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Abstractd Ferroelectric field effect transistor (FeFET)
memory hasshownthe potential to meet the requirement®f the
growing need for fast, dense low-power, and non-volatile
memories In this paper, we propose a memory architecture
named crosed-AND (C-AND), in which each storage cell
consistsof a singleferroelectric transistor. The write operation
is performed using different write schemes and different
absolute voltages,to account for the asymmetric switching
voltages of the FeFETIt enables writing an entire wordline in
two consecutive gcles and prevents current and power through
the channel of the transistor.During the read operation, the
current and power are mostly sensé at a single selectedlevice
in each column The read schemedditionally enables reading
an entire word without read errors, even along long bitlines.
Our Simulations demonstrate that, in ©@mparison to the
previously proposed AND architecture, he C-AND architecture
diminishes read errors, reduces write disturbs, enables the
usage oflonger bitlines, and saves up to 2.92Xin memory cell
area.
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memory emerging memorytechnology array architecture

. INTRODUCTION

FeFETbased designs were presented falifferent
applications such as conteaddressable memories (CAMS)
[4] [5], field-programmable gate arrays (FPGA) building
blocks [6], nonvolatile flip-flops [7], and mixed logic and
memory operation§8]. Different architectures for memory

arrays based on FeFETs have been proposed and

demonstrated recently. A 1T ferroelectric N®Re memory

architecture might induce specific requirements on the

dimensions of the FeFET to enable a cormdration. For
example, the FRIOR described if9] demands sutt0 nm
FeFETSs, which support onlysmall number of ferroelectric
domains and the use of FINFET devicBsevious works
suggested to implememivo MOSFETsand a FeET [10]
[11] or a singleMOSFETand a single FeFE[LO] [12] in a
2T-1T and 1F1T architecturewhichbuild onan AND-type
architectureAn AND arrayconfigurationof asingleFeFET
(1T) memoryentails an even denser integrati@h andhas
beenrealized in advancetechnology nodes$or 1T arrays
[13] [14]. Yet, the AND array configurationsuffersfrom
potential disturbs of surrounding cellduring the readand
write operatiors of a specific cell[15]. Aside from memory
applications, 1T-FeFET arrays are alsdntegrated in

Traditional nonvolatile memories use either a ﬂoatingmachine|earning app“cations[l6]_ For machindearning

gate or a chargapping layer to store infmation as charge.
However, thantegrationof floating gate and chargeapping
memory cells intothe stateof-the-art hightk metal gate
process is becomingxtremely complex due to scaling
limitations. Moreover, the highwrite voltages in the
10V-rangegeneratean unfavorablgeripheryto-array ratiQ

especially for smaller array sizes commonly used in embedd

memories. Therefore, alternativendomaccess memoy
(RAM) concepts such agesistiveRAM (ReRAM), phase
changememory (PCM),magnetic RAM (MRAM [1] and
ferroelectric RAM (FRAM)[2], are gaining traction in the
industry.

Recently asingletransistor(1T) ferroelectric field effect
transistoi(FeFET) memory cellwaspreseted[3]. TheFeFET
regures only a single deviceper cell uses lower write
voltages ands moreeasily integrded in a CMOS process
compared tofloating gate and chargeapping flash cells
Integrating aferroelectriclayer within the gate sick of a
regularfield effect transistor(FET) enables the transistor to
store datan the polarization state of the ferroelecteger.
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approacheshe analog nature of muliomain ferroelectrics
is exploited by consideringhe programming or erasingf
the transistor as continuous proessEl7], which further
increasestheir reading sensvity. Therefore, finding a
FeFET memory architectutkatcircumvensread errorand
é{gite disturbsn the memory arrays crucial.

In this paper, we proposé-AND, a novel 1FFeFET
memory array configuration,which diminishesread errors
The proposed writing schemes provide two major
improvements 1) appication of different schemes for the
write operatiornto circumvent the effect of asymmetric write
voltages and 2)useof differentwritevolta ges f or
to prevent write disturlin devices with asymmetricswitching
voltages Additionally, we presentifferent techrjuesto read
an entireword ina singlecycle andto write an entireword in
two cycles By using a simulation model basedon real
fabricated devicg we show how theeaderrorsthatoccurred
in the AND arrayare solvedand how the write disturbs are
reducedwith the C-AND architectureandits read andwrite
schems.

Il. BACKGROUND

A. Ferroelectric Field Effect Transistor

Ferroeletricity is a characteristic of materialsatexhibit
spontaneous electric polarizatid®] (built-in dipoles). These
materials usually exhibittwo stable saturatedpolarization
states pointing in opposite directions. To selit between the
states, an external electric figttlist beapplied

A FeFET is a field effect transistahat features a
ferroelectric layetinstead of(or in addition to)the standard



dielectric layer in the gate stackConsidering the two 104

polarization sttes of the ferroelectric layethe FEFET either s

displays a lovthreshold voltage (programmed state | ojg i ¢ Low ¥,

or a highthreshold voltage (erased state | o ¢.iBg * 10 Logic'l’ —

applying a sufficiently high external voltageacross the 1077 et .
ferroelectric layerdatebulk voltage) the polarizationcan be = s osuer L | Togie 0"
reversedthereby changinghe conductivity of the transistor 2 i i - e
channelln this maoner, the threshold voltage of the transistor 10 O oBufer
can be activelynanipulated Figure 1 exemplarilyshowsa 10710 - s -
SPICEsimulatedlps-Ves sweep ofan ntype FeFET, as well g

as the structure of a FeFEWith the two stable states of Vsy
polarization Note that voltage drop across the ferroelectric 5 =, = o, LI

1 0
layer in the gate stack determines the ferroelectric polarization _. Vs [V]

. Fig. 1. Ips-Ves curves of an n-type FeFET. The structure and
states, namely the gabellk voltage During helps-Ves sweep corresponding polarization direction of each state are shown in the

in Fig. 1, the source and blﬂk terminals are shortened and nsets. The switching voltage/wo (erase) and appliedarite voltage
groundedso Vgs = Ves and it is the voltage drop across the  Vsw: (program) are marked in blue. Note that -Vswy/3 is sufficient

ferroelectric layer. to write an undesired logical
B. Multi-Domain FeFET Model Ve
The utilized behavioraFeFET device moddbr SPICE Crp

simulationss based on the timelependent Preisach model of
hysteresiq19]. The polarization of the ferroelectric layer is

CDielectric
assumed to be a superposition of individual,-imeracting
dipoles. To shorten the simulation time, the density fanct
of the dipoles is assumed to Baussianf20] [21] and the Vs Vy Vb
polarizationP is thereforesimplified to Fig. 2. Equivalent circuit of a FeFET model. The FE capacitor and
- PN . . theFET6 s gate are connected in s
0 Q) DAI-E— 0 h @)
where 10" ——— . . .
. T Slmula?lon: P Sy
) O | — 8 (2 . high V,
1077 lowV, / o)
The scaling factok and the offset paramet€g; enable the Measurement: b
creation of unsaturated polarization loops, i.e., sublobps = 107F o highV, | P
+ or—sign in (1)introduces nonvolatility by separating the = low V, / b
polarization states depending on the sweep direction of the 210810 o0 | SR
applied electric field. Hence, (1) models the storage of oo Pof, e e %]
information regarding the histoof the ferroelectriandtakes 10°} oo LAt °
into accountsubloops of the ferroelectric layeParameters o B
Eer, Ec, Pr andPs are theeffective electric field, theoercive 1010 . : . .
field, the remanent polarization and the saturation 05 00 05 10 15 20
polarization respectivelyWhen applying an external electric Ves [V]

Fig. 3. Ibs-Ves curves of the simulation results compared to the

field Eeq, the tlmedependency of the effectiaectricfield measurement results of the described mukilomain FeFET.

[19] [22] is reflected by the delay parametgrin

ArEs Ago AAEAiS (3)
A AEE

The full FeFET modelkonsistsof a ferroelectric capacitor
with polarization P emulated by the Preisach model
connectedn seriesto an n-FET (28SLP-basedn-FET from
GLOBALFOUNDRIES[14]), as shown in Fig. .2Figure 3
presentshe measured and tffited simulatedlps-Ves curves
for a FeFET featuring channel dimensions of W=L=500 nm
where W and L are the width and length, respecti2lye to
sensitivity limitation of the measurement equipmdime, off
current is limited to aund 50 nA in the measurements.
Thereforethe fitting was doneoncerning currents above the
given limit and the threshold voltages of the highd lowV,
state. Simulation results wer@mpared tomeasurements
from [14], toensure real device behavior tbe entirecurrent
range.

C. Previously Proposed 1FeFET AND Memory Array

The AND configuration[3], a special case of a NGigpe
memory arrayjs themost popular design @& single FeFET
(1T) memay array. With this configuration, thevordline
(WLanp) connectghe gates of transistois the same row,
while the bitline (BLanp) anda searatesourceine (Slanp)
link the drains and sources of transistors in the same column,
respectivelyln contrasto the classical NOR arrayhere the
sourcelineis grounded, the AND array gives the additional
flexibility of driving the SLanp to a specific voltage. Two
commonly used writing schemes are ¥&/2 andVpp/3
schemeswhereunselected devices experierardy Vpp/2 or
Vop/3 to decreasewrite errors Usually, only one of the
schems is usedfor writing bothlogical states of thEeFET.
Commonly the Vpp/3 scheme ispreferred[3] since the
absolutegatesourcevoltage of d unslected cef will be
lower than Vpp/3 (in contrastto Vpp/2). Figure 4 showsthe
AND memory array with theorresponthg write and read
operationsn theVpp/3 schemd3] [23].



t hat st or e dWwith the mixgd wriing schetné .
proposed in the next section, this issue is prevented by using

ov oV 2V 2V different schemes to write the different logical states.
3

(a) SLanpn BLgNDn SLAND n+1 BLanDn+1

Selected cell

______________________ Additionally, like in every NORtype array during the
Wlivom — 7~ _GT: readof a selected cell, all the other cellstime same column

3
. —GIL e o 0 H 1
: : (same BLanp) shouldnot be conductive, otherwise theyay
J 5! |D 5! |D causereaderras. Even wherapplyinganinhibitory voltage,
0 B SO : such a¥/cs=0V, to all unselected callalow currentcanleak

P throughthe transistas (see Fig. 4(b)iue toarelatively high
Whanome1 vy _6l~ —V—,/LGLC e off currentof cells with low-thresholdvoltagesand applied
3 _|_< * voltage across the transistor channébs). Although the
>—£ 2 >—£ 2 leakage current seems torimgligiblein smaller arrays, ihay
% X . ) cause significant read errors for long BLanpS and SLanpS
bodys . 55Ty : . conneting manycells[15]. The summation of the individual
leakagecurrents at on8Lanp or SLano may lead toreading
(b) Stavon — BLavpn Slaxonst  BLanpnsa alogical * 1° ( hi ghatherctbanlogealt D' (| ow
- Wiia - i curren). This behaviorestrictsthe possiblsizeof the bitlines
in the AND arrays, limits the voltagehatcan be applied and
WL . ..Selected cell : . usually demands more complicated sense amplifiers (SA) due
wem v i el | _6l—~ . to the smaller current reading windowith the proposed
1 _|_4 C-AND (crossedAND) architecture and relateg¢adout and
§.._£ D g __'st D write schemespresentedn the nextsectio, theseissuesare
"""""""""""""" circumvented allowing for longer bitlines with a wider
WhikiiasT 09 G‘I _Gl,c .. current reading window
_;‘gl >—£ D lll. C-AND: THE PROPOSEDLT-FEFET MEMORY ARRAY
%] s/ thlngs X . . Ideally,a1T memoryarrayhasdifferent paths for reading
bodys . BodViosy e . and writing. The FeFET device is a foderminal device and

Fig. 4. Structure of the AND array. (a) Write voltages of theVoo/3 enables the sepfirgtion of the read and th.e W”“sm
scheme (blue labelsand (b) read voltages (green labels) are shown ~ Unfortunately, withina 1T memory array, different devices
Note thatVw <OV during erase (Wwr>0tVe share linesand hencgthere will always be effects from the
during programmi nghe (nselectadelevie®ind surounding cellsWe propose AFeFETarray architecture
unsele_cted rove e_md col_umn_s (diagonal cells) may suffer from an d e n o t-A N D to@ecrease the dependency betwead
undesired switching (write disturb). and writepaths Furthermorewe propose to ugkeVpp/2 and
Yet, the AND archiecture suffes from several Vpp/3 schemesn a joint write schemé addressisymmetric

limitations. During write operatiors, unselected cellsnay  switching of FeFETduring executiorof the write operation

havearelatively highvoltage applie@crossheir ferroelectric  andto reduce the effects from surrounding cells

layer.Due topossiblyasymmetric switching voltagdmetween

the polarization stateanunselecteael in an unselected row A, Memory Array

and unselected co lthatexperiencesl i a g, B8bsoq nierfiory!afray shownin Fig. 5. In the

Ves|=Vw/3 or Nes|=Vw/2 can beundesirablypartiallyor fully o 0ceq architectureha wordiine (WL) connects all the

Vr;gtteﬁeg‘;?%”;riht% el??é”tﬁflgoﬂggrsss'g feerrgilsg_télecr I{ahyeer gates in a rovand theselectine (SL) connecs all thedrains
ay ICI wri y sta{é]. Consid of cells inthe sameow. Thebulk line (BuL) connects all the

minimal absolute voltagéhat cause writing state’ 0 ' Vwoa s

and the minimakbsolutevoltauethat causs writing state’ 1 ° bulk terminals otells in the sameolumnand thebitline (BL)
g 9 . connects all the source terminals of cells in the same column
as Vwi. Usually, for ntype FeFET, the program voltage is

ositive 2'0 V) while the erase voltage is necative to a sense amplifier (SANote thateachcolumn hasts own
positive Yw ) whil voltage 1S negalive 1, separated frorbulksof othercolumns In this structure
(Vwo <0 V), as shown in Fig. 1.

the sourceand bulksarelinked perpendicular to the Wand
Assume, without loss of generality, that the requiredhe drains arénkedparallel to the WLDue to interchanging
absolute voltage to write #e positton of the drairsterminaly lcamparet D t h e
absolute voltage Ma>Mwtlnsueh satchiteckre theproposedarchite¢tuje i$ termed crossed
acase,wi ti ng | ogi ¥pa3dschene wil bring nAQID (CRARID). This architecture differs from thBIOR
the diagonal cells to experience a gaiék voltage ofVpp/3,  architecture that links the drain and bulks perpendicular to the
which may be sufficient t OVLanddonnects therseurpes pa@lleltoghegPAL a | 0
Mwi/3>Nwol ) or at lTeast will be ?n{er%l‘ﬁar?mg R sznic?n 6 the draf teffingls i€ W' t €

voltage {/wo). This phenomenon can cause undesired full o tant epecially fort(/q writeoperationsincethe. voltage. .

. . . ‘ ’ {
P a.r tial switching to 0 > gg?’c?is‘?he ferfodlectiialet (Jatebulk Joltagdlindlicds the ' 9 U

%vriting of the specifigolarizationstate In each devicef the

higher absolutarite voltage of the two possible states. As We~_ AND architectur " :
: X - ethe writing path is the path between the
assumed, folw1|>NMwo| on third of thevoltage needed to write gate and théulk of the transistorand the reading path is

the * 1MVw/3) mayicause(write disturb, while the situatedbetween the drain ouafethe, transistor

) and th
re ‘{ ef;_ S etf[j thi r’t dd' tvt? Iftth ag e'IVW‘,:Bg q”l’|'rl|u§, %é% i(sa[ QI sg\f)[aréltiE)nebet\ﬁ/ersér%a thead® and wri 2 ©
IS not sufficient to cause write disturb of the unselected ce 8peratior$ in ech memory cell Additionally, eachBL is
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Fig. 5. Schematic of the proposéd @ND memor)} array with
demonstration of write and read s c h e me s :

(red),

(b)

write
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w

scheme (

architecture, different columns have diffat bulks, which
grant better selectivity of specific cells, while in theN®R,

all the bulks of all the devices are shortened. Additionally,
during write operation in the proposed architecture, there is no
need to rely on the drain voltagehile in the FeNOR, it is
crucial. Furthermore, the H¢OR demands sub0 nm
FeFETs which support onlg small number of ferroelectric
domains.

B. Write Operation

Tablel lists the voltagesappliedto write logical * 0’
Istatesusing the proposédint Vpop/2 —Vpp/3 write scheme
within the GAND architectureFigures5(a) and 5(bilustrate
this write schemén a memory array witthe selectedell and
unselected cellged labein Figsaf or wr i te ‘0’
blue labeiin Fig. 5bf or wr i ttien). * 1° oper a

To avoid write disturb, any unselected celill ideally
experienceno voltage across the ferroelectric laggatebulk
voltage) i.e.,|Ves| = 0 V. As this ispracticallyimpossiblefor
an arraywith asingle device for each cell and shared |jmes
use Vpp/2 andVpp/3 write schemedo ensure thatVisg| is
sufficiency low for all unselected cellsThe difference
between these schemes is thah#&Vpp/3 schemeunselected
cells carexperiencdothVes = Vop/3 andVes = -Vpp/3, while
in theVpp/2 schemethey mayexperiencé/cs = 0 V orVgs =
Vpp/2 only (no voltagewith inverse polarity. For FeFETs
where [Vwi|>Mwo| only the writing
write disturb, therefore ttechemau t i | i zed t o
should avoidapplying voltages ofinversedpolarity. Hence,
state “1° w i Mwihis wmitten with theVepl2t a g e
schemeto ensurethat there areno voltags with inverse
polarity, while thes t a t vath vrit@ voltageVwo is written
with theVpp/3 schemesincethevoltage ofinversepolarityis
insufficientto cause write disturb.

and

of
Wr i |

For example, assumeFeFET switching voltages are
Vw1 =4.5V andVwo = -1 V (asymmetric switching voltages)
If we usetheVpp/3 scheme tavrites t at e * 1
the array will expaenceVes = -Vwi/3 =-1.5 V, which entails
anunwantedoverwriting ofthe stored datin these cellg¢see
Figures 1 and(a)). Even if thevoltage towrite the FEFET to
state’ 1was much lower (for instanc&w: = 2.1 V), the
diagonal cellswould experierwe an absolute voltage higher
than Vpp/2 (Ves = -0.7V). This valueis approximatelythe
voltage required to set the FeFET into theO’ .st at
Accordingly, itcaninduce a partial polarization reversal in the
ferroelectric layer of the FeFET, which finallyites a logical
‘0’ unsaldcted cells by switchirgsignificantnumberof

di ag

(r1,cl) is the selected cell (for read or write),rd,c2) represents cells
in the same row, (2,c1) denotescells in the same column and®,c2)

domains such thathe stored data would lmeerwritten The

refers to cells in diagonal, all relative to the selected cell. Note
Vwo<0VandVw:>0V.

connected ta senseamplifier (SA) that sense the drain
sourcecurrent during readoperatiors. With the proposed

architecturethere is no current through any device (source

drain current)during the write operaiin, which prevents e’ . ! | C
extraneouswrite power. The consumegowerresults solely — Polarization directiorof the ferroelectric layeconcerninga
from charging the ferroelectrenddielectriccapacitos in the i or )
FeFET gate stacand from reversing the polarization of the @nd Vwi/2 are insufficient to undesirably change the
selected FeFETwhich maks this architecturea low-power

architecture

The proposed @ND memory architecture differs from
the previously proposed 1T ferroelectric N®Re (FeENOR)
memory array{9] in the following manner: in the GND

proposed joint write scheme mitigates the overwriting of
unselected cells independent of the switching voltagéiseof
FeFETs, provided the write voltage8wo and Vwi, are
properly chosen.

The voltagesVwo and Vw: should bechosenas minimal
absolutevoltagesthat are sufficiently highto change the

reasmable delayAdditionally, it has to bensure thatVwo/3

polarizationstateof the FeEFET It is possible to usaigher
absolute write voltagethan necessarto expand theead
window, however,the pover consumptiorwould increase
Additionally, applying a higher absolute write voltage may
impair theendurance andhayfinally lead to abrealdown of
the device Note that with the proposedriting schemethe



TABLE 1. TABLE II.

WRITE SCHEME INC-AND ARCHITECTURE READ SCHEME INC-AND ARCHITECTURE
Mwo <0V, Vw: >0V) Row | Selected| Unselected
Operation Write | o Write | o d Line Row Row
Row Selected | Unselected| Selected | Unselected WL VwL 0
Line Row Row Row Row SL Vs High-Z
WL Vwo Vwo/3 Vwi/2 0 Col Selected | Unselected
SL 0 0 0 0 Line bits bits
Col Selected | Unselected| Selected | Unselected BuL 0 0
Line Columns | Columns | Columns | Columns BL 0 High-Z
BuL 0 2Vwo/3 -Vwi/2 0
BL 0 0 0 0

D. Physical Design and Area

drainbulk and the sourebulk diodes are alaysin zero or The physical desigaof the AND andthe C-AND arrays
reversed bigpreventing unwantesignificantbulk currents.  areshownin Fig. 6. Forthe C-AND array,poly-silicon wires
Furtthermore it i ible tooroaram or er ltiol andmetall(M1) linesconnect the gates and the drains of each
urthérmore It 1S possibie toprogram Or erasenuitipie ., regpactively, while met(M2) links the sources of each
cells in the same rp\by appy‘lng O Vo all correspor)dlng column. Each column_has its owhulk (p-well), which is
Blsf or wr i te 0 0 p eV 21td all n sh%rrIPNiEqa}fl thet&vRes th thd'shme coluritine density of
r

. . ; e
correspondingBL s f or wr i UFg.5(a)and S@)p Cihe hfraycin'be increased by isolatitige well by a deep

with more than one selected cillthe same royv In the first a

cvel e state ‘0 i whive in the etrench isolation together with a. buri 38 fi cussed
fol?lowin C ’cI state ‘1% th'ereria'win cetlstofe npﬂe.viduéfy fO?ﬂ!iS de\ﬁcgsfgeﬁ.crlﬁe%- NDaff ycan be
g cycls o€ imdle entedusinga single metal layeby connectingeach

the same row, resultingn writing of an entire word in two

cycles regardles®f the wordsize( t he or der O?OW\)g?teis r\itljﬂr%/ilns us I)é—silicon wires andiffusion
and writi regichedwitmut affacting thenumber active)lines, whlleK11 links the’ sourcesf each columnin

this mannertheresistance of the SLs (connectedifjusion)

of neededtycles. is higher compared tthe resistancebtainedwhenusingan
C. Read Operation additioral metallayer.
Toreadbits alongacertainwordine, aread voltag&/w is To evaluate the effective cell size of the C-AND

applied tahe WLconnectingells inaspecificrowthatstores  architecture ando compare it to thesell areain the AND
thewordto be readThis isachieved byettingthe WL voltage  architecturewe designed thiayout of the two archite¢ares

to bebetweerthe theshold voltages of the 0a’'n d stat& ' in the GLOBALFOUNDRIES 28SLP(where_ ¢ gnm)
(Vio andVuy, respectively)i.e.,Vio<Vw.<Vu. Table Il lists the  using Virtuoso Layout Suite GXtool, asshown inFig. 6. In
voltages applied tthe word, select, bulk and bit lind3ue to  contrast toa logic processwhere_ definesthe technology
the selecteddrain voltageVs., the FeFETis read out in the  gatedimensioninamemory process_defines theminimum
saturation regimef the transistorfFigure5(c) illustrates this  half-pitch of M1, which in the discussed technology is
read scheme ithe GAND memory array (gen label)for  approxinately 50 nm. Therefore,compaing the minimum
reading the biof the memory celin the middle of the drawn cell size to what coulthe achievel in alogic processvould
nine-cell array segmento determine the logical value of the pe unreasonable because this comparison wimiicthe cell
readouturrent, the SA acts in a currenbde sensing scheme sijze to much larger values tharexpected fora memory
where the sensed current is compared teferencewrent  processAs a point of referencehe minimum feasible cell
source[25]. The reference current is chosen to be between thgeain a memory process &_ . When using_ as the
low current (corresponds Y¥) and high current (corresponds technology node name of a logic process, the miniroatn
toVy)so the sensed current i %rea{/vcﬁj% Belingté or@ePqf ¢ Pa8slinSing both difectiong n d
according to the polarizaticstate and the threshold voltage of gre Jimited by the minimum metal pitchJhecell areain the
the sensed deviceUsually, with NORtype nonrvolatile  AND array is244.14_ , while in C-AND, it is only 83.57_ —
memories (NVM), a single byte or word is read in a singlegnimprovementf 2.92X. The spacing between thiiferent
cycle. C-AND alsoenables the read several bits along the pyks is important and standat 35.7_ in this technology
same wordllndn_y grounding thg BLs of atlesiedcells in the (triple-well) but canbe reduced t8_, asreportedin [27], to
selected rowSince each BL is connected to a SA, all thef iher reducethe overall arrayarea Table Il preserg the
selected cells in the selected row will be read S'mU“a”eousb’omparison of the area with and without the spacing between
within asingle cycle. the different bulk.

The proposed read scheme solves the read errors that
might occur in AND arraysOn each selecteBL, the only ~ E. Leakage Paths
devicethatexperience Vs_ across its channel and gdaelk In the proposed @ND architecture, there may be leakage
voltage ofVw.is the selected celSince the current alogl.  currents from the selected SL to the selected ®itough
is not summed upuflike in the AND architecture), the threeseriesunselected devices. These leakage currents start
memory array can contaimore rows than the AND  from the selected SL, go through unselected devices in the

architecturewithout being limited by reading disturb¥he  selected row (which in the worst case are open and have low
physical limitationon the number of rows is primaritjue to ~ 'esistance) to unselected BLs. From the unselected BLs the

the voltage drop across tBés (norrideal wires) notdueto currents go throdgclosed deviceto unselected SL (from th_e
anarchitecturdimitation. source to the drain) and then through another close device to
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Il 1l : Il © Fig. 7. Leakage paths during read opration. Leakage current
i I starts from unselected device in the selected row (device (r1,c2)), ¢
. through unselected device in unselected row and column (devic
Fig. 6. Layout and cell structure of the (a) AND and (b) C-AND (r2,c2)) and then to unselected device in selected column (devic
arrays. The total area depads on the spacing between different (r2,c1)). Two of these paths a presented in with red arrows.

wells. Spacing in 28SLP GF design rules stand at 35.% and may
be substantially smaller in other technologies f is defined
according to the logic process naming, here 28n. The cell areaof F. Power Analysis

the AND and CAND is, respectively, 8 f and83.5¢ . During the writing operation, all SLs andLs are
grounded and hengall the transistors in the array experience

TABLE III. - e

COMPARING CELL AREA WITH AND WITHOUT SPAGING Vos = 0 V, restting in the absence oturrent through the
Spacing AND C-AND Improvement devicés channelgluringthe write operation and hengct no

With 801.5_ T p&)_ 1.93X extraneoupowerconsumptionThe only current (and power)
Without [ ct@ ¢ e x 2.92X consumeds thatfor the charginganddischargingof the gate

capacitos, which include théerroelectric capacitance and the

the selected BL. Figure 7 presents two of the leakage pattHdielectriccapacitancgsee Fig. 2)Hence the overall power
The resistance ratio between the devices in the leakage p&@nsumed during the write operation is used for the operation
and the device in the desit path determines whether theseOf storlngthedata inthe polarization state_ef the FEFETs in
leakage currents, which sum up on the selected BL, can caud&onvolatile mannefhe power onsumption depersin the
read error. The worstase scenario is that the selected devic@rea of theFeFETdevices(length and width of the FeFET

is on high resistancBs ( st or ed data i s ¢hangel) omthe resqum%a,nd capacigance qptiy-silicon
unselected devices are storing bogi | * 1’ . | n Wres gvhich degegids on the spaciragid on the write voltage
devices in the unselected row ateally nonconductive(Ves ~ (Vwo OF V).

= 0 V) and hae aresis_tance dR;, and the unselected device For the read operatiothe WLs of unselected roware
in the selected row isonductive(Ves = Vw) and hasa  grounded Hence, these WLs are not chargedand
resistance ORo. Th_echannekesstance in theedsired path is correspondinglyno power is consumedVith the proposed
Rs, while the effective re3|stancléeé). of all leakage paths for 59 scheme, the selectediSket toVs, and the selecteBLs
an array wittm rows anch columns is are grounded whileall other SLs andBLs arefloating. The

v L L @) devices in the selected row experienggs = Vs and the

2 ’ current through the selected $lps) depend on thestored

word. All the transistors in the same row are connected in
parallel during the read operation (savfie andVeg) and the
current througleachtransistor channel depends on the stored
value. For a word witlng bits correspondingté 0 ' dffwi t h

The last term in4) is thelargestterm since the resistanB8e
is a resistance o& conductive transistor whileRc is a
resistance of non-conductive device. Therefore,an upper
bound to the effective resistance would be

currentof lipw) andn; bits corresponding t0 1 ° onwi t h
Y _ (5) currentof Inigh), thecurrent through the selected 8k,) is
©® ¢ J0 ¢ JO , (6)

Hence th(_a undesired current from leakage paths is bounded
linearly with thenumber ofrows and depends on theacimel  anq thepower consumed by the selected deviggg) (s
resistivity of unselected closed device. Ideally, the resistance . o

of closed device is infinitefarge, andho leakage current is v 0w . (7

donated. Pract_ically, there will always be leakage currents, sg,q highest currerfand pover)is obtainedn casesvhere the
the r)tw_eTory g'iﬁ th?t C%n t;]e sur)lportetatl depen]f:ltshon the_%rd contains only bits dbgical * 1state In this case, the
sensitivity and the closed channel resistance of the speci _hi :

technology. Still, the possible BL size of the -GND fotal powe~rof ann-bits word(Pst ) is

architecture will be larger than the possible &ke of the 0 OCw &30 . (8)
AND architecture sincéor the same voltage drojp,the AND
architecture the sumedup currentsare currents through
single device while in the BND are currents through three
devices.

In addtion to the powerresulting fromthe currents
through thechannels of theselectedtransistors, the power
consumption related tcharging the selected WL to the read
voltageVw. (namelyPw.) depends on the WL resistance and



capacitanceas well as thegate stack capacitance of the TABLE IV.

transistors Additionally, the consumed power from leakage MODEL PARAMETERS ANDPARASITIC
pathsand leakage to the bulkB,a, should also be addebh Parameter Description Value | units
conclusion, the total power of a read operation consufored L Transistor channel lengthl v | nm
read of a singlelevice is w Transistor channel width| 500 nm
0 0 0 0 . (9) T Ferroelectric thickness 10 nm
For read operation of bitso f | o g theccarlsumedl ’ P Satation pOIT”Z.a“(.m 0.2 ng
power would be Pr Remane.nt polarization 0.19 C
- - - . Ve Coercive voltage 1.04 \
v . e 0 v . 10 Rm Metal resistance 9.45 Q/uy m
The power analysigeveals that during write, the-&ND Cm Metal capacitance 022 |fF/
architectureconsumes poweamly for datastoring.During the Rp Polysilicon resistance | 2000 | Q/p m
read operation, the consumed power is due to the desired read Cp Polysilicon capacitance | 0.15 | f F/
operation and undesired leakagrirrents The power Vo Write ‘0 15 Vv
consumptio as a result oieakage pthscan be reduced by Vors Write - 1° 32 v
improved technology with higher off resistance. Vo WL voitage for read 1 v
VsL SL voltage for read 1 \%
IV. METHODOLOGY AND EVALUATION t Duration of read and writd 10 s

A. Simulation Methodology 6
To evaluatethe C-AND architecturewe simulated the J==EsiE RS e

memory array with the correspangd read and write $emes, YT Hix
using the FeFETodeldescribed in Section-B, with model . AN(D 'rglu % :OES)
parametergalibratedto the transfer curves ohanufactured i) (Tr(enr;lijnZ)OHS) ’
devices as listedin Table IV. The line parasitic were < 10 C.AND (Trendiine) [
extractedrom the physical lgout The ferroelectric capacitor  — >
in themodelwasimplementedn Verilog-A and theransistor _8 a5 ~10%X
model is the 28SLRbased HET from the ' g
GLOBALFOUNDRIES library [14]. Cacdence Virtuos was +
used toconduct the simulations 1010 =
+ R o © 0—0—0

B. Long Bitlines : 1 ) ) s

To evaluatethe effect of long BLduring write operation 10 10 10 10
we simulateda singlecolumn ofdifferentsizes from two to Column length [cells]
2048rows It is sufficient to model onlg singlecolumnsince Fig. 8. Comparison of an AND array (red) to the C-AND
the current through each Bin the AND architecturds the architecture (blue) for different column sizes Readwindow in AND

summatiorof thecurrent througfall cells in the sameolumn architecture is decreasing faster than the @\ND read window.

For the GAND architecturetheleakage current from leakage pe leakage current path is only through a single- non

paths was added, assuming themory array hathe same  cqnqyctive transistochannel. Thus, readout errors were
numberof rows and columnsThe currenthrough the FEFET  gliminated and ay/los ratio of 10 is achieved for a column

during readoperationdependsnly onthe polarizatiorstate  gjze of 2048 cells. For the-&ND architecture, théu/lo ratio
stored in eachFeFETbased memoryell. The worstcase s decreasing much slower than the AND architecture,

scenariost he readout of state %éintaﬁnhq’t higk,/A. reRid¥dr differbrft QI0nnized.P € C 1 f
cel |, while al|l u n gnanhely,clawe d c e | S carri ed 17 s
threshold voltage)The leakage of these cells suap, and C. Write Disturb in C-AND

cannot be neglectddr long BLs ) o ] )
As illustratedin Fig. 5, n any operationthere are four

Figure 8 compares the readout currents of the AND angroups of cellsdefined by theirapplied voltage (r1,cl),
C-AND architectures for a varied number of rows. The(rllcz), (r2,c1 and (‘2,()2) Each cell in these groups can be )
di fference between the r eadfoHeloftwd diffelefisdt! aCtael s orsls taadtdled: ‘4@’ 9 | &£ A
the read window for each architecture. The simulations wergg differentpossiblecasegeach cell in the four groups cha
performed for two to 2048 cells in a row. A trendline { n eit her state ‘0’ or state
continues the general tendencies for longer columns. Agitherwrites t at e * 0 '. Toe®xamisaheaeffeet ofa 1’ )
expected for the AND array, for the worsise scenario, rite disturbwhen using the mixed writing schema,16 by
leakage currents of the unselected cells summed up 1% array was simulatedAdditionally, the effect of partial
approximately 30 nA for a column size of Bdells. This yoltages applied to ahedifferent cellsand statesvas tested
represents a considerable read error when compared to 400 péy the worstasescenariowe measuredhe four cells irthe
in case of a regul ar -ANR thel o HornerPwhichtrdpresenthd four differdnt groupss 8hbwn C
current readout of the ‘0 y¥iy8.tT€tesPthe eflect DfechnSebutive UriteBeewrite 0 N
2048 cells was only 40 pA, since theABID and AND has  time was set td0 s, wherethe devices have reached a steady
the same voltage drofy., and the leakage currents in the C state.

AND pass through three transistor channels in series (which
at least two of them are naonductive), while for the AND
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Fig. 9. Write operation of a selected celln a 16 x16 G-AND array =3, — — —
and the influence orto all surrounding cells. The selected cell is 5 L

labeled by (r1,c1), while unselected cells are labeled by1,c2),
(r2,cl) and (r2,c2) Different initial states and different write values

are presented for all four different cell locations. Currents through Highz Highz Highz
cells storing a logic 6006 sta 0
through cells storing a | ogehd e e .
current of each cell is shown before and after the write operation. © Read 2 NAUS Seedd Wit #Q  Read
Z.S ij‘ 2 o Bits:4,5,6,7 Bits:0,1,2,3
Figure9 shows the operation @friting* 0’ and *17% . .
the proposed join¥/pp/2-Vpp/3 scheme, and examines the — —
:0,1,2, its:4,5,6,

Vou V]

Unselected

bits

resulting output current amplitude of cells in all four groups

((r1,cl), (r1,c2), (r2,cl) and ¢2,c2)), with all possible

previous logical statqgsst at e ‘0’ and st adze ' Bits:4,5.6,7 Bits:0123 | e

write operatios ( wr i t e Inodg iwcrailt e .0he gai ¢'al

readout currents before and after the write operation are shown _

in the squares representing the individual memory cells. Only = HighZ ——22 Highz ——tl gz

the stored data in the selected gelkchanged when writing 3 + +

a device to the opposite state, while tther cells maintained Timelised

their state. It can be obser.v%qv..t Qfat ror TRy it 0.% cantt t he
. . L Fig. 10. Writing different values to an 8bit word in an GAN

the diagonal cells d'd, nOt_ change. Aftef writifogjical ,0,, ' ar?ay in twog cycles (a) Readout currents during the read

however, the current in diagonal celasincreased a bit if operations. (b) Voltage applied to the WLs and SLs of #1selected

the for mer st at é¢wandacseaskdot@halt rowland unselautid irows @uring the read and write operations. (c)

if the former state wa sstadteo g ivaagesagpliedtoth¢BysgndBull adthe selectgdand upselegteg r * s

remained unchangedn all 16 different cell locations, with ~ Pits (columns) during the read and write operations.

different initial states and different write operations, therewas . . . . . .

still a separation othreeordersof magnitudebetween the Polarization)and from potential write disturbs that caused

readout current of state.:* (avingaureptgforcesihatsigg samelogicy! stajey o ¢

The highest curremepresenting logical 0’ st at e was 46.8 pA

while the lowest curremepresenting lgical* 1 ' st at eE. W@ogss pgatiog

Unselectad
bits

nA. Therefore,the minimallo/lort ratio was approximately To evaluatethe effect of process variationand write

10% voltage variationwe performedMonte-Carlo simulatios to
randomly choose different conditionsn the transistor

D. Writing a Word in Two Cycles dimensions Two rows and two columns arrays, which

representlevices from all four groug(érl,cl), (r1,c2), (r2,cl)

simulag the progranming and eraseperation ofan entires- ~ and €2,c2)), were chosen to determinie effect of process
bit word in two cyclesFigure 10illustrateshow an entire variation on any location acell relative to the selected cell

word can be writeh n t wo cycl es. I n I-{Orlﬁ(:(@SidPrithle %ﬁ?Ct oély%gge@qths,y@h%g@gtlhe‘ﬁ%pected
is written to bits 4o 7, according to the&/pp/3 scheme (Fig. eg@agi%ncurrrgnﬁs %El qu o % r?rg?{oég %”Z ﬂ;ezltjaﬁlc—la? |

10(b) andFig.10(c)y whi |l e i n the sub “gu e , : X

is written to bits to 3 in the Vpo/2 scheme (Fig. 10(b) and ?e(\)n\?ouct);zfﬁ]éj n\]/\\//r 1| (1 rTéVan?S(()) nénifgéégm”i?al‘ggggr Vol
Fig. 10(c). Thereadat of an entire word in a single cydke . ) . .

shownin Fig. 10(a)by reading _each bit from diffefent BLs. d'k?;erréss'fgﬁmdﬂoggﬁ [::;g::so;?Z;T&gﬁifﬁﬁ?}gg:g IV

The effect of each write operation on the surrounding cells cah P p :

alSO becan be observed H_‘]g 1((a) That |S,. small differences Figure 11 shows thehistograms ofthe Monte-Carlo

in readout current resed from the different threshold sjmulation. Differentwrite voltages and different dimensions
voltages of the FeFETYi.e., due to different stored entailed a deviation ahe threshold voltage of each device

Arrays witheightrows and eight columns were utilizex
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Fig. 11. Monte-Carlo simulations of process variation in the GAND
architecture. There is a full separation (approximately 80X)
bet ween the readout C ur icab stdtes. |
(a) Threshold voltage variation. (b) Readout current variation.

(Fig. 11(a)) and hence, the readout curreatied(Fig. 11(b))
Irrespective of the induced variations, there was stilbdhs
ratio of 80, which enablea full separation between the logical
‘ 0a'n d stated. When analyzingrig. 1, Fig.9, and Fig.11,
it becomes apparent that thefl« ratio ofa single cell shrinks
from approximatelyl(® (Fig. 1) to approximately 1®when
the cell is used in an arrarrangementin which different
cells share lines (Fi@), and shrinks evenfurther to
approximately80 when taking into accountell vaiations
(Fig. 11). This observation demonstrathe feasibility of the
C-AND architecture and poses restricsoan the desired
sensitivity of the SA located on eaBh.

F. Power Consumption

The peakpower consumptiorof the read operation was
evaluated fodifferent array sizeéwe assume the number of
rows and columns is identicabangingfrom two to 32 The
highest power consumption is obtained for asrahereall
cells are in thdogical * 1state Figure 12showsthe peak
power consumption of readoperation ofa single bit. The
leakagegpower is nedgible compared to the read powerthé
selected cellOur results show thathe read power d single
bit is almosindependent of thememory size.

V. DISCUSSION

A. Partial Switching

FeFET can show an atog behaviof{16], i.e., partial
switching may occur evenat voltages below the coercive
voltage(see Figures 9 and 10his behavior depends on the
number of domainswithin the ferroelectric layerin the
following, the indvidual domain sizeareassumed to be 500
nm?. A device with W/L=50nnY50 nm would accommodate
5 domains, i.e.the switchingwill exhibit an abrupt, rather
than analog behavior and therefore partial switching is
negligble. However for a device withW/L= 500nnY500nm
comprisingapproximately500 domais, the device will show
a gradual switching,e.,analog behavigfl7].
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Fig. 12. Peak power for a single bit read versus the array size

Each array has the same number of rows and columns.
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The phenomaonof partial switchings even more critical
when considering the traddf between wiie voltage and
write time[28]. Longer write timslowerthe voltage at which
a certain domaiwill change its polarization stafEhe partial
switching issuebecomes dominant when cells are partially
selected\(pp/3 orVpp/2) for numeouscycles As a resultthe
cells aregradually overwrittenThus, each timemaabsolute
disturb voltage o¥pp/3 or Vpp/2 is routed to the gate of an
unselected cell, the corresponding FeF#eViceis slightly
programmed or erased, and a#isufficient number ofycles,
these effects may accumulateand changethe state of the
FeFET [29]. Applying active compensation mechanisms
(such asa refreshoperation to the memory can solve this
problem of noruniform accesgatterns to read and write
cells at the cost of higher power consumption and lower
access rate to the memoRurthermore, splitting the memory
into smaller arrays can hefisfewer cellswould suffer from
write disturb It can be observed from Fig. 8 tleven for the
C-AND architecture, the biggehe array sizes, the smaller
thereadout current windowecomes

B. Scaling of the FeFET

In nonvolatile memories (NVM)the source and the drain
of the transistor experience voltages which are higher tiean t
standard process voltage. This issue limits the scaling of the
memory devices The write operation with the -BND
architecture does not require hot carriers or current through
the transistor’s channel and
control the vitage across the ferroelectric layeg,, the gate
bulk voltage However scaling of thehannel of théransistor
can cause a punghrough [30], i.e., the effective body
voltage will be a function of the source and draiftages. In
such a case, the control of the channel potential via the bulk
contacti.e., relying on bulk biasingwill be ineffective. This
imposes restrictions on the scaling and the geometry of the
FeFET devices suitable for implementing the-ADID
architecture.

VI. CONCLUSION

HfO,-based ferroelectric fieldffect transistors exhibit
several desirable featuresjch as CMOS compatiity , fast
switching good scalabilitylow-power, and nowolatility. In
this paper we presentedthe GAND architecture which
exploits theunique properties of theeFETto desigra novel
memory array structurebased ona singleFeFET in each
memory cell. We propose awrite operation scheméhat
addressgthepotentiallyasymmetric switching voltages of the
FeFET bycombiningthe Vpp/3 andVpp/2 write schemeso
utilize different absolute write voltages The GAND
architecture enables the writing of an entire word in two
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