
978-1-6654-3948-0/21/$31.00 ©2021 IEEE

Making Real Memristive Processing-in-Memory

Faster and Reliable

Shahar Kvatinsky
Viterbi Faculty of Electrical and Computer Engineering

Technion – Israel Institute of Technology

Haifa, Israel 3200003

shahar@ee.technion.ac.il

Abstract— Memristive technologies are attractive

candidates to replace conventional memory technologies, and

can also be used to perform logic and arithmetic operations

using a technique called 'stateful logic.' Combining data storage

and computation in the memory array enables a novel non-von

Neumann architecture, where both the operations are

performed within a memristive Memory Processing Unit

(mMPU). The mMPU relies on adding computing capabilities to

the memristive memory cells without changing the basic

memory array structure. The use of an mMPU alleviates the

primary restriction on performance and energy in a von

Neumann machine, which is the data transfer between CPU and

memory. Here, the various aspects of mMPU are discussed,

including its architecture and implications on the computing

system and software, as well as examining the

microarchitectural aspects. We show how mMPU can be

improved to accelerate different applications and how the poor

reliability of memristors can be improved as part of the mMPU

operation.

Keywords—memristor, stateful logic, memristive memory

processing unit, memristor aided logic (MAGIC)

I. INTRODUCTION

Computing systems are typically designed in von

Neumann architecture, or an ameliorated version of it, which

separates the memory and processing space. In these systems,

programs are executed by moving data between the

processing unit and memory using specific operations

(load/store). While this programming model is simple, the

performance of the system is limited by the memory access

time, which is substantially higher than the computing time

itself. This performance bottleneck (known as the "memory

wall") has become even more severe over the years because

CPU speed has improved much more than memory speed and

bandwidth [1]. Moreover, many modern workloads have high

and unstructured data volumes with limited locality, reducing

the effectiveness of data caching.

Processing-in-memory (PIM) is an attractive solution to

alleviate the memory wall. One such architecture is the

memristive memory processing unit (mMPU) [2-6]. In the

mMPU, memristors are used to construct a dense nonvolatile

memory that can also be used to perform stateful logic

operations, using the same cells. At different times of the

program execution, memristors can serve as input, output,

latches, and memory cells, enabling real PIM.

In this work, we describe the mMPU architecture, based

on a stateful logic [7-8] technique called memristor aided

logic (MAGIC) [9-10]. Then, several approaches to improve

the performance and reliability of the mMPU are presented.

II. MAGIC

Several techniques have been proposed to perform logic

with memristors [7, 11-15]. Memristor-Aided loGIC

(MAGIC) [9] is a stateful, in-memory, flexible logic family.

In MAGIC, only a single voltage VG is used to perform a

specific function. The initial states (resistance) of the input

memristors serve as the input of the logic gate, while the final

state (resistance) of the output memristor is the result of the

logical operation. Prior to the operation, the output is usually

initialized to a known logical state. During the operation, the

applied voltage forms a voltage divider and the exact voltage

across the output memristor depends on the inputs. Therefore,

the output device may switch and by that constitutes the

desired logical operation.

The original MAGIC paper [9] presented several

functions and concluded that NOR can be performed within

the memristive crossbar array. Since then, several additional

gates to be performed within the crossbar have been proposed

for different memristive technologies [16-17, 21] and were

experimentally realized [18, 37]. MAGIC gates can be

performed simultaneously on multiple rows/columns within

the array. This enables massive parallel execution of different

vector operations. The operation of a vector of basic MAGIC

NOR gates within a memristive crossbar array is illustrated

in Figure 1.

III. MMPU

The mMPU [2-6] is a standard memristive memory with

a few modifications that enable the support of MAGIC-based

PIM instructions. In other words, the mMPU functions as a

standard memory that supports memory operations (i.e., read

and write) with additional PIM capabilities, and thus it is

backward compatible with the von Neumann computing

scheme. The mMPU architecture is shown in Figure 2. To

support PIM instructions, the memory controller [19, 22], the

memory protocol [20], and the peripheral circuits (i.e.,

voltage drivers and row/column decoders) must be modified

to support MAGIC instructions [10]. The mapping of data is

also modified to maintain persistency and coherence. Note,

however, that the memory crossbar array structure itself is not

modified and can be in different forms of memristive memory

cells, such as 1R (single memristor per cell), 1S1R (1

selector, 1 memristor), and 1T1R (1 transistor, 1 memristor).

IV. IMPROVING MMPU PERFORMANCE

The preliminary performance results of the mMPU have

shown the potential to improve the throughput and execution

time compared to conventional computing systems for

different applications. Imani et al. demonstrated more than

100X speedup versus GPU for deep neural network training

[23]. Haj Ali et al. have shown a similar speedup for image

processing compared to previously proposed memristive

accelerators [2, 24]. The Bitlet model [25] is an analytical

model to determine whether a specific application will benefit

from the mMPU compared to a von Neumann machine.

The efforts to improve the performance of the mMPU

focus on several aspects. The mMPU controller orchestrates

the mMPU [19, 26] based on the specific MAGIC operations

that are supported. AbstractPIM [27-28] is the first effort to

explore the software-hardware interaction of the mMPU, by

defining different instruction set architectures (ISA) for

different logic primitives and evaluating the performance.

For the processor design, several synthesis tools have been

proposed to support automatic generation of the mapping and

execution sequence for any desired function. SIMPLE [29] is

based on solving an optimization to minimize the latency of

the execution, while its successor SIMPLER [30] takes a

different approach. In SIMPLER, heuristics are used to

improve the runtime of the tool. The target of SIMPLER is

increasing the throughput, rather than lowering the latency.

SIMPLER limits the execution to a single row in the memory

array and by that enables execution of multiple operations

concurrently. The flow of SIMPLER is shown in Figure 3.

V. IMPROVING MMPU RELIABILITY

Non-idealities influence the performance and reliability

of the mMPU [31-33]. Wald et al. [34] explored the influence

of process and environmental variation on the execution of

MAGIC. Talati et al. [35] evaluated the cost of non-ideal

interconnect and the cost of internal data movement within

the mMPU. Hoffer et al. [18] showed experimentally that

some memristive technologies fail to execute MAGIC

operations due to their voltage threshold values and proposed

new gates that are appropriate for the specific memristor

properties.

Recently, Leitersdorf et al. [36] proposed using internal

error correcting codes (ECC) to overcome soft errors in the

memristive devices. The difference between standard ECC

and the proposed technique is that in the standard manner, the

encoding is performed during a read operation, while in the

mMPU the aim is to perform the encoding within the

memory, without reading the values prior to the logic

operations. Leitersdorf et al. proposed a diagonal code that

can be performed using MAGIC operations as part of the

logical execution, and by that improve the reliability of the

mMPU and increase the mMPU mean time between failures

by nine orders of magnitude.

VI. CONCLUSION

Processing-in-memory is an attractive approach to

overcome the memory wall. However, there are many

challenges that need to be considered in order to make PIM

systems, such as the mMPU, practical and efficient. These

challenges include the entire design stack from the physical

non-idealities of the technology up to the software definitions

and the programming model.

ACKNOWLEDGMENT

This research is partially supported by the European
Research Council under the European Union’s Horizon 2020
Research and Innovation Programme (grant agreement no.
757259) and by the Israel Science Foundation grant no.
1514/17.

REFERENCES

[1] A. Pedram, S. Richardson, S. Galal, S. Kvatinsky, and M. Horowitz,
“Dark Memory and Accelerator-Rich System Optimization in the Dark
Silicon Era”, IEEE Design and Test, Vol. 34, No. 2, pp. 39-50, April
2017.

[2] A. Haj Ali, R. Ben Hur, N. Wald, R. Ronen, and S. Kvatinsky, "Not in
Name Alone: A Memristive Memory Processing Unit for Real In-
Memory Processing," IEEE Micro, Vol. 38, No. 5, pp. 13-21,
September/October 2018.

[3] N. Talati, R. Ben-Hur, N. Wald, A. Haj Ali, J. Reuben, and S.
Kvatinsky, "mMPU – A Real Processing-in-Memory Architecture to
Combat the von Neumann Bottleneck," Applications of Emerging
Memory Technology, The Springer Series in Advanced
Microelectronics, M. Suri (Ed.), Springer, Chapter 8, pp. 191-213,
2020.

[4] A. Eliahu, R. Ben-Hur, A. Haj-Ali, and S. Kvatinsky, "mMPU:
Building a Memristor-Based General-Purpose In-Memory
Computation Architecture," Multi-Processor System-on-Chip 1

VISO

VG

VG

A NOR B

A

B

VISO

VISO

Figure 1. A MAGIC NOR operation between two row vectors A and

B is performed within the memristive memory array by applying VG

to the wordlines of the input memristors, ground to the wordline of

the output memristor, and VISO to isolate unselected bitlines and

wordlines. The operation takes a single clock cycle regardless of the

vector size of A and B.

Figure 2. Memristive memory processing unit (mMPU). The mMPU

is built from memristive memories orchestrated by the mMPU

controller. The mMPU supports regular memory operations

(read/write), as well as logical operations.

Figure 3. SIMPLER MAGIC flow. The desired function is

represented as a .blif/.pla file and is generated as a netlist using a

standard synthesis tool for a specific technology libraray. Then, the

netlist goes into a mapping tool that maps the logic gates into specific

memristors in a sequential manner, based on the physical memory

array constraints.

Architectures, L. Andrade and F. Rousseau (Ed.), Chapter 6, pp. 119-
132 March 2021.

[5] R. Ben-Hur and S. Kvatinsky, "Memory Processing Unit for In-
Memory Processing," Proceedings of the IEEE/ACM International
Symposium on Nanoscale Architectures, pp. 171-172, July 2016.

[6] S. Kvatinsky, "Real Processing-in-Memory with Memristive Memory
Processing Unit (mMPU)," Proceeding of the IEEE International
Conference on Application-Specific Systems, Architraectures and
Processors, July 2019.

[7] J. Reuben, R. Ben Hur, N. Wald, N. Talati, A. Haj Ali, P.-E. Gaillardon,
and S. Kvatinsky, "A Taxonomy and Evaluation Framework for
Memristive Logic," Handbook of Memristor Networks, L. O. Chua, G.
Sirakoulis, A. Adamatzky (Eds.), pp. 1065-1099, Springer 2019.

[8] J. Reuben, R. Ben Hur, N. Wald, N. Talati, A. Haj Ali, P.-E. Gaillardon,
and S. Kvatinsky, "Memristive Logic: A Framework for Evaluation
and Comparison," Proceeding of the IEEE International Symposium on
Power and Timing Modeling, Optimization and Simulation, pp. 1-8,
September 2017.

[9] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G.
Friedman, A. Kolodny, and U. C. Weiser, "MAGIC – Memristor Aided
LoGIC," IEEE Transactions on Circuits and Systems II: Express
Briefs, Vol. 61, No. 11, pp. 895-899, November 2014.

[10] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic Design within
Memristive Memories Using Memristor Aided loGIC (MAGIC),”
IEEE Transactions on Nanotechnology, Vol. 15, No. 4, pp. 635-650,
July 2016.

[11] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U.
C. Weiser, "Memristor-Based Material Implication (IMPLY) Logic:
Design Principles and Methodologies," IEEE Transactions on Very
Large Scale Integration (VLSI), Vol. 22, No. 10, pp. 2054-2066,
October 2014.

[12] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
"Memristor-based IMPLY Logic Design Flow," Proceedings of the
IEEE International Conference on Computer Design, pp.142-147,
October 2011.

[13] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E.
Yaacobi, and S. Kvatinsky, "Logic Operation in Memory Using a
Memristive Akers Array," Microelectronics Journal, Vol. 45, No. 11,
pp. 1429-1437, November 2014.

[14] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U.
C. Weiser, "MRL – Memristor Ratioed Logic," Proceedings of the
International Cellular Nanoscale Networks and their Applications, pp.
1-6, August 2012.

[15] E. Amrany, A. Drory, and S. Kvatinsky, "Logic Design with Unipolar
Memristors," Proceedings of the IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC), pp. 1-5, September 2016.

[16] N. Peled, R. Ben-Hur, R. Ronen, and S. Kvatinsky, "X-MAGIC:
Enhancing PIM with Input Overwriting Capabilities," Proceedings of
the IFIP/IEEE VLSI-SoC, pp. 64-69, October 2020.

[17] J. Louis, B. Hoffer, and S. Kvatinsky, "Performing Memristor Aided
Logic (MAGIC) using STT-MRAM," Proceedings of the IEEE
International Conference on Electronics Circuits and Systems,
November 2019.

[18] B. Hoffer, V. Rana, S. Menzel R. Waser, and S. Kvatinsky,
"Experimental Demonstration of Memristor Aided Logic (MAGIC)
using Valence Change Memory (VCM)," IEEE Transactions on
Electron Devices, Vol. 67, No. 8, pp. 3115-3122, August 2020.

[19] R. Ben-Hur and S. Kvatinsky, "Memristive Memory Processing Unit
(MPU) Controller for In-Memory Processing", Proceedings of the
IEEE International Conference on Science of Electrical Engineering,
pp. 1-5, November 2016.

[20] N. Talati, H. Ha, B. Perach, R. Ronen, and S. Kvatinsky, "CONCEPT:
A Column Oriented Memory Controller for Efficient Memory and PIM
Operations in RRAM," IEEE Micro, Vol/ 39, No. 1, pp. 33-43,
January/February 2019.

[21] N. Wald and S. Kvatinsky, "Design Methodology for Stateful
Memristive Logic Gates," Proceedings of the IEEE International
Conference on Science of Electrical Engineering, pp. 1-5, November
2016.

[22] R. Ben-Hur, N. Talati, and S. Kvatinsky, "Algorithmic Considerations
in Memristive Memory Processing Units (MPU)," Proceedings of the
International Cellular Nanoscale Networks and their Applications, pp.
1-2, August 2016.

[23] M. Imani, S. Gupta, Y. Kim, and T. Rosing, " FloatPIM: In-Memory
Acceleration of Deep Neural Network Training with High Precision,"
Proceedings of the IEEE International Symposium on Computer
Architecture, pp. 802-815, June 2019.

[24] A. Haj Ali, R. Ben-Hur, N. Wald, R. Ronen, and S. Kvatinsky,
"IMAGING - In-Memory AlGorithms for Image ProcessiNG," IEEE
Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No.
12, pp. 4258-4271, December 2018.

[25] R. Ronen, A. Eliahu, O. Leitesdorf, N. Peled, K. Korgaonkar, A.
Chattopadhyay, and S. Kvatinsky, "Bitlet Model: A Parametrized
Analytical Model to Compare PIM and CPU Systems," ACM Journal
on Emerging Technologies in Computing Systems, (in press).

[26] A. Haj Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, "Efficient
Algorithms for In-Memory Fixed Point Multiplication Using MAGIC,"
Proceeding of the IEEE International Symposium on Circuits and
Systems, pp. 1-5, May 2018.

[27] A. Eliahu, R. Ben Hur, R. Ronen, and S. Kvatinsky, "abstractPIM:
Bridging the Gap Between Processing-in-Memory Technology and
Instruction Set Architecture," Proceedings of the IFIP/IEEE VLSI-SoC,
pp. 28-33, October 2020.

[28] A. Elihau, R. Ben-Hur, R. Ronen, and S. Kvatinsky, "A Technology
Backward-Compatible Compilation Flow for Processing-in-Memory,"
VLSI-SoC: Open Source VLSI Technologies, IFIP Advances in
Information and Communication Technology, P.-E. Gaillardon,
S. Kvatinsky, A. Calimerri, R. Reis, (Eds.), Springer, 2021 (in press).

[29] R. Ben Hur, N. Wald, N. Talati, and S. Kvatinsky, "SIMPLE MAGIC:
Synthesis and Mapping of Boolean Functions for Memristor Aided
Logic (MAGIC)," Proceeding of the IEEE International Conference
on Computer Aided Design, pp. 225-232, November 2017.

[30] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N.
Peled, and S. Kvatinsky, "SIMPLER MAGIC: Synthesis and Mapping
of In-Memory Logic Executed in a Single Row to Improve
Throughput," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 39, No. 10, pp. 2434-2447,
October 2020.

[31] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, "Sneak-Path Constraints in
Memristor Crossbar Arrays," Proceedings of the IEEE International
Symposium on Information Theory, pp. 156-160, July 2013.

[32] A. Doz, I. Goldstein, and S. Kvatinsky, "Analysis of the Row
Grounding Method in a Memristor-Based Crossbar Array,"
International Journal of Circuit Theory and Applications, Vol. 46, No.
1, pp. 122-137, January 2018.

[33] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, "Information-Theoretic
Sneak Path Mitigation in Memristor Crossbar Arrays," IEEE
Transactions on Information Theory, Vol. 62, No. 9, pp. 4801-4814,
September 2016.

[34] N. Wald and S. Kvatinsky, "Influence of Parameter Variations and
Environment for Real Processing-In-Memory using Memristor Aided
Logic (MAGIC)," Microelectronics Journal, Vol. 86, pp. 22-33, April
2019.

[35] N. Talati, A. Haj Ali, R. Ben Hur, N. Wald, R. Ronen, P.-E. Gaillardon,
and S. Kvatinsky, "Practical Challenges in Delivering the Promises of
Real Processing-in-Memory Machines," Proceedings of the Design
Automation and Test in Europe, pp. 1628-1633, March 2018.

[36] O. Leitersdorf, B. Perach, R. Ronen, and S. Kvatinsky, "Efficient
Error-Correcting-Code Mechanism for High-Throughput Memristive
Processing-in-Memory," Proceedings of the Design Automation
Conference, December 2021 (in press).

[37] B. C. Jang, S. Y. Yang, H. Seong, S. K. Kim, J. Choi, S. G. Im, and S.-
Y. Choi, "Zero-static-power nonvolatile logic-in-memory circuits for
flexible electronics," Nano Research, Vol. 700, No. 10, pp. 2459-2470,
April 2017.

