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1. Introduction

The separation of memory and computing
units in the conventional von-Neumann
architecture computing systems, which
causes the memory wall bottleneck, is the
main issue preventing the artificial neural
network from competing with the human
brain in efficiency and intelligence.[1,2]

Emerging nonvolatile memory devices that
have tunable resistance, that is, memristive
devices, including resistive random-access
memory (RRAM),[3,4] phase-change mem-
ory (PCM),[5] ferroelectric random-access
memory, and so on are promising techni-
ques to solve the memory wall issue.[6–8]

They can store information in an analog
way and process information at the same
location, acting as artificial synaptic devices
and enabling in-memory computation sim-
ilar to what happens in the human
brain.[9,10] Furthermore, an array of mem-
ristive devices can efficiently perform the
vector-matrix multiplication (VMM), which
is in the computational kernel of a deep
neural network (DNN), via Ohm’s law

and Kirchhoff ’s current law in one step,[11–13] making it a
promising way to greatly accelerate the DNN and to power future
artificial intelligence.[14–16]

However, there are several remaining issues before the
promise comes true. First, as the memristive VMM operations
are conducted in the analog domain, expensive analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs) and
additional circuits for the neuron’s nonlinear activation functions
are needed for the communication between adjacent layers of the
DNNs.[17,18] To avoid the use of high-precision and expensive
ADCs and DACs, novel spiking rate-coded neurons have been
proposed.[19,20] However, the spiking rate-coded neuron circuit
is still complex and informational inefficient.[21] Second, the
online training is usually performed by tuning the conductance
of the synaptic devices in a closed-loop write method (iteratively
write and verify to achieve the target value for a single weight
update request[14,22]), which is inefficient. The open-loop
method, which can potentiate the synaptic weight by a single
write pulse and depress the weight by another single write pulse
in the opposite direction, is preferred.[23,24] However, this
method fades due to the fact that the neural network
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The tunability of conductance states of various emerging nonvolatile memristive
devices emulates the plasticity of biological synapses, making it promising in the
hardware realization of large-scale neuromorphic systems. The inference of the
neural network can be greatly accelerated by the vector-matrix multiplication
(VMM) performed within a crossbar array of memristive devices in one step.
Nevertheless, the implementation of the VMM needs complex peripheral circuits,
and the complexity further increases as non-idealities of memristive devices
prevent precise conductance tuning (especially for the online training) and largely
degrade the performance of the deep neural networks (DNNs). Herein, an
efficient online training method of the memristive deep belief net (DBN) is
presented. The proposed memristive DBN uses stochastically binarized activa-
tions, reducing the complexity of peripheral circuits, and uses the contrastive
divergence (CD)-based gradient descent learning algorithm. The analog VMM
and digital CD are performed separately in a mixed-signal hardware arrangement,
making the memristive DBN highly immune to non-idealities of synaptic devices.
The number of write operations on memristive devices is reduced by two orders
of magnitude. The recognition accuracy of 95–97% can be achieved for the
MNIST dataset using pulsed synaptic behaviors of various memristive synaptic
devices.
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performance is greatly degraded by the non-idealities of the
memristive synaptic devices.[25,26] Addtionally, process variation
and stuck-at fault errors have been widely reported to cause
performance degradation, although can be partially compensated
by various methods with extra costs.[27–39] These issues can be
generally attributed to the nonbiological conventional learning
algorithm of DNN, that is, error backpropagation-based gradient
descent weight update,[40,41] which needs both the VMMs and the
conductance tuning in high precision.[42–44] Novel neural net-
work structures and learning algorithms need to be explored
to address these issues.

In this article, we investigated the hardware implementation
of the memristive deep belief net (DBN) based on the learning
algorithm of contrastive divergence (CD).[45] The memristive
DBN is composed of stacked restricted Boltzmann machines
(RBMs),[46] where the VMM operations have binary inputs and
stochastically binarized outputs, needing no ADCs or DACs in
the peripheral circuits. The RBM is trained by accumulating
the CD in a separated digital array and updating the synaptic
weights periodically via the open-loop write method on the mem-
ristor array. The training of the DBN needs no additional cache
memory to store the intermediate states of hidden layers, nor
dedicated circuits for nonlinear activation functions. The pro-
posed memristive DBN shows high immunity to non-idealities
of the synaptic devices, greatly relaxing the specifications for
memristive synaptic devices in multiple dimensions.

2. Network Structure and Hardware Design

2.1. The DBN and RBMs

The structure of the investigated DBN is shown in Figure 1a,
which consists of three stacked RBMs.[45] Each RBM has a visible
layer, a hidden layer, and a weight matrix (w) connecting them.
For supervised learning tasks, taking the MNIST dataset as an
example in this work,[40] the images are fed into the visible layer
of the first RBM, and the labels are part of the visible layer of the
last RBM. Unlike conventional DNNs based on error backpropa-
gation algorithms, the DBN relies on the consecutive training of
each RBM via the CD algorithm.

The CD is obtained by alternative Gibbs sampling between the
visible layer and the hidden layer within each RBM, which
requires both forward and backward VMMs as well as binary
sampling operations. All input signals are binary digital signals,
which can be easily generated by digital circuits. For instance, in
the first RBM layer (RBM 1, Figure 1a,b), each image in the
MNIST dataset was binarized (pixel value to be either “0” or
“1”) and converted to a vector representing the states of the visible
neurons (v). After alternative Gibbs sampling (see Experimental
Section for more details), the hidden neuron states (h), the recon-
structed visible neuron states (v 0), and the reconstructed hidden
unit states (h 0), which are the local information needed to calculate
the CD and update the weight matrix, are obtained.

Figure 1. The structure of the memristive DBN and the mixed-signal design of memristive RBM. a) The structure of a typical DBN for the training of the
MNIST dataset consisting of three RBMs. b) Illustration of Gibbs sampling between the visible layer and the hidden layer in a single RBM during the
training. c) Forward VMM in a memristive crossbar array and binary sampling in the outputs to implement the Gibbs sampling from the visible neurons to
the hidden neurons. d) Design of mixed-signal training of single RBM layers in the DBNs. e) Flow chart of the training of a single RBM layer in the greedy
learning algorithm of the DBN. The light-blue and light-yellow colored blocks are the procedures of analog operations (VMM, stochastic sampling, and
weight updates) and digital operations (CD calculation and accumulation), respectively, which are conducted by the components in d) with the
same colors.
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After the first RBM layer is trained, the state of the hidden
neurons (h) will be the input of the second RBM layer (RBM
2 in Figure 1a) for its training. The last RBM layer (RBM 3) takes
both the states of the hidden neurons of the previous RBM layer
and the label vector (l) as the input (see Experimental Section for
more details). The weight matrix in the RBM 3 is partitioned into
two parts (w3 and w4 for clarification). The learning of DBN by
consecutive training of the stacked RBM layer is named as
“greedy learning” method.[45]

In a conventional DNN with the error backpropagation algo-
rithm, the error propagated from the last layer would gradually
vanish, which makes it harder to be handled in hardware.
Additionally, the gradient descent of the weight relies on both
the input of the layer and the error back propagated from the
last, which raises the issue of the data dependency. In other
words, the states of the neurons in all layers need to be stored
before the backpropagated error arrives and the weight is
updated. Whereas, in the DBN, all the neuron states are
binarized (“0” or “1”) and the CD elements are ternary values
(“-1”, “0,” and “1,” see Equation (10)) making them easier to
be processed by the hardware. Moreover, the calculation of
the gradient descent, that is, the CD, depends only on the local
information of the neurons, further simplifying the memory
requirements and hardware design in the training stage.

2.2. Implement VMM with In Situ Stochastic Activations

The Gibbs sampling operation in an RBM can be fully hardware
performed by the memristive crossbar array with an additional
noise current in each output node, as shown in Figure 1c.
Figure 1c performs the forward VMM and output sampling from
the visible neurons to hidden neurons (Equation (6) and (8)).
The binary states of the visible neurons (input digital signal)
are converted to the read voltage (Vi, i ∈ 1, 2, : : : ,m) as the input
of the memristive array with the size of m-by-n, which performs
the VMM via Ohm’s law and Kirchhoff ’s current law. As the
input of the VMM operation is a binarized vector, only a level
shifter is needed (i.e., 1-bit DAC). The current output of the
memristive array can be denoted as

Ij ¼
X

ViGij (1)

where j ∈ 1, 2, : : : , n is the column index of the memristive
array, and Gij is the conductance of the device in the ith row
and jth column. A separate column of the memristive device with
fixed reference conductance (Gref ) is used to provide the refer-
ence current

Iref ¼
X

ViGref (2)

A noise current [Inoise ∈ N ð0, I2nÞ] is injected into each output
node of the memristive array. The output current is then con-
verted to a voltage by a trans-impedance amplifier (TIA) and com-
pared with the voltage output of the reference column by a
comparator (i.e., 1-bit ADC). The hidden neuron states thus
can be written as

hj ¼
(
1, Ij � Iref ≥ Inoise
0, Ij � Iref < Inoise

(3)

which reproduces Equation (7) with the weight wij beingGij–Gref.
Similarly, the backward VMM and output sampling from the
hidden neurons to visible neurons (Equation (8)) can be imple-
mented by placing the input circuits in the hidden neurons and
the noise currents, TIAs, and comparators in the visible neurons.
Note that the current design only supports the sigmoid-type acti-
vation function, which is the only activation function needed in
the memristive RBM and DBN. Supporting other activation
functions that are needed in other neural networks requires fur-
ther investigation. We have separately simulated and verified the
circuit functionality of the noise current generation, TIA, compar-
ator, and level shifter. However, simulation of the complementary
metal-oxide-semiconductor (CMOS) peripheral circuit for a spe-
cific technology, including specific limitations, such as operational
voltage and parasitic capacitance, to explore the bandwidth and
latency of the design memristive RBM and DBN, needs further
investigation and should be the next step of the work.

The stochasticity of visible or hidden neurons can also be
provided by the intrinsic read noise of the memristive device
by properly tuning the signal-to-noise ratio,[47] which can further
simplify the hardware implementation of the DBN. Here, we
utilize the external noise such that we can turn the noise current
off for fast inference.

2.3. Memristive Array and CD Accumulation Array

To enable the learning of memristive DBN tolerant to non-
idealities of synaptic devices, we used a mixed-signal hardware
design of the RBM layer composed of an analog memristor array
and a signed digital counter array (Figure 1d). The memristor
array is composed of a crossbar array of memristors with the con-
ductance of Gij and reference cells with the conductance of Gref.
Only the memristor array participates in the VMM, as detailed in
Figure 1c. The forward and backward VMMs and stochastic exci-
tation result in two sets of binarized visible neuron states and
hidden neuron states (v and h, v 0 and h 0). The digital counter
array will perform the outer product calculation of the CD matrix
(CDij¼ vihj� v 0ih 0

j) and accumulate the ternary CD values in its
cells, which are signed digital counters. An identical pulse will be
applied to the memristor cell to potentiate or depress its weight
(Gij) when the corresponding CDij in the digital array reaches a
threshold (≥CDth) or below the negative threshold (≤�CDth).
This will result in a positive or negative conductance change
(ΔG) on the memristor cell defined by the memristive synaptic
weight update behavior. No verifying read operations will be
needed. The training procedure of the memristive RBM is shown
in Figure 1e, where the analog VMM and neuron state sampling
steps, as well as the weight updates, are light-blue colored, and
the digital CD calculation and accumulation step are light-yellow
colored, corresponding to the colored components in Figure 1d.

The proposed mixed-signal approach for memristive DBN
training shares some similarities with the state-of-the-art techni-
ques recently proposed to improve the training performance of
the DNN,[48,49] however, also shows distinct features. Ambrogio
et al.[48] proposed a hybrid synaptic cell composed of nonvolatile
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memristive devices and volatile capacitor gated transistors
(2PCMþ 3T1C) for a DNN implementation. The capacitor gated
transistor branch of the synaptic cell has high linearity for weight
updating and performs both VMMs and weight updates. The
accumulated weight updates were transferred to the nonvolatile
memristive devices periodically. Here, in our proposed neural
network, the CD counter array only accumulates gradient descent
(weight update request), and the memristive array performs the
VMMs alone. Nandakumar et al.[49] proposed a mix-precision
approach where each layer of a DNN is composed of a low-
precision memristive array and a high-precision digital part.
The digital part computes and accumulates the weight update
request in floating-point numbers, and the conductance of the
elements in the memristive array is updated when the accumu-
lated weight update request in the high-precision digital part
reaches a threshold. The memristive array performs the
VMMs in an analog fashion and deals with the small input
and output for error backpropagations, which requires high-
performance DACs and ADCs. The high-precision digital part
is more complex than our digital counter array as in our proposal
the weight update request (CD) only consists of integers. The
comparison of the learning algorithm and training method with
previously reported works of the memristive DNN can be seen in
Table S1, Supporting Information. According to the literature,[14]

the ADCs and DACs may account for 75% of the area and 87%
of energy consumption of the macro core consisting of the

memristive array and peripheral circuits. Thus, a significant
energy consumption reduction compared with the conventional
design of a memristive-based DNN is expected.

Capacitor gated transistors[48] or other emerging electrolyte
gate mem-transistors[50] with highly linear behaviors may also
be used as the CD accumulation cells replacing the digital coun-
ters. As the CD accumulation array is only needed in the training
stage, it can be powered off at the inference stage and does not
require long-term nonvolatility.

3. Training and Inference

3.1. Memristive DBN Training

We first use a synaptic behavior with an ideally symmetric and
linear weight update ability (Figure S1a, Supporting
Information) to test the applicability of the proposed training
algorithm. The memristive DBN (Figure 1a) has the size of
784�500�(500þ 10)�2000, and each RBM is consecutively
trained with the greedy learning algorithm for 30 epochs for
all 60 000 images in the training set of the MNIST. Figure 2a
shows the reconstruction error of visible neurons, defined as
the normal distance between the original input and the recon-
structed input < jv0 � v|>, for each RBM during the training.
The reconstruction error of the label neurons in the last RBM
(RBM 3) is also shown in the figure. The gradually decreasing

(b)

(d)(c)

(a)

Figure 2. Training and inference of the memristive DBN. a) Reconstruction error for each RBM during training as a function of the training epoch.
b) Example evolution traces of digital CD counter and analog memristor as the function of the number of input training samples. c) Structure of
the reorganized neural network for inference (pattern recognition). d) Comparison of the accuracy between the fast deterministic inference and repeated
sampling inference when using the well-trained DBN to recognize the handwritten digit images in the MNIST dataset.
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reconstruction error indicates that each RBM learned the input
patterns to the visible neurons successfully. Three example evo-
lutional traces of the value in the CD counter and the memristor
conductance monitored during one training epoch (60 000 train-
ing samples) are shown in Figure 2b. From Figure 2b, we can see
that the CD counting updates when each training image is input,
while most of them cancel each other and will not accumulate.
When it reaches the threshold (CDth¼ 64) or is below the nega-
tive threshold (�64), the corresponding memristor conductance
is potentiated or depressed, respectively. An animation is pro-
vided to show the greedy learning process in a more illustrative
way (Movie 1, Supporting Information).

Then, the DBN is fine-tuned by the wake–sleep algorithm for
30 epochs (Movie 2 and Figure S2, Supporting Information),[51]

which can be performed in the same hardware as in the greedy
learning (see Experimental Section for more details). Note that
replacing the fully connected RBM layer with the convolutional
RBM layer can effectively reduce the size of both the memristive
array and the CD accumulation array, resulting in better accu-
racy,[52] which, however, is beyond the scope of the current work.
To scale up the DBN for larger datasets, for instance, CIFAR-10,
convolution RBM layers are also necessary.[53]

3.2. Inferences with Binarized Activations

The inference of the DBN, that is, pattern recognition from the
input to label, can be implemented by unfolding the last RBM, as
shown in Figure 2c. Only forward VMM and stochastic sampling
are needed. For a well-trained DBN, sequential implementation
of the forward VMMs and stochastic sampling in each RBM layer
results in reduced accuracy for all the test images in MNIST
(�83.73%, Figure 2d). However, the accuracy can be gradually
improved by repeating the sampling inference (�97.26% for
50 times repeats). The noise current can be disabled such that
the excitation of each neuron is deterministic, that is, determin-
istic inference. This results in an intermediate accuracy
(�95.17%), however, at higher speed and lower power consump-
tion. A trade-off between the slow-accurate and the fast-coarse
inferences can be made according to application needs.

Figure S1b in the Supporting Information shows the test
accuracies of deterministic inference and 50 times sampling
inference (following training results will use this metric) as a
function of training epochs.

3.3. Effect of the CD Threshold

Figure 3a shows the performance of the training when varying
CDth in the digital counter array (or varying the bit size of the
signed counter). When CDth¼ 1 (corresponding to directly write
to the memristor array for any immediate CD and no digital
counter array), lower performance is observed. When
CDth¼ 64 (6-bit counter), the highest recognition accuracy can
be obtained. Further increase of the CDth will reduce the recog-
nition accuracy as some weight requests are remained in the CD
accumulation array and will not be transferred to the memristive
array. Figure 3b shows the statistical results of the counts of write
operations on each memristive cell for different CDth. Without
the digital counter array (CDth¼ 1), maximal 106 and median
103 write operations are performed on the memristive cells.
When CDth¼ 64, the number of write operations reduced to
maximal 200 and median 20, and half of the devices are not oper-
ated at all. The endurance specification for the memristive device
is largely relaxed.

4. Immunity to Non-Idealities

To simulate more non-idealities of the memristive synaptic
devices, an empirical model capturing conductance levels (Np

and Nd for potentiation and depression phases, respectively),
on/off ratio (Gmax/Gmin), the nonlinearities (αp and αd), and
the asymmetry between potentiation and depression (Np 6¼Nd,
αp 6¼ αd) is proposed and shown in Figure 4a, which can be
written as (without cycle-to-cycle and device-to-device variations)

ΔGpot ¼
Gmax � Gmin

1� e�αp
� ðG� GminÞ

� �
ð1� e�αp=NpÞ (4)

and

(a) (b)

CDth

Figure 3. Mixed-signal training of the DBN. a) Test accuracy as a function of the training epoch for different CDth using the symmetric and linear weight
update behavior. b) Statistical results of the counts of write operations on each memristive cell for different CDth.
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ΔGdep ¼ � Gmax �Gmin

1� e�αd
� ðGmax �GÞ

� �
ð1� e�αd=NdÞ (5)

for potentiation and depression, respectively. Figure S3 in the
Supporting Information shows the example traces of conduc-
tance evolution obtained from the model when random gener-
ated potentiation and depression pulses are applied. With this
model in hand, we check the effects of various non-idealities
of memristive devices on the performance of the memristive
DBN.

4.1. Limited Conductance Levels

In contrast to the ideal analog conductance tunability, most
memristive devices only show two conductance levels, that is,
low conductance state (LRS) and high conductance state
(HRS).[2] Multiple conductance states are generally more prom-
ising in RRAM and PCM devices.[54] However, these multiple

conductance states are usually obtained with external controlling
stimuli, for example, compliance currents or closed-loop read–
write–read verify technique.[22,55] Here, we simulate the case
where the multiple conductance states are obtained by identical
potentiation or depression pulse. The number of conductance
levels is defined as the number of pulses (Np) needed for the
device to switch from the LRS to HRS in the potentiation phase
or, vice versa, the number of pulses (Nd) needed for the device to
switch from the HRS to LRS in the depression phase, as shown
in Figure 4a.

Figure 4b shows the test accuracy after the training as a
function of conductance levels. The network works well
(accuracy >90%) even when only two conductance levels are
available and reaches the best performance (accuracy >97%)
when 20–40 conductance levels are available. The deterioration
in the performance at higher number of conductance levels can
be compensated if more training epochs are conducted
(Figure 4b).

Conductance Levels, 
Np

O
n-

O
ff 

ra
tio

d

Nd

Gmin

Gma
x

(c)

(a)

(d) (e)

(b)

(f) (g) (h)

Figure 4. Effect of non-idealities of the synaptic device on the training performance of the memristive. a) An empirical model to capture more
non-idealities of the memristive synaptic devices: nonlinear weight update, the asymmetry between potentiation and depression, and write variation.
(Red lines: model w/o variations; Gray lines: model with variations). Training accuracies as b) a function of conductance levels, c) the symmetric
nonlinearity, d) asymmetric nonlinearity, e) cycle-to-cycle variation, f ) device-to-device variation, g) yield, and h) read noise.
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4.2. Nonlinear Weight Update

Nonlinear weight update behavior is another major source of
performance lost when using memristive synaptic devices for
the training of a neural network.[42,56] To verify the effect of
weight update nonlinearity on the training of the memristive
DBN, we vary the nonlinearities of both potentiation and depres-
sion in the model (αp and αd) while keeping them equal
(Figure S5a and S5b, Supporting Information). Figure 4c shows
that increasing the nonlinearity of the weight update will slightly
decrease the training accuracy. In addition, increasing the CDth

could partially compensate for the deterioration.

4.3. Asymmetric Weight Updates

The weight updates for potentiation and depression generally do
not have the same degree of nonlinearity, that is, asymmetric
nonlinear weight updates. To test the effect of asymmetric weight
updates, we fix the nonlinearity for the depression phase (αd) and
only vary the nonlinearity for the potentiation phase (αp)
(Figure S5c and S5d, Supporting Information). Figure 4d shows
the performance of the memristive DBN as a function of the
asymmetry between the weight update nonlinearities of potenti-
ation and depression phases.

4.4. Write Variations

Another source of performance degradation of the memristive
neural network comes from the cycle-to-cycle and device-to-
device variations when writing to memristive devices.[57,58]

The cycle-to-cycle write variations are modeled by adding a
Gaussian distribution to the conductance change with its stan-
dard deviation proportional to the ideal conductance change
for each weight update operation (Figure S6a and S6b,
Supporting Information)

ΔGc2 ∈ N ðΔG, σ2c2cÞ, σc2c ¼ γΔG (6)

The simulation result shows that in the proposed memristive
DBN, the cycle-to-cycle write variations only slightly affect the test
accuracy of the neural network (Figure 4e).

Device-to-device variation is modeled by assigning each devi-
ce’s weight update nonlinearity according to a Gaussian distribu-
tion [αp,d2d ∈ N ðαp, σ2αpÞ and αn,d2d ∈ N ðαn, σ2αnÞ, Figure S6c and
S6d, Supporting Information]. Figure 4f shows the recognition
accuracy of the memristive DBN as a function of the standard
deviation of the device’s nonlinearity. Surprisingly, the higher
device-to-device variation does not degrade the performance of
the neural network. We see a slight increase in the recognition
accuracy.

4.5. Device Yield

In memristive devices, especially the RRAM devices, device yield
is the major issue preventing its application in data storage and
neuromorphic computation on a large scale.[55,59] The memris-
tive device may not work due to the process variation or in some
other cases, the synaptic devices may initially work well but stuck

at HRS or LRS during the following write operations. In the sim-
ulation shown in Figure 4g, we assume that a percentage of the
devices is not working (half of them stuck in HRS and the other
half stuck in LRS). From Figure 4g, we see that when the device
yield is higher than 90%, the performance of the memristive
DBN does not degrade. While when the yield is less than
90%, the accuracy of memristive DBN training quacking drops
to 20%. Two factors cause the accuracy drop for low device yield:
1) low device yield prevents the accurate greedy learning layer-by-
layer; and 2) the fine-tuning after the greedy learning is more
sensitive to the non-idealities of the memristive devices, thus
ruining the previously learned recognition ability (Figure S7a,
Supporting Information).

4.6. Read Noise

Multiple sources of noise can induce inaccuracy in the reading of
the memristive devices, for instance, flicker noise, random teleg-
raphy noise, and white noise.[60–62] The noise read instability
could also be originated from the sense amplifiers and other
peripheral circuits. The inaccurate read current will result in
the inaccurate output of the VMM. However, as the proposed
memristive DBN has stochastic output, the read noise could
be a beneficial factor making the hardware implementation
easier. As discussed earlier, the probabilistic behavior of the neu-
rons in RBM induced by the noise current injected to the input of
each column of the memristive array in Figure 1c can be realized
by properly tuning the signal-to-noise ratio of the memristive
device reading.[47] Here, we test the effect of reading noise by
adding a current noise in each of the memristive devices and test
two cases, that is, without and with noise current injected into the
neuron. Figure 4i shows the performance of the memristive
DBN as a function of the read noise level for the two cases.
With noise current injected into the neuron, that is, probabilistic
neurons as designed earlier, the read noise of the memristive
device slightly lowers the training performance. While, without
noise current injected into the neuron, when the read noise is
small, the memristive DBN shows highly degraded recognition
accuracy after training. A certain noise level will be beneficial to
the neural network.

4.7. Nonlinear I–V Characteristic

Another common nonideal behavior of the memristive device is
its nonlinear I–V characteristics.[13,63] This prevents the direct
implementation of the multiplication in the analog domain as
the conductance of the device is not a constant value at different
read voltages. Pulse width or pulse number modulation is usually
used to represent the analog input of VMM in the implementa-
tion of a neural network.[18,64] Method of operating the devices in
a small dynamic range to avoid the non-Ohmic conduction or in
the small signal domain has also been proposed.[65,66] All the sol-
utions come with the price of complexing the readout circuit for
VMM operations. In the proposed memristive DBN structure,
however, the input of the VMM is also binary-valued, which is
inherently immune to the nonlinear I–V characteristic issue
of memristive devices.
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5. Memristive DBN with Real Memristive
Synaptic Devices

The synaptic model in Figure 4a is used to fit various memristive
synaptic behaviors of SiGe epiRAM,[67] PCMO,[23] ECRAM,[50]

OxRRAM,[68] and PCM[69] devices (Figure 5a–e and Table S2,
Supporting Information). The fitting parameters are used to val-
idate the training of the memristive DBN. As device-to-device
variations and device yield data are not shown in the references,
we assumed ideal parameters for them. For the devices that only
have gradual weight update behavior in one direction, that is,
OxRRAM[68] and PCM,[69] we use the differential pair where each
synaptic cell contains two devices (Figure S8, Supporting
Information). All the memristive synaptic behaviors obtained
by identical potentiation and depression pulses enable the suc-
cessful training of the memristive DBN with accuracies ranging
from 95% to 97% (Figure 5f and S9, Supporting Information).
Note that in Section 4, to validate the learning algorithm accom-
modates to all synaptic behavior, the simulation includes extreme
cases where the non-idealities of the memristive devices are
unusually high. In these cases, the fine-tuning would ruin the
previously learning recognition ability (Figure S4, S5, and S7,
Supporting Information). For the synaptic behavior of real mem-
ristive devices, as shown in Figure 5 and S9 in the Supporting

Information, we see that fine-tuning always improves the perfor-
mance of the neural network.

6. Relaxed Specifications for Memristive Synapses

By properly balancing among the parameters of various non-
idealities, we got a set of parameters required for the memristive
synaptic devices that can achieve 95% accuracy for the MNIST
dataset, as listed in Table 1. The specifications of memristive
devices in the literature[26,42–44] are also listed in the table to make
the comparison. The proposed memristive DBN has high relaxed
specifications for memristive devices. According to our simula-
tion experience of checking various non-idealities, we found that
the nonlinearity of weight update is the most important factor
needs to be taken care of. Reducing the nonlinearity would con-
tinuously improve the performance of the neural network. The
number of conductance levels and device yield need special care
as a low number of conductance levels and low device yield will
suddenly deteriorate the performance of the neural network.
However, when enough conductance levels and device yield
are available, further improvement of these metrics would not
significantly benefit the neural network’s performance. Other
non-idealities are highly relaxed and can be easily met with most
of the existing memristive device technology.

(a)

(c)

(b)

(d)

(e)

(f)

Figure 5. Training of the memristive DBN with memristive synaptic devices data. Fitting memristive synaptic behaviors by the device model for a) SiGe
epiRAM, b) PCMO, c) ECRAM, d) OxRRAM, and e) PCM, respectively. Blue points: data from the references; red lines: model w/o variations; gray lines:
model with variations. f ) Training accuracy of the memristive DBN using the memristive device behaviors (CDth¼ 128).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 2100249 2100249 (8 of 11) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


7. Conclusion

A memristive DBN composed of mixed-signal RBM layers for
efficient online training is proposed. The mixed-signal RBM
layer consists of an analog memristive array for the stochastic
VMM and a digital counter array for the accumulation of CD.
The proposed memristive DBN has stochastically binarized acti-
vation, free from the need for complex peripheral circuits with
expensive DACs and ADCs. It shows high immunity to various
non-idealities of the memristive synaptic devices. The endurance
requirement of the memristive is also highly relaxed.

8. Experimental Section

Training of a Single RBM Layer: We used the first-order CD for the
training of memristive RBM. The input (state of the visible units, v)
was first multiplied by the weight matrix of the RBM 1 (w1) to obtain
the probability of the state of the hidden units (h)

Pðh ¼ 1Þ ¼ σðvw1Þ (7)

where σðxÞ ¼ 1
1þe�x is the logistic sigmoid function. Then, the state of the

hidden units (h) was backward multiplied by the weight matrix to obtain
the probability of the reconstructed state of the visible units (v 0)

Pðv0 ¼ 1Þ ¼ σðhwT
1 Þ (8)

After that, the reconstructed state of the visible units (v’) was again
multiplied by the weight matrix to obtain the probability of the recon-
structed state of the hidden units (v’)

Pðh0 ¼ 1Þ ¼ σðv0w1Þ (9)

The CD was then calculated by the difference between the outer prod-
ucts of the two sets of visible-hidden neuron states

CD ¼ v ⊗ h� v0 ⊗ h0 (10)

The CD matrix, which acts as the gradient descent of the weight matrix,
was used to update the weight matrix

∂E
∂w1

∝ CD (11)

where E is the energy of the RBM, which should be minimized. In this
work, we do not update the weight matrix w1 directly. We accumulate
the CD matrix (request for weight updates) and only update the elements
in the weight matrix when the elements in the CD accumulation (signed
integers stored in digital counters) reach a threshold.

Training of the Last RBM with Label Input: When training the last RBM,
label target (l) in one-hot format is input to the label layer with 10 neurons.
The weight matrix was partitioned into two parts (w3 and w4 in Figure 1a).
The forward VMM and sampling were performed by both inputting the
hidden neuron states of the 2nd RBM to the visible layer and inputting
the target label into the label layer. The hidden neurons sum all the cur-
rents from both the visible layer and the label layer. The backward VMM
and sampling were performed separately from the hidden layer to the vis-
ible layer via weight matrix w3, and from the hidden layer to the label layer
via weight matrix w4. The neurons in the visible layer were excited accord-
ing to the probability given by the sigmoid function as described in
Equation (7). The neurons in the label layer, however, were excited accord-
ing to the probability given by the softmax function

Pðl0 ¼ 1Þ ¼ Sof tMaxðhwT
1 Þ (12)

where Sof tMaxðxÞi ¼ e�xiP
e�xi

, which makes sure that, statistically, only one

label neuron will be excited. The CD matrix and its accumulation will be
implemented separately for the weight matrices w3 and w4, respectively

Wake–Sleep Algorithm for Fine-Tuning: The fine-tuning of thememristive
DBN by the wake–sleep algorithm was performed after the greedy learning
of the DBN (pretraining). To do the fine-tuning, the RBMs in the mem-
ristive DBN were duplicated except for the last RBM with new weight
matrices w1¼ w1

0 and w2¼ w2
0 (Figure S2a, Supporting Information).

The weight matrices w1, w2, w3, and w4 constitute the recognition path,
and the weight matrix w4, w3, w2

0, and w4
0 constitute the generation path

or wake path. The input data of the image and the label were fed to the
recognition path, and the top RBM layer performed Gibb sampling
iteratively (iteration number is 20 in our simulation), and then the recon-
structed visible neuron states were fed to the generation path to generate
the reconstructed image (sleep path). The states of neurons in the wake
path and sleep path were used to update the weight matrix in the sleep
path and wake path, respectively (Figure S2b, Supporting Information).
In this article, the DBN is pretrained for 30 epochs and fine-tuned for
another 30 epochs. From the detailed recognition accuracy versus epoch
traces in Figure S4–S7 in the Supporting Information, we could see that
the pretraining always improves the performance of the neural networks,
while fine-tune can further improve the performance in some cases. When
the non-idealities of the memristive device are high, the fine-tuning is not

Table 1. Specifications of memristive devices to achieve 95% accuracy for training MNIST compared with the specifications in the literature.

Gokmen et al. (2016)[26] Chen et al. (2017)[43] Chang et al. (2018)[42] Agarwal et al. (2016)[44] This work

Conductance levels ≥1000 ≥64 ≥256 (8 bits) – ≥20

On/off ratio ≥8 ≥50 – – ≥3

Nonlinearity – ≤1.0 ≤4.5b) ≤5 ≤10

Asymmetry ≤1.05 ≤2% – – ≤2a)

Cycle-to-cycle variation – – – ≤0.4% ≤30%

Device-to-device variation – ≤1 – – ≤5

Yield – – – – ≥90%

Read noise – ≤20% – ≤9% ≤10%

Endurance – – – – ≥100

DAC/ADC accuracy 9 bits – 8 bits – 1 bit

Nonlinear activation Software Software Software Digital core Not required

a)Could be removed if differential pairs are used; b)Converted from the original value as a different metric of nonlinearity is used in the reference.
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working well or may ruin the previously learned recognition ability. This
indicates that the fine-tuning procedure is more prone to device non-
idealities. The highest accuracy in the traces of the accuracy versus the
epoch is taken as the metric for the analysis in Figure 3–5.

Image Generation by the Trained DBN: The memristive DBN after
fine-tuning with generation path can be used to generate image when only
given label input (Figure S10, Supporting Information). As shown in
Figure S10a in the Supporting Information, a random noise image and
a label are input to the DBN, and the top RBM layer performs the
Gibbs sampling in multiple iterations. Taking the reconstructed visible
neuron states of the top RBM layer as input, the generation path’s output
will provide the correct digit image corresponding to the label
(Figure S10b, Supporting Information).
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the author.
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