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Abstract— Memristive technologies are attractive 

candidates to replace conventional memory technologies, and 

can also be used to perform logic and arithmetic operations 

using a technique called 'stateful logic.' Combining data storage 

and computation in the memory array enables a novel non-von 

Neumann architecture, where both the operations are 

performed within a memristive Memory Processing Unit 

(mMPU). The mMPU relies on adding computing capabilities to 

the memristive memory cells without changing the basic 

memory array structure. The use of an mMPU alleviates the 

primary restriction on performance and energy in a von 

Neumann machine, which is the data transfer between CPU and 

memory. Here, the various aspects of mMPU are discussed, 

including its architecture and implications on the computing 

system and software, as well as examining the 

microarchitectural aspects. We show how mMPU can be 

improved to accelerate different applications and how the poor 

reliability of memristors can be improved as part of the mMPU 

operation. 
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I. INTRODUCTION 

Computing systems are typically designed in von 

Neumann architecture, or an ameliorated version of it, which 

separates the memory and processing space. In these systems, 

programs are executed by moving data between the 

processing unit and memory using specific operations 

(load/store). While this programming model is simple, the 

performance of the system is limited by the memory access 

time, which is substantially higher than the computing time 

itself. This performance bottleneck (known as the "memory 

wall") has become even more severe over the years because 

CPU speed has improved much more than memory speed and 

bandwidth [1]. Moreover, many modern workloads have high 

and unstructured data volumes with limited locality, reducing 

the effectiveness of data caching. 

Processing-in-memory (PIM) is an attractive solution to 

alleviate the memory wall. One such architecture is the 

memristive memory processing unit (mMPU) [2-6]. In the 

mMPU, memristors are used to construct a dense nonvolatile 

memory that can also be used to perform stateful logic 

operations, using the same cells. At different times of the 

program execution, memristors can serve as input, output, 

latches, and memory cells, enabling real PIM. 

In this work, we describe the mMPU architecture, based 

on a stateful logic [7-8] technique called memristor aided 

logic (MAGIC) [9-10]. Then, several approaches to improve 

the performance and reliability of the mMPU are presented. 

II. MAGIC 

Several techniques have been proposed to perform logic 

with memristors [7, 11-15]. Memristor-Aided loGIC 

(MAGIC) [9] is a stateful, in-memory, flexible logic family. 

In MAGIC, only a single voltage VG is used to perform a 

specific function. The initial states (resistance) of the input 

memristors serve as the input of the logic gate, while the final 

state (resistance) of the output memristor is the result of the 

logical operation. Prior to the operation, the output is usually 

initialized to a known logical state. During the operation, the 

applied voltage forms a voltage divider and the exact voltage 

across the output memristor depends on the inputs. Therefore, 

the output device may switch and by that constitutes the 

desired logical operation. 

The original MAGIC paper [9] presented several 

functions and concluded that NOR can be performed within 

the memristive crossbar array. Since then, several additional 

gates to be performed within the crossbar have been proposed 

for different memristive technologies [16-17, 21] and were 

experimentally realized [18, 37]. MAGIC gates can be 

performed simultaneously on multiple rows/columns within 

the array. This enables massive parallel execution of different 

vector operations. The operation of a vector of basic MAGIC 

NOR gates within a memristive crossbar array is illustrated 

in Figure 1. 

III. MMPU 

The mMPU [2-6] is a standard memristive memory with 

a few modifications that enable the support of MAGIC-based 

PIM instructions. In other words, the mMPU functions as a 

standard memory that supports memory operations (i.e., read 

and write) with additional PIM capabilities, and thus it is 

backward compatible with the von Neumann computing 

scheme. The mMPU architecture is shown in Figure 2. To 

support PIM instructions, the memory controller [19, 22], the 

memory protocol [20], and the peripheral circuits (i.e., 

voltage drivers and row/column decoders) must be modified 

to support MAGIC instructions [10]. The mapping of data is 

also modified to maintain persistency and coherence. Note, 

however, that the memory crossbar array structure itself is not 

modified and can be in different forms of memristive memory 

cells, such as 1R (single memristor per cell), 1S1R (1 

selector, 1 memristor), and 1T1R (1 transistor, 1 memristor). 

IV. IMPROVING MMPU PERFORMANCE 

The preliminary performance results of the mMPU have 

shown the potential to improve the throughput and execution 

time compared to conventional computing systems for 

different applications. Imani et al. demonstrated more than 



100X speedup versus GPU for deep neural network training 

[23]. Haj Ali et al. have shown a similar speedup for image 

processing compared to previously proposed memristive 

accelerators [2, 24]. The Bitlet model [25] is an analytical 

model to determine whether a specific application will benefit 

from the mMPU compared to a von Neumann machine. 

The efforts to improve the performance of the mMPU 

focus on several aspects. The mMPU controller orchestrates 

the mMPU [19, 26] based on the specific MAGIC operations 

that are supported. AbstractPIM [27-28] is the first effort to 

explore the software-hardware interaction of the mMPU, by 

defining different instruction set architectures (ISA) for 

different logic primitives and evaluating the performance. 

For the processor design, several synthesis tools have been 

proposed to support automatic generation of the mapping and 

execution sequence for any desired function. SIMPLE [29] is 

based on solving an optimization to minimize the latency of 

the execution, while its successor SIMPLER [30] takes a 

different approach. In SIMPLER, heuristics are used to 

improve the runtime of the tool. The target of SIMPLER is 

increasing the throughput, rather than lowering the latency. 

SIMPLER limits the execution to a single row in the memory 

array and by that enables execution of multiple operations 

concurrently. The flow of SIMPLER is shown in Figure 3. 

V. IMPROVING MMPU RELIABILITY 

Non-idealities influence the performance and reliability 

of the mMPU [31-33]. Wald et al. [34] explored the influence 

of process and environmental variation on the execution of 

MAGIC. Talati et al. [35] evaluated the cost of non-ideal 

interconnect and the cost of internal data movement within 

the mMPU. Hoffer et al. [18] showed experimentally that 

some memristive technologies fail to execute MAGIC 

operations due to their voltage threshold values and proposed 

new gates that are appropriate for the specific memristor 

properties. 

Recently, Leitersdorf et al. [36] proposed using internal 

error correcting codes (ECC) to overcome soft errors in the 

memristive devices. The difference between standard ECC 

and the proposed technique is that in the standard manner, the 

encoding is performed during a read operation, while in the 

mMPU the aim is to perform the encoding within the 

memory, without reading the values prior to the logic 

operations. Leitersdorf et al. proposed a diagonal code that 

can be performed using MAGIC operations as part of the 

logical execution, and by that improve the reliability of the 

mMPU and increase the mMPU mean time between failures 

by nine orders of magnitude. 

VI. CONCLUSION 

Processing-in-memory is an attractive approach to 

overcome the memory wall. However, there are many 

challenges that need to be considered in order to make PIM 

systems, such as the mMPU, practical and efficient. These 

challenges include the entire design stack from the physical 

non-idealities of the technology up to the software definitions 

and the programming model. 
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Figure 1. A MAGIC NOR operation between two row vectors A and 

B is performed within the memristive memory array by applying VG 

to the wordlines of the input memristors, ground to the wordline of 

the output memristor, and VISO to isolate unselected bitlines and 

wordlines. The operation takes a single clock cycle regardless of the 

vector size of A and B. 

 

Figure 2. Memristive memory processing unit (mMPU). The mMPU 

is built from memristive memories orchestrated by the mMPU 

controller. The mMPU supports regular memory operations 

(read/write), as well as logical operations. 

 

 
Figure 3. SIMPLER MAGIC flow. The desired function is 

represented as a .blif/.pla file and is generated as a netlist using a 

standard synthesis tool for a specific technology libraray. Then, the 

netlist goes into a mapping tool that maps the logic gates into specific 

memristors in a sequential manner, based on the physical memory 

array constraints. 
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