119 (2021) 102232M. Zou et al.

𝑖

w
i
b
𝑖
t
s
i
i
o
o
I
s
(

m
a
M
b
i
b
u
m
a
(
w
o
g
0
𝑜
N

f
g
e
c

T
a
r
b

Fig. 3. (a) A memristor-based IMPLY family gate; (b) The truth table of IMP gate;
(c) A memristor-based MAGIC family gate; (d) The truth table of NOR gate.

• When 𝑣𝑝𝑛 > 𝑉𝑜𝑓𝑓 : 𝑅 increases;
• When 𝑣𝑝𝑛 ≥ 𝑉𝑅𝑒𝑠𝑒𝑡: 𝑅 changes to 𝑅𝑜𝑓𝑓 unconditionally, which is

for guaranteed 𝑅𝑒𝑠𝑒𝑡 initialization;
• When 𝑣𝑝𝑛 < 𝑉𝑜𝑛: 𝑅 decreases;
• When 𝑣𝑝𝑛 ≤ 𝑉𝑆𝑒𝑡: 𝑅 changes to 𝑅𝑜𝑛 unconditionally, which is for

guaranteed 𝑆𝑒𝑡 initialization;
• When 𝑉𝑜𝑛 ≤ 𝑣𝑝𝑛 ≤ 𝑉𝑜𝑓𝑓 : 𝑅 stays unchanged.

2.1.2. Memristor-based logic gates and logic synthesis
As shown in Fig. 3(a), a memristor-based IMPLY family gate consists

of two memristor devices (𝑖𝑛1 and 𝑖𝑛2) and one resistor (𝑅𝐺). Memristor
𝑛1, 𝑖𝑛2 and resistor 𝑅𝐺 are connected to voltage sources 𝑉1, 𝑉2 and

GND, respectively. There are four combinations for input (𝑖𝑛1, 𝑖𝑛2),
hich are (0,0), (0,1), (1,0), (1,1). The principle of IMPLY family gates

s creating a conditional switching (𝑆𝑒𝑡 or 𝑅𝑒𝑠𝑒𝑡) for memristor 𝑖𝑛2
y choosing the values of 𝑉1, 𝑉2, and 𝑅𝐺 while keeping memristor
𝑛1 unchanged. For example, a conditional switching could be created
hat 𝑖𝑛2 switches only when the input (𝑖𝑛1, 𝑖𝑛2) is (0,0) and does not
witch for any other input combinations. This conditional switching
s analogous to logic gate IMP, of which the truth table is shown
n Fig. 3(b). The output of the IMPLY family gate is the logic value
f memristor 𝑖𝑛2 after the execution of the gate, thus the output 𝑜𝑢𝑡
verwrites the input 𝑖𝑛2. Similarly, [14] puts forward IMPLY AND,
MPLY OR, and IMPLY NIMP gates by taking use of the conditional
witching for the memristor 𝑖𝑛2 when the input (𝑖𝑛1, 𝑖𝑛2) are (0,1),
1,0), and (1,1), respectively.

As shown in Fig. 3(c), a memristor-based MAGIC family gate is
ade up of three memristor devices (𝑖𝑛1, 𝑖𝑛2 and 𝑜𝑢𝑡). Both 𝑖𝑛1 and 𝑖𝑛2

re connected to voltage source 𝑉0 and 𝑜𝑢𝑡 is connected to GND. The
AGIC family gate requires the output memristor 𝑜𝑢𝑡 to be initialized

efore the execution of the gate. The principle of MAGIC family gates
s creating a conditional switching (𝑆𝑒𝑡 or 𝑅𝑒𝑠𝑒𝑡) for memristor 𝑜𝑢𝑡
y choosing the values of 𝑉0 while keeping memristor 𝑖𝑛1 and 𝑖𝑛2
nchanged. For example, a conditional switching could be created that
emristor 𝑜𝑢𝑡 switches when the input (𝑖𝑛1, 𝑖𝑛2) is one of (0,1), (1,0)

nd (1,1) and does not switch only when the input combination is
0,0). This conditional switching is analogous to logic gate NOR, of
hich the truth table is shown in Fig. 3(d). Similarly, by taking use
f other conditional switching for memristor 𝑜𝑢𝑡, other MAGIC family
ates could be implemented. For example, memristor 𝑜𝑢𝑡 is initialized as
and only when the input combination (𝑖𝑛1, 𝑖𝑛2) is (0,1), the memristor
𝑢𝑡 switches to 1. This conditional switching is analogous to logic gate
IMP.

Table 1 shows the comparison of IMPLY family gates and MAGIC
amily gates. Compared with an IMPLY family gate, a MAGIC family
ate has higher cell usage and longer latency (initialization step +
xecution step). However, MAGIC NOR gate does not require resistors
onnected to the memristor crossbars.
3

v

Table 1
Comparison of IMPLY family gates and MAGIC family gates.

IMPLY family MAGIC family

Cell usage 2 3
Require initialization NO Yes
Require resistor Yes No

MAGIC SIMPLER is a state-of-the-art synthesis and mapping tool
that converts any logic function into a gate-level netlist consists of only
NOR and NOT gates and then maps it to a single crossbar row/column.
The mapping results are the execution orders of each gate of the netlist
and the physical location of each net of the netlist on the memristor
crossbars.

2.2. Definitions

For the ease of discussion, let us introduce the definitions for this
paper.

Definition 1. 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐠𝐚𝐭𝐞, a gate that is not a NOT gate, i.e. IMP
gate, NIMP gate or OR gate;

Definition 2. 𝐢𝐧𝟏 𝐢𝐧𝐩𝐮𝐭, the input net of a function gate that is
not overwrittern by the output when the gate is implemented with
(X-)IMPLY family;

Definition 3. 𝐢𝐧𝟐 𝐢𝐧𝐩𝐮𝐭, the input net of a function gate that is over-
writtern by the output when the gate is implemented with (X-)IMPLY
family;

Definition 4. 𝐑𝐞𝐚𝐝𝐈𝐍𝟐 𝐠𝐚𝐭𝐞, a function gate with its in1 input being
the in2 input of other function gates or a NOT gate with its input being
the in2 input of other function gates.

3. X-IMPLY family and its compatibility with MAGIC family

To make a memristor crossbar support both families at the same
time, one obvious option is to add resistors to the memristor crossbar.
For example, for a memristor crossbar with size of 256 ∗ 256, to enable
an IMPLY family gate execute both in any crossbar row or column, each
crossbar row and column needs a resistor, as shown in Fig. 4. Then
the memristor crossbar needs 512 resistors, the hardware overhead
of which is not neglected. Additionally, the resistors will be in the
periphery and not inside the memristor crossbars, and will be con-
nected through the crossbar row/column decoder, which complicates
the decode. In this section, we would propose X-IMPLY family gates
by replacing the resistors of the IMPLY family gates with in-crossbar
memristor cells, thus the versatility of the crossbars is enabled without
additional hardware overhead.

3.1. X-IMPLY family gates

As shown in Fig. 5(a), the X-IMPLY family gate replaces the resistor
𝑅𝐺 of IMPLY family gates with an in-crossbar memristor cell 𝑅′

𝐺, which
is connected to voltage source 𝑉𝑔 . The memristor cell 𝑅′

𝐺 does not store
any operand or output. Instead, it functions as a load resistor just like
the resistor 𝑅𝐺 of IMPLY family gates does. The operation result 𝑜𝑢𝑡 still
overwrites the input 𝑖𝑛2. For the ease of later discussion, let us denote
the voltage potential of the shared net among 𝑖𝑛1, 𝑖𝑛2, and 𝑅′

𝐺 as 𝑉3.
he resistance of the resistor 𝑅𝐺 of an IMPLY family gate is constant
nd does change throughout the execution of the gate function. The
esistance of the memristor 𝑅′

𝐺 of an X-IMPLY family gate needs to
e constant, too. However, as mentioned in Section 2, only within the
oltage range [𝑉 , 𝑉], the resistance of memristor devices persists.
𝑜𝑛 𝑜𝑓𝑓

Journal of Systems Architecture 119 (2021) 102232M. Zou et al.
Fig. 4. An IMPLY family gate (gate1) and a MAGIC family gate (gate2) in a same
memristor crossbar.

Fig. 5. (a) An memristor-based X-IMPLY family gate; (b) Relaxing the design
constrains of memristor-based MAGIC family gates.

Thus, the voltage across 𝑅′
𝐺 throughout the execution of the gate must

be within the range [𝑉𝑜𝑛, 𝑉𝑜𝑓𝑓].
Let us take the X-IMPLY IMP gate as example. Table 2 lists the

constrains for all the input combinations of X-IMPLY IMP gate. Accord-
ing to Kirchhoff’s current law, the relation of 𝑉1, 𝑉2 and 𝑉3 satisfies
𝑉1−𝑉3
𝑅𝑖𝑛1

+ 𝑉2−𝑉3
𝑅𝑖𝑛2

+ 𝑉𝑔−𝑉3
𝑅′
𝐺

= 0, where 𝑅𝑖𝑛1 and 𝑅𝑖𝑛2 stand for the resistance
of 𝑖𝑛1 and 𝑖𝑛2, respectively. For example, when the input (𝑖𝑛1, 𝑖𝑛2) is
(0, 1), 𝑅𝑖𝑛1 is 𝑅𝑜𝑓𝑓 and 𝑅𝑖𝑛2 is 𝑅𝑜𝑛. The 𝑖𝑛1 of the X-IMPLY IMP gate is
not overwrittern for all input combinations and stays unchanged. When
𝑖𝑛1 is 0, the voltage across it satisfies 𝑉1 − 𝑉3 ≥ 𝑉𝑜𝑛; and when 𝑖𝑛1 is 1,
the voltage across it satisfies 𝑉1 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓 . For 𝑖𝑛2, when the input
(𝑖𝑛1, 𝑖𝑛2) is (0, 0), its value would be overwrittern by output 𝑜𝑢𝑡. In this
case, to ensure 𝑖𝑛2 switches from 0 to 1, the voltage across it satisfies
𝑉2 − 𝑉3 ≤ 𝑉𝑆𝑒𝑡. For other input combinations, the value of 𝑖𝑛2 does not
change and the voltage across it resembles that of 𝑖𝑛1. The resistance
of 𝑅′

𝐺 is between 𝑅𝑜𝑛 and 𝑅𝑜𝑓𝑓 and does not change for all input
combinations, thus the voltage across 𝑅′

𝐺 satisfies 𝑉𝑜𝑛 ≤ 𝑉𝑔 −𝑉3 ≤ 𝑉𝑜𝑓𝑓 .
Similarly, we examine all the other IMPLY family gates to transform

them into X-IMPLY family gates. The memristor model parameters
are shown in Table 3, which are similar to those of [14]. However,
only IMP gate, OR gate, and NIMP that are transformed could work
under the memristor model parameters. The AND gate works only when
∣𝑉𝑜𝑛 ∣
∣𝑉𝑜𝑓𝑓 ∣

< 1.
Note that the location of the memristor cell 𝑅′

𝐺 is not fixed. If an
X-IMPLY family gate is to be implemented in a crossbar row/column,
the 𝑅′

𝐺 could be any memristor cell in that row/column.

3.2. Compatibility of X-IMPLY family gates and MAGIC family gates

As is shown in Fig. 5(b), to relax the design constrains for MAGIC
family gates, the positive polars of 𝑖𝑛1 and 𝑖𝑛2 are connected to different
voltage sources 𝑉1 and 𝑉2, respectively [14]. Besides, the positive polar
of the memristor cell 𝑜𝑢𝑡 is connected to voltage source 𝑉 instead of
4

4

Table 2
Constraints for X-IMPLY IMP gate.

Inputs and output Constraints

𝑖𝑛1=0, 𝑖𝑛2=0, 𝑜𝑢𝑡=1

𝑉1−𝑉3

𝑅𝑜𝑓𝑓
+ 𝑉2−𝑉3

𝑅𝑜𝑓𝑓
+ 𝑉𝑔−𝑉3

𝑅′
𝐺

= 0

𝑉1 − 𝑉3 ≥ 𝑉𝑜𝑛

𝑉2 − 𝑉3 ≤ 𝑉𝑆𝑒𝑡

𝑉𝑜𝑛 ≤ 𝑉𝑔 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑖𝑛1=0, 𝑖𝑛2=1, 𝑜𝑢𝑡=1

𝑉1−𝑉3

𝑅𝑜𝑓𝑓
+ 𝑉2−𝑉3

𝑅𝑜𝑛
+ 𝑉𝑔−𝑉3

𝑅′
𝐺

= 0

𝑉1 − 𝑉3 ≥ 𝑉𝑜𝑛

𝑉2 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉𝑜𝑛 ≤ 𝑉𝑔 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑖𝑛1=1, 𝑖𝑛2=0, 𝑜𝑢𝑡=0

𝑉1−𝑉3

𝑅𝑜𝑛
+ 𝑉2−𝑉3

𝑅𝑜𝑓𝑓
+ 𝑉𝑔−𝑉3

𝑅′
𝐺

= 0

𝑉1 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉2 − 𝑉3 ≥ 𝑉𝑜𝑛

𝑉𝑜𝑛 ≤ 𝑉𝑔 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑖𝑛1=1, 𝑖𝑛2=1, 𝑜𝑢𝑡=1

𝑉1−𝑉3

𝑅𝑜𝑛
+ 𝑉2−𝑉3

𝑅𝑜𝑛
+ 𝑉𝑔−𝑉3

𝑅′
𝐺

= 0

𝑉1 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉2 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉𝑜𝑛 ≤ 𝑉𝑔 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

Table 3
The memristor model parameters.

𝑅𝑜𝑛 1 kΩ
𝑅𝑜𝑓𝑓 300 kΩ
𝑉𝑜𝑛 −2.5 V
𝑉𝑜𝑓𝑓 1.9 V
𝑉𝑆𝑒𝑡 −3 V
𝑉𝑅𝑒𝑠𝑒𝑡 2.4 V

GND and an memristor 𝑅′
𝐺 functioning as a load resistor is added,

which is different from [14]. The memristor 𝑅′
𝐺 is connected to voltage

source 𝑉𝑔 . Similarly, the voltage potential of the shared net among 𝑖𝑛1,
𝑖𝑛2, 𝑅′

𝐺, and 𝑜𝑢𝑡 is also denoted as 𝑉3.
Let us take the MAGIC IMP gate as example. Table 4 lists the

constrains for all the input combinations of MAGIC IMP gate. The
memristor 𝑜𝑢𝑡 is initialized as 1 for each input combination and it
switches to 0 only when (𝑖𝑛1, 𝑖𝑛2) is (1, 0). The memristor 𝑖𝑛1, 𝑖𝑛2 and
𝑅′
𝐺 stay unchanged for all input combinations.

Table 5 lists the compatible X-IMPLY family gates and MAGIC
family gates. The second, third, and fourth rows are X-IMPLY family
gates. The rest rows below are MAGIC family gates. The X-IMPLY IMP
gate, X-IMPLY NIMP gate, and MAGIC IMP gate require 𝑅′

𝐺 to be tuned
into related resistance ranges.

NOT gate is required by many synthesis and mapping tools [11,13,
19,20], which is required as well in this work. The NOT gate (NOT(𝑖𝑛1))
could be implemented as X-IMPLY IMP(𝑖𝑛1,0), in which the 𝑖𝑛2 is first
initialized as 0 and then overwrittern by the output.

4. Combining X-IMPLY family gates and MAGIC family gates

Section 3 has shown a memristor crossbar could support both X-
IMPLY family gates and MAGIC family gates at the same time. Based on
that, we could implement any logic function in memristor crossbars. As
shown in Fig. 1, for a given logic function (in the form of HDL netlist),
the first step is to synthesize it into a gate-level netlist consists of
supported memristor-based logic gates by the memristor crossbars. The
second step is to map the gate-level netlist to the memristor crossbars,
i.e. generating the execution sequences.

4.1. Synthesizing the given HDL netlist

[12,13,18,20] synthesize the given HDL netlist with cell library
{NOR, NOT} by using ABC synthesize tool [21] to generate a gate-
level netlist consists of only NOR gates and NOT gates. The cell library

Journal of Systems Architecture 119 (2021) 102232M. Zou et al.
Table 4
Constraints for MAGIC IMP gate.

Inputs and output Constraints

𝑖𝑛1=0, 𝑖𝑛2=0, 𝑜𝑢𝑡=1

𝑉1−𝑉3

𝑅𝑜𝑓𝑓
+ 𝑉2−𝑉3

𝑅𝑜𝑓𝑓
+ 𝑉𝑔−𝑉3

𝑅′
𝐺

+ 𝑉4−𝑉3

𝑅𝑜𝑛
= 0

𝑉1 − 𝑉3 ≥ 𝑉𝑜𝑛

𝑉2 − 𝑉3 ≥ 𝑉𝑜𝑛

𝑉𝑜𝑛 ≤ 𝑉𝑔 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉4 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑖𝑛1=0, 𝑖𝑛2=1, 𝑜𝑢𝑡=1

𝑉1−𝑉3

𝑅𝑜𝑓𝑓
+ 𝑉2−𝑉3

𝑅𝑜𝑛
+ 𝑉𝑔−𝑉3

𝑅′
𝐺

+ 𝑉4−𝑉3

𝑅𝑜𝑛
= 0

𝑉1 − 𝑉3 ≥ 𝑉𝑜𝑛

𝑉2 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉𝑜𝑛 ≤ 𝑉𝑔 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉4 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑖𝑛1=1, 𝑖𝑛2=0, 𝑜𝑢𝑡=0

𝑉1−𝑉3

𝑅𝑜𝑛
+ 𝑉2−𝑉3

𝑅𝑜𝑓𝑓
+ 𝑉𝑔−𝑉3

𝑅′
𝐺

+ 𝑉4−𝑉3

𝑅𝑜𝑛
= 0

𝑉1 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉2 − 𝑉3 ≥ 𝑉𝑜𝑛

𝑉𝑜𝑛 ≤ 𝑉𝑔 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉4 − 𝑉3 ≥ 𝑉𝑅𝑒𝑠𝑒𝑡

𝑖𝑛1=1, 𝑖𝑛2=1, 𝑜𝑢𝑡=1

𝑉1−𝑉3

𝑅𝑜𝑛
+ 𝑉2−𝑉3

𝑅𝑜𝑛
+ 𝑉𝑔−𝑉3

𝑅′
𝐺

+ 𝑉4−𝑉3

𝑅𝑜𝑛
= 0

𝑉1 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉2 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉𝑜𝑛 ≤ 𝑉𝑔 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

𝑉4 − 𝑉3 ≤ 𝑉𝑜𝑓𝑓

Table 5
Compatible X-IMPLY family gates and MAGIC family gates.

𝑉1 𝑉2 𝑉4 𝑉𝑔 𝑅′

𝐺

X-IMPLY IMP −1.0 V −2.5 V – 1.0 V 𝑅𝑜𝑛 ∼ 1.11 kΩ
X-IMPLY OR −1.0 V −2.5 V – floating –
X-IMPLY NIMP −2.5 V 1.7 V – −2.0 V 𝑅𝑜𝑛 ∼ 1.18 kΩ
MAGIC IMP −2.0 V 1.7 V 1.7 V −2.0 V 𝑅𝑜𝑛 ∼ 1.04 kΩ
MAGIC OR 2.5 V 2.5 V −1.0 V floating –
MAGIC NIMP 0 V 2.5 V −1.0 V floating –

is chosen because the combination of NOR gate and NOT gate is a
functionally complete set, which has the capability to construct any
logic function. However, we notice that the sets {IMP, NOT}, {NIMP,
NOT}, {OR, NOT} are also functionally complete. As shown in Table 6,
we have synthesized the LGsynth91 benchmark suite [22] with dif-
ferent cell libraries: {NOR, NOT}, {IMP, NOT}, {NIMP, NOT}, {OR,
NOT}. For example, the gate-level netlist generated by synthesizing
benchmark 5𝑥𝑝1 with cell library {NOR, NOT} has 80 NOR gates and
32 NOT gates. The number of gates of the generated netlist affects
the cell usage and latency overhead after it is mapped to a memristor
crossbar. The gate-level netlist with least number of gates normally cost
least memristor cells and latency. From the results, we could see the
cell library {NOR, NOT} is not optimal for many logic functions. For
example, for benchmark 𝑐𝑙𝑖𝑝 the optimal cell library is {IMP, NOT}
and for benchmark 𝑐𝑚163𝑎 the optimal cell library is {NIMP, NOT}. In
this work, we also use ABC synthesize tool to synthesize the given HDL
netlist. Differently, we synthesize 𝐿 times and each time with a different
cell library, as shown in Fig. 1. To increase the synthesis flexibility,
we extend the three least-size cell libraries {IMP, NOT}, {NIMP, NOT},
{OR, NOT} by adding one or more supported gates. All the cell libraries
are {IMP, NOT}, {NIMP, NOT}, {OR, NOT}, {IMP, NIMP, NOT}, {IMP,
OR, NOT}, {NIMP, OR, NOT}, {IMP, NIMP, OR, NOT}. Thus, 𝐿 is 7 in
this paper.
5

Fig. 6. (a) HDL netlist of a half adder; (b) The gate-level netlist of the half adder
consists of only IMP gates and NOT gates.

4.2. Mapping the generated gate-level netlist

We follow the idea of MAGIC SIMPLER that maps the generated
gate-level netlist to a single crossbar row/column because it outper-
forms the other mapping methods in terms of throughput and paral-
lelism [13]. As mentioned in Section 2, IMPLY family gates save cell
usage and time while MAGIC family gates could avoid the problem of
input overwriting. We propose to combine X-IMPLY family gates and
MAGIC family gates to reduce cell usage and latency and at the same
time avoid input overwriting at the best effort.

Let us demonstrate the idea with a simple example. Fig. 6(a) shows
the HDL netlist of a half adder circuit, which is made up of an XOR
gate and an AND gate. Fig. 6(b) shows the corresponding synthesized
gate-level netlist with cell library {IMP, NOT}. The generated gate-level
netlist consists of 3 IMP gates and 3 NOT gates. For IMP gate 𝐺2, the
in2 input 𝑛5 is shared by another gate 𝐺4. If gate 𝐺4 is executed before
𝐺2, 𝐺2 would be implemented with an X-IMPLY IMP gate since net 𝑛5
is no longer accessed by other gates. However, if 𝐺4 is executed after
𝐺2, 𝑛5 must be remains as accessible after the execution of gate 𝐺2,
and thus 𝐺2 could not be implemented with an X-IMPLY IMP gate. For
IMP gate 𝐺5, its in2 input 𝐶𝑜𝑢𝑡 is not shared by any other gates, and
thus gate 𝐺5 could be implemented with X-IMPLY IMP gate to save one
cell and one initialization step.

Motivated by above example, we put forward a general standard
of deciding which logic family to choose to implement for a function
gate. The default logic family to choose for a function gate is MAGIC
family. In order to reduce cell usage and latency at the best effort, we
hope to implement as much function gates with X-IMPLY family gates
as possible. A function gate implemented with an X-IMPLY family gate
must satisfy either one of the two conditions below.

• Condition 1: The in2 input of the function gate is not shared by
any other gates.

• Condition 2: The in2 input of the function gate is shared by other
gates, but the function gate is executed after the gates that share
the in2 input of the function gate.

Mapping the gate-level netlist into memristor crossbars is deciding
the execution order and cell location of each gate of the gate-level
netlist. The netlist is regarded as a directed acyclic graph. We follow the
synthesis workflow of MAGIC SIMPLER and apply Depth-First Search to
process from the root net to the leaf nets. Regarding the branches of a
net, MAGIC SIMPLER calculates the cell usage (𝐶𝑈) of each net for the
priority of the larger branch. However, to fit for our case, we modify the
procedure of deciding which branch first. For the aim of maximizing the
advantage of X-IMPLY family gates, we prioritize the branch with more
ReadIN2 gates. We use ReadIN2 weight (𝑅𝑊) to estimate the number

Journal of Systems Architecture 119 (2021) 102232M. Zou et al.

o
p
t

Table 6
Result comparison of synthesizing LGsynth91 benchmarks with different cell libraries.

NOR + NOT IMP + NOT OR + NOT NIMP + NOT

of NOR # of NOT # of IMP # of NOT # of OR # of NOT # of NIMP # of NOT

5xp1 80 32 80 30 84 72 84 27
clip 95 49 95 27 95 81 95 33
cm150a 46 16 46 8 46 56 46 17
cm162a 33 27 33 19 33 23 33 16
cm163a 32 29 32 18 32 22 32 15
misex1 48 30 48 12 42 36 42 18
parity 45 31 45 21 45 61 45 22
x2 37 31 37 14 37 28 37 19
of ReadIN2 gates of each branch. The algorithm of calculating 𝑅𝑊 is
shown in algorithm 1. Given the net 𝑖, the algorithm outputs the 𝑅𝑊
f net 𝑖. The algorithm first checks the gate type of net 𝑖. If net 𝑖 is a
rimary input, then its 𝑅𝑊 is 0. The algorithm then checks whether
he driving gate 𝑔𝑎𝑡𝑒𝑖 of net 𝑖 is a ReadIN2 gate. If yes, the 𝑅𝑊 of 𝑖 is

the sum of the 𝑅𝑊 of 𝑔𝑎𝑡𝑒𝑖’s input nets plus 1; if no, the 𝑅𝑊 of 𝑖 is
just the sum of the 𝑅𝑊 of 𝑔𝑎𝑡𝑒𝑖’s input nets.

Algorithm 1 ComputeRW
Compute the 𝑅𝑊 of net 𝑖
1: Inputs: net 𝑖;
2: Output: 𝑅𝑊 of net 𝑖;
3: for net 𝑖 do
4: if net 𝑖 is a primary input then
5: return 0;
6: else
7: 𝑔𝑎𝑡𝑒𝑖 = the driving gate of net 𝑖
8: if 𝑔𝑎𝑡𝑒𝑖 is a NOT gate then
9: 𝑖_𝑖𝑛 = the input net of 𝑔𝑎𝑡𝑒𝑖

10: if 𝑔𝑎𝑡𝑒𝑖 is a ReadIN2 gate then
11: return ComputeRW(𝑖_𝑖𝑛)+1;
12: else
13: return ComputeRW(𝑖_𝑖𝑛)
14: end if
15: else //𝑔𝑎𝑡𝑒𝑖 is a function gate
16: 𝑖_𝑖𝑛1 = the net as in1 input of 𝑔𝑎𝑡𝑒𝑖
17: 𝑖_𝑖𝑛2 = the net as in2 input of 𝑔𝑎𝑡𝑒𝑖
18: if 𝑔𝑎𝑡𝑒𝑖 is a ReadIN2 gate then
19: return ComputeRW(𝑖_𝑖𝑛1)+ComputeRW(𝑖_𝑖𝑛2) +1;
20: else
21: return ComputeRW(𝑖_𝑖𝑛1)+ComputeRW(𝑖_𝑖𝑛2);
22: end if
23: end if
24: end if
25: end for

The 𝑅𝑊 is the guide for deciding which branch goes first. If the
branches of a net have the same value of 𝑅𝑊 , then we choose the
branch with greater 𝐶𝑈 as the first.

To combine X-IMPLY and MAGIC family gates, we also modify
the 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝐶𝑒𝑙𝑙 algorithm of MAGIC SIMPLER, which is shown as in
algorithm 2. The algorithm modifies the part where the fan-out (𝐹𝑂)
of the net 𝑖 is 1. That is when all the gates sharing the in2 input of 𝑔𝑎𝑡𝑒𝑖
are already assigned with memristor cells, the in2 input of 𝑔𝑎𝑡𝑒𝑖 is no
longer needed after the execution of it and 𝑔𝑎𝑡𝑒𝑖 could be implemented
with an X-IMPLY gate. For the other parts, the algorithm is the same
with the original 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝐶𝑒𝑙𝑙 algorithm.

The time complexity of algorithm 1 and 2 is the same with algorithm
ComputeCU and AllocateCell of MAGIC SIMPLER, respectively. In our
6

method, the given netlist is synthesized and mapped for 𝐿 times.
Thus, the time complexity of our method is 𝐿 times of that of MAGIC
SIMPLER.

Algorithm 2 NewAllocateCell
Allocate the cell for net 𝑖
1: Input: net 𝑖 (not a primary input);
2: Output: the memory location 𝑚𝑎𝑝𝑖;
3: for net 𝑖 do
4: 𝑔𝑎𝑡𝑒𝑖 = the driving gate of net 𝑖
5: if 𝑔𝑎𝑡𝑒𝑖 is a NOT gate then
6: do the same as 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝐶𝑒𝑙𝑙 algorithm does;
7: else //𝑔𝑎𝑡𝑒𝑖 is a function gate
8: 𝑖_𝑖𝑛1 = the net as in1 input of 𝑔𝑎𝑡𝑒𝑖
9: 𝑖_𝑖𝑛2 = the net as in2 input of 𝑔𝑎𝑡𝑒𝑖

10: if FO(𝑖_𝑖𝑛2)==1 then //implement 𝑔𝑎𝑡𝑒𝑖 with an X-IMPLY
family gate

11: FO(𝑖_𝑖𝑛2)=FO(𝑖_𝑖𝑛2)-1;
12: 𝑚𝑎𝑝𝑖=GetMap(𝑖_𝑖𝑛2);
13: t=t+1 //the gate operation takes one clock
14: return 𝑚𝑎𝑝𝑖
15: else//implement 𝑔𝑎𝑡𝑒𝑖 with MAGIC family gate
16: do the same as 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝐶𝑒𝑙𝑙 algorithm does;
17: end if
18: end if
19: end for

5. Experiments

In this section we would show the comparison results between the
proposed method and MAGIC SIMPLER. The hardware environment of
the experiments is i7-9700 CPU and 16GB DRAM memory. Both of the
proposed method and MAGIC SIMPLER are implemented on LGsynth91
benchmark suite and EPFL benchmark suite [23]. For the proposed
method, each of the 𝐿 generated netlists is mapped to generate ex-
ecution sequences individually. Note that the synthesis and mapping
methods are very efficient and each benchmark could be done within a
few minutes. The optimal list of execution sequences is chosen with the
priority of least cell usage or latency. In this paper we choose the list of
execution sequences with least latency as the optimal. The optimal list
of execution sequences generated by the proposed method is compared
to the list of execution sequences generated by MAGIC SIMPLER in

terms of cell usage, latency and lifetime.

Journal of Systems Architecture 119 (2021) 102232M. Zou et al.

f

5

p
a
S
w
M
a
s
m
m
t
o
b
c
o
s
t
i
a
o
b

5

t
o
f
f
o

Fig. 7. Improvement of our method compared with MAGIC SIMPLER under different
size constrains of crossbar row/column in terms of Up: cell usage and Down: latency
or mapping the LGsynth91 and EPFL benchmark suite.

.1. Cell usage and latency

In the first set of experiments, we show the improvement of the pro-
osed method compared with MAGIC SIMPLER in terms of cell usage
nd latency. In order to have an apple-to-apple comparison with MAGIC
IMPLER, every benchmark is tested on single crossbar row/column
ith (1) minimal number of memristor cells required (MinCells), (2)
inCells plus max(5% of MinSize,10) memristor cells (MinCells plus),

nd (3) unlimited number of memristor cells (UnlimitedCells) as the
ame with MAGIC SIMPLER does. As is shown in Fig. 7, the proposed
ethod has made notable improvement overall. However, for bench-
arks 𝑏𝑎𝑟 and 𝑠𝑖𝑛, our method lags slightly behind MAGIC SIMPLER in

erms of cell usage. For benchmark 𝑏𝑎𝑟, the generated gate-level netlist
f MAGIC SIMPLER requires less gates than that of our method. For
enchmark 𝑠𝑖𝑛, part of ReadIN2 gates are in small branches so that less
ells are reused. The proposed method averagely saves more than 15%
f cell usage compared with MAGIC SIMPLER for different crossbar row
ize constrains for both benchmark suites. When with unlimited cells,
he cell-saving benefit of the proposed method is maximized, which
s more than 59% averagely. As to latency, the proposed method is
veragely more than 28% and 16% faster for different size constrains
f crossbar row/column for LGsynth91 benchmark suite and EPFL
enchmark suite, respectively.

.2. Lifetime

In this section, we would show that our method could increase
he lifetime of memristor-based computing system by reducing write
perations to the memristor devices. We count one writing operation
or each primary input of benchmarks for both X-IMPLY and MAGIC
amily gates. Every MAGIC family gate is counted as two writing
7

perations because it requires one initialization operation except for
Fig. 8. Improvement of our method compared with MAGIC SIMPLER in terms of
lifetime of memristor-based computing system for LGsynth91 and EPFL benchmarks.

the gate operation. Every X-IMPLY family gate is counted as only one
writing operation. However, each X-IMPLY NOT gate is counted as two
writing operations since it needs to initialize the output memristor cell
just like the MAGIC family gates do. The results are shown in Fig. 8.
Averagely, the proposed method increase the lifetime of memristor-
based computing system by more than 46% for LGsynth91 benchmark
suite and 37% for EPFL benchmark suite as compared to MAGIC
SIMPLER.

6. Conclusion

The IMPLY family gates and MAGIC family gates see individual
development and applications. The two kinds of family gates have
their own respective advantages and disadvantages. In this paper, we
propose to support both families in a same memristor crossbar. To mit-
igate the hardware overhead brought by the compatibility of the two
families, we propose X-IMPLY family gates by replacing the external
resistors of the conventional IMPLY gates with in-crossbar memristor
cells. To exploit the advantages of both family gates, we propose
an optimized method to combine both family gates. The experiment
results show that our method achieves better efficiency and lifetime
improvement than MAGIC SIMPLER. In the future work, we would
explore the impact of the PVT variation of the memristor devices on
the proposed methods and put forward the countermeasures.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by National Natural Science Foundation of
China (61672115, 61802185, 61872185), Natural Science Foundation
of Jiangsu Province, China (BK20180470, BK20190447), China Post-
doctoral Science Foundation (2021T140327, 2020M680068), Funda-
mental Research Funds for the Central Universities, China
(30919011233, 30919011402), National Trusted Embedded Software
Engineering Technology Research Center (East China Normal Univer-
sity), and Israel Science Foundation (1514/17).

References

[1] M. Horowitz, Computing’s energy problem (and what we can do about it), in:
2014 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap., IEEE, 2014, pp. 10–
14, http://dx.doi.org/10.1109/ISSCC.2014.6757323, http://ieeexplore.ieee.org/
document/6757323/.

http://dx.doi.org/10.1109/ISSCC.2014.6757323
http://ieeexplore.ieee.org/document/6757323/
http://ieeexplore.ieee.org/document/6757323/
http://ieeexplore.ieee.org/document/6757323/

Journal of Systems Architecture 119 (2021) 102232M. Zou et al.
[2] L.-C. Hsu, C.-T. Chiu, K.-T. Lin, H.-H. Chou, Y.-Y. Pu, ESSA: An energy-Aware
bit-Serial streaming deep convolutional neural network accelerator, J. Syst.
Architect. 111 (2020) 101831, http://dx.doi.org/10.1016/j.sysarc.2020.101831.

[3] R.C.C. Zhe Xu, Binary convolutional neural network acceleration framework for
rapid system prototyping, J. Syst. Architect. 109 (2020) 101762, http://dx.doi.
org/10.1016/j.sysarc.2020.101762.

[4] S. Mittal, A survey on modeling and improving reliability of dnn algorithms and
accelerators, J. Syst. Archit. 104 (2020) 101689, http://dx.doi.org/10.1016/j.
sysarc.2019.101689.

[5] O. Mutlu, S. Ghose, J. Gómez-Luna, R. Ausavarungnirun, Processing data where
it makes sense: Enabling in-memory computation, Microprocess. Microsyst.
67 (2019) 28–41, http://dx.doi.org/10.1016/j.micpro.2019.01.009, https://
linkinghub.elsevier.com/retrieve/pii/S0141933118302291.

[6] Z. Zhu, H. Sun, Y. Lin, G. Dai, L. Xia, S. Han, Y. Wang, H. Yang, A configurable
multi-precision CNN computing framework based on single bit RRAM, in: Proc.
56th Annu. Des. Autom. Conf. 2019 - DAC ’19, ACM Press, New York, New
York, USA, 2019, pp. 1–6, http://dx.doi.org/10.1145/3316781.3317739, http:
//dl.acm.org/citation.cfm?doid=3316781.3317739.

[7] Z. Zhu, H. Sun, K. Qiu, L. Xia, G. Krishnan, G. Dai, D. Niu, X. Chen, X.S.
Hu, Y. Cao, Y. Xie, Y. Wang, H. Yang, MNSIM 2.0: A behavior-level modeling
tool for memristor-based neuromorphic computing systems, in: Proc. 2020 Gt.
Lakes Symp. VLSI, ACM, New York, NY, USA, 2020, http://dx.doi.org/10.1145/
3386263.3407647.

[8] Y. Cai, Y. Lin, L. Xia, X. Chen, S. Han, Y. Wang, H. Yang, Long live TIME:
Improving lifetime and security for NVM-based training-in-memory systems, IEEE
Trans. Comput. Des. Integr. Circuits Syst. (2020) http://dx.doi.org/10.1109/
TCAD.2020.2977079.

[9] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J.J. Yang, H. Qian, Fully
hardware-implemented memristor convolutional neural network, Nature 577
(7792) (2020) 641–646, http://dx.doi.org/10.1038/s41586-020-1942-4, http://
www.nature.com/articles/s41586-020-1942-4.

[10] J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams,
Memristive switches enable stateful logic operations via material implication,
Nature 464 (7290) (2010) 873–876, http://dx.doi.org/10.1038/nature08940.

[11] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E.G. Friedman, A.
Kolodny, U.C. Weiser, MAGIC-memristor-aided logic, IEEE Trans. Circuits Syst.
II Express Briefs 61 (11) (2014) http://dx.doi.org/10.1109/TCSII.2014.2357292.

[12] Z. Zhu, M. Ma, J. Liu, L. Xu, X. Chen, Y. Yang, Y. Wang, H. Yang, A general logic
synthesis framework for memristor-based logic design, in: 2019 IEEE/ACM Int.
Conf. Comput. Des., IEEE, 2019, http://dx.doi.org/10.1109/ICCAD45719.2019.
8942111.

[13] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled, S.
Kvatinsky, SIMPLER MAGIC: Synthesis and mapping of in-memory logic executed
in a single row to improve throughput, IEEE Trans. Comput. Des. Integr. Circuits
Syst. 39 (10) (2020) http://dx.doi.org/10.1109/TCAD.2019.2931188.

[14] K.M. Kim, R.S. Williams, A family of stateful memristor gates for complete
cascading logic, IEEE Trans. Circuits Syst. I Regul. Pap. 66 (11) (2019)
4348–4355, http://dx.doi.org/10.1109/TCSI.2019.2926811, https://ieeexplore.
ieee.org/document/8776649/.

[15] J. Bùrger, C. Teuscher, M. Perkowski, Digital logic synthesis for memristors,
Reed-Muller 2013 (2013) 31–40.

[16] S. Gupta, M. Imani, T. Rosing, FELIX: Fast and energy-efficient logic in
memory, in: Proc. Int. Conf. Comput. Des., ACM, New York, NY, USA, 2018,
pp. 1–7, http://dx.doi.org/10.1145/3240765.3240811, https://dl.acm.org/doi/
10.1145/3240765.3240811.

[17] B. Hoffer, V. Rana, S. Menzel, R. Waser, S. Kvatinsky, Experimental demonstra-
tion of memristor-aided logic (MAGIC) using valence change memory (VCM),
IEEE Trans. Electron Devices 67 (8) (2020) 3115–3122, http://dx.doi.org/10.
1109/TED.2020.3001247, https://ieeexplore.ieee.org/document/9125983/.

[18] R. Ben Hur, N. Wald, N. Talati, S. Kvatinsky, Simple magic: Synthesis and
in-memory mapping of logic execution for memristor-aided logic, in: 2017
IEEE/ACM Int. Conf. Comput. Des., IEEE, 2017, pp. 225–232, http://dx.doi.org/
10.1109/ICCAD.2017.8203782, http://ieeexplore.ieee.org/document/8203782/.

[19] V. Tenace, R.G. Rizzo, D. Bhattacharjee, A. Chattopadhyay, A. Calimera, SAID:
A supergate-aided logic synthesis flow for memristive crossbars, in: Proc. 2019
Des. Autom. Test Eur. Conf. Exhib. DATE 2019, 2019, pp. 372–377, http:
//dx.doi.org/10.23919/DATE.2019.8714939.

[20] P.L. Thangkhiew, K. Datta, Scalable in-memory mapping of boolean functions
in memristive crossbar array using simulated annealing, J. Syst. Archi-
tect. 89 (2018) 49–59, http://dx.doi.org/10.1016/j.sysarc.2018.07.002, https:
//linkinghub.elsevier.com/retrieve/pii/S1383762118301012.

[21] A. Mishchenko, (Berkeley Logic Synthesis and VeriïňA̧cation Group), ABC: A
system for sequential synthesis and VeriïňA̧cation, 2012, https://people.eecs.
berkeley.edu/{~}alanmi/abc/.

[22] S. Yang, Logic synthesis and optimization benchmarks user guide version 3.0,
in: MCNC, 1991.

[23] L. Amarù, P.-E. Gaillardon, G. De Micheli, The EPFL Combinational Benchmark
Suite, in: Proc. 24th Int. Work. Log. Synth., 2015.
8

Minhui Zou received the B.S. degree and Ph.D. degree in
computer science and technology from Chongqing Univer-
sity, China, in 2013 and 2018, respectively. He is currently a
lecturer with the School of Computer Science and Engineer-
ing, Nanjing University of Science and Technology, China.
His current research interests include hardware security,
edge computing, and memory computing.

Junlong Zhou received the Ph.D. degree in Computer
Science and Technology from East China Normal University,
Shanghai, China, in 2017. He was a Visiting Scholar with
the University of Notre Dame, Notre Dame, IN, USA, during
2014–2015. He is currently an Associate Professor with
the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing, China. His
research interests include embedded systems, cloud-edge-
IoT, and cyber–physical systems, where he has published 2
book chapters and more than 80 refereed papers, including
25+ IEEE/ACM Transactions. He has been an Associate Edi-
tor for the Journal of Circuits, Systems, and Computers and
the IET Cyber–Physical Systems: Theory & Applications, a
Subject Area Editor for the Journal of Systems Architecture,
and a Guest Editor for 6 ACM/IET/Elsevier/Wiley Journals
such as ACM Transactions on Cyber–Physical Systems.

Jin Sun received the B.S. and M.S. degrees in computer
science and technology from Nanjing University of Science
and Technology, Nanjing, China, in 2004 and 2006, re-
spectively, and the Ph.D. degree in electrical and computer
engineering from the University of Arizona, Tucson, AZ,
USA, in 2011. From January 2012 to September 2014, he
was with Orora Design Technologies, Inc., as a Member of
Technical Staff. He is currently an Associate Professor with
the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing, China. His
research interests include high-performance computing and
electronic design automation.

Chengliang Wang received his B.S. degree in mechatronics
in 1996, the M.S. degree in precision instruments and
machinery in 1999, and the Ph.D. degree in control theory
and engineering in 2004, all from Chongqing University,
China. He is now a professor of Chongqing University. His
research interests include smart control for complex system,
the theory and application of artificial intelligence, wireless
network and RFID research. He has published more than
80 writings, including more than 20 articles in SCI, EI, and
holds 12 national patents.

Shahar Kvatinsky is an Associate Professor at the Andrew
and Erna Viterbi Faculty of Electrical Engineering, Technion
— Israel Institute of Technology. Shahar received a B.Sc.
degree in Computer Engineering and Applied Physics and
an MBA degree in 2009 and 2010, respectively, both from
the Hebrew University of Jerusalem and the Ph.D. degree in
Electrical Engineering from the Technion — Israel Institute
of Technology in 2014. From 2006 to 2009, he worked as
a circuit designer at Intel. From 2014 and 2015, he was a
post-doctoral research fellow at Stanford University. Kvatin-
sky is an editor of Microelectronics Journal and has been the
recipient of numerous awards: 2020 MDPI Electronics Young
Investigator Award, 2019 Wolf Foundation’s Krill Prize for
Excellence in Scientific Research, 2015 IEEE Guillemin-
Cauer Best Paper Award, 2015 Best Paper of Computer
Architecture Letters, Viterbi Fellowship, Jacobs Fellowship,
ERC starting grant, the 2017 Pazy Memorial Award, the
2014 and 2017 Hershel Rich Technion Innovation Awards,
2013 Sanford Kaplan Prize for Creative Management in
High Tech, 2010 Benin prize, and seven Technion excellence
teaching awards. His current research is focused on circuits
and architectures with emerging memory technologies and
design of energy-efficient architectures.

http://dx.doi.org/10.1016/j.sysarc.2020.101831
http://dx.doi.org/10.1016/j.sysarc.2020.101762
http://dx.doi.org/10.1016/j.sysarc.2020.101762
http://dx.doi.org/10.1016/j.sysarc.2020.101762
http://dx.doi.org/10.1016/j.sysarc.2019.101689
http://dx.doi.org/10.1016/j.sysarc.2019.101689
http://dx.doi.org/10.1016/j.sysarc.2019.101689
http://dx.doi.org/10.1016/j.micpro.2019.01.009
https://linkinghub.elsevier.com/retrieve/pii/S0141933118302291
https://linkinghub.elsevier.com/retrieve/pii/S0141933118302291
https://linkinghub.elsevier.com/retrieve/pii/S0141933118302291
http://dx.doi.org/10.1145/3316781.3317739
http://dl.acm.org/citation.cfm?doid=3316781.3317739
http://dl.acm.org/citation.cfm?doid=3316781.3317739
http://dl.acm.org/citation.cfm?doid=3316781.3317739
http://dx.doi.org/10.1145/3386263.3407647
http://dx.doi.org/10.1145/3386263.3407647
http://dx.doi.org/10.1145/3386263.3407647
http://dx.doi.org/10.1109/TCAD.2020.2977079
http://dx.doi.org/10.1109/TCAD.2020.2977079
http://dx.doi.org/10.1109/TCAD.2020.2977079
http://dx.doi.org/10.1038/s41586-020-1942-4
http://www.nature.com/articles/s41586-020-1942-4
http://www.nature.com/articles/s41586-020-1942-4
http://www.nature.com/articles/s41586-020-1942-4
http://dx.doi.org/10.1038/nature08940
http://dx.doi.org/10.1109/TCSII.2014.2357292
http://dx.doi.org/10.1109/ICCAD45719.2019.8942111
http://dx.doi.org/10.1109/ICCAD45719.2019.8942111
http://dx.doi.org/10.1109/ICCAD45719.2019.8942111
http://dx.doi.org/10.1109/TCAD.2019.2931188
http://dx.doi.org/10.1109/TCSI.2019.2926811
https://ieeexplore.ieee.org/document/8776649/
https://ieeexplore.ieee.org/document/8776649/
https://ieeexplore.ieee.org/document/8776649/
http://refhub.elsevier.com/S1383-7621(21)00161-2/sb15
http://refhub.elsevier.com/S1383-7621(21)00161-2/sb15
http://refhub.elsevier.com/S1383-7621(21)00161-2/sb15
http://dx.doi.org/10.1145/3240765.3240811
https://dl.acm.org/doi/10.1145/3240765.3240811
https://dl.acm.org/doi/10.1145/3240765.3240811
https://dl.acm.org/doi/10.1145/3240765.3240811
http://dx.doi.org/10.1109/TED.2020.3001247
http://dx.doi.org/10.1109/TED.2020.3001247
http://dx.doi.org/10.1109/TED.2020.3001247
https://ieeexplore.ieee.org/document/9125983/
http://dx.doi.org/10.1109/ICCAD.2017.8203782
http://dx.doi.org/10.1109/ICCAD.2017.8203782
http://dx.doi.org/10.1109/ICCAD.2017.8203782
http://ieeexplore.ieee.org/document/8203782/
http://dx.doi.org/10.23919/DATE.2019.8714939
http://dx.doi.org/10.23919/DATE.2019.8714939
http://dx.doi.org/10.23919/DATE.2019.8714939
http://dx.doi.org/10.1016/j.sysarc.2018.07.002
https://linkinghub.elsevier.com/retrieve/pii/S1383762118301012
https://linkinghub.elsevier.com/retrieve/pii/S1383762118301012
https://linkinghub.elsevier.com/retrieve/pii/S1383762118301012
https://people.eecs.berkeley.edu/{~}alanmi/abc/
https://people.eecs.berkeley.edu/{~}alanmi/abc/
https://people.eecs.berkeley.edu/{~}alanmi/abc/
http://refhub.elsevier.com/S1383-7621(21)00161-2/sb22
http://refhub.elsevier.com/S1383-7621(21)00161-2/sb22
http://refhub.elsevier.com/S1383-7621(21)00161-2/sb22

	Improving Efficiency and Lifetime of Logic-in-Memory by Combining IMPLY and MAGIC Families
	Introduction
	Background and definitions
	Background
	RRAM devices and threshold-based switching
	Memristor-based logic gates and logic synthesis

	Definitions

	X-IMPLY family and its compatibility with MAGIC family
	X-IMPLY family gates
	Compatibility of X-IMPLY family gates and MAGIC family gates

	Combining X-IMPLY family gates and MAGIC family gates
	Synthesizing the given HDL netlist
	Mapping the generated gate-level netlist

	Experiments
	Cell usage and latency
	Lifetime

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

