
HashPIM: High-Throughput SHA-3
via Memristive Digital Processing-in-Memory

Batel Oved, Orian Leitersdorf, Ronny Ronen, and Shahar Kvatinsky
Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion – Israel Institute of Technology, Israel

batelov@campus.technion.ac.il, orianl@campus.technion.ac.il, ronny.ronen@technion.ac.il, shahar@ee.technion.ac.il

Abstract—Recent research has sought to accelerate crypto-
graphic hash functions as they are at the core of modern
cryptography. Traditional designs, however, suffer from the von
Neumann bottleneck that originates from the separation of
processing and memory units. An emerging solution to overcome
this bottleneck is processing-in-memory (PIM): performing logic
within the same devices responsible for memory to eliminate
data-transfer and simultaneously provide massive computational
parallelism. In this paper, we seek to vastly accelerate the state-
of-the-art SHA-3 cryptographic function using the memristive
memory processing unit (mMPU), a general-purpose memristive
PIM architecture. To that end, we propose a novel in-memory
algorithm for variable rotation, and utilize an efficient mapping
of the SHA-3 state vector for memristive crossbar arrays to
efficiently exploit PIM parallelism. We demonstrate a massive
energy efficiency of 1, 422 Gbps/W, improving a state-of-the-art
memristive SHA-3 accelerator (SHINE-2) by 4.6×.

Index Terms—Cryptography, SHA-3, processing-in-memory
(PIM), stateful logic, memristor.

I. INTRODUCTION

As we enter the era of data-intensive computing across many
Internet of Things (IoT) devices, cryptography is emerging as a
crucial field for secure communication. At the core of this field
are cryptographic hash functions [1] which are fundamental for
tasks such as digital signature generation and verification, key
derivation, and pseudo-random bit generation [1], [2]. These
functions generalize traditional hashing with additional proper-
ties aimed at improving security, such as being very infeasible
to invert. An emerging state-of-the-art hash function is Secure
Hash Algorithm-3 (SHA-3), which exploits techniques such
as sponge construction to enhance security [2].

While hashing is traditionally implemented via software,
hardware accelerators are emerging to provide unparalleled
performance using ASICs [3]–[6], FPGAs [3], [7], and mem-
ristive memories (e.g., ReRAM) [8]–[10]. Hardware accelera-
tors benefit from the inherent flexibility for bit-wise accesses
that does not exist in CPUs and GPUs. Yet, processing units,
including hardware accelerators, are subject to the memory
wall; therefore, when hashing large objects stored in memory
(or disk), data transfer becomes the bottleneck [8].

An emerging concept to overcome the memory wall is
that of Processing-in-Memory (PIM). The fundamental idea
of PIM is to shift the computation into the memory, thereby
avoiding the data-transfer between the CPU and memory.
Recent techniques for PIM involve using the same physical
devices for both binary storage and basic digital logic gates,
via technologies such as digital memristive memories [11],

[12], DRAM [13], SRAM [14], and FeFET [15]. Previous
works have sought to utilize this emerging field to accelerate a
wide range of applications, including the SHA-3 cryptographic
hash function [8]–[10]. Unfortunately, previous SHA-3 designs
require specific complex near-array periphery that leads to
costly data conversion which diminishes the benefit of PIM.
Conversely, we seek to design an in-array algorithm that
utilizes the emerging general-purpose memristive Memory
Processing Unit (mMPU) [16] without any custom circuitry.

We focus on a digital memristive PIM architecture [11],
[12], [16] as this technology has vast potential for large-
scale efficient PIM; regardless, the proposed algorithms can
be generalized to additional PIM techniques and technologies.
Memristors [17] are similar to resistors as they are two-
terminal devices, yet they possess a highly unique property: an
applied voltage can alter their internal resistance. Therefore,
memristors can inherently support storage by representing
binary information via their resistance. Interestingly, recent
works [18]–[20] have shown that memristors also support
basic logic functionality through stateful logic [16], [21]. Thus,
memristors inherently enable both memory and digital logic.

In this paper, we propose an efficient in-memory algorithm
for SHA-3, using the mMPU [16], that efficiently exploits
the vast potential of PIM. We compare our design to other
accelerators and demonstrate superior energy efficiency.

II. BACKGROUND

A. Secure Hash Algorithm-3 (SHA-3)

Hash algorithms reduce a large variable-sized input to a
small fixed-sized output (hash value) while maintaining a near-
uniform output distribution. Cryptography, the field in com-
puter science establishing secure communication, extends the
notion of hash functions to cryptographic hash functions [1]
that also possess certain properties which enhance security.
For example, these functions must be infeasible to invert and
slight modifications to the input drastically change the hash
value. The Keccak family of cryptographic hash functions
was proposed by Bertoni et al. [22], and was later adopted as
part of the state-of-the-art SHA-3 standard [2]. This standard
proposes four variations for different output lengths; without
loss of generality, we discuss SHA3-256 in this paper.

We describe the overall operation of SHA-3, as shown in
Fig. 1(a). The input is a message of size m bits which is
padded to be of a length that is a multiple of r and then split
into t blocks of size r each (e.g., r = 1088). The algorithm



Fig. 1. (a) Overview of the SHA-3 algorithm. (b) The Keccak-f round function [22]. (c) The notation for the state vector and its subvectors [22].

Algorithm 1 Keccak-f
Input: State array A[x][y] (for all x, y ∈ [0, 4])
Output: State array A[x][y] (for all x, y ∈ [0, 4])

1: for ir = 0, ..., 23 do
Theta (θ) step:

2: C[x]← A[x][0]⊕ · · · ⊕A[x][4] ∀x ∈ [0, 4]
3: D[x]← C[x− 1]⊕ (C[x+ 1] ≪a 1) ∀x ∈ [0, 4]
4: A[x][y]← A[x][y]⊕D[x] ∀x, y ∈ [0, 4]

Rho (ρ) step:
5: A[x][y]← A[x][y] ≪ r[x][y]b ∀x, y ∈ [0, 4]

Pi (π) step:
6: A[y][2x+ 3y]← A[x][y] ∀x, y ∈ [0, 4]

Chi (χ) step:
7: A[x][y]← A[x][y]⊕ (A[x+ 1][y] ∧A[x+ 2][y]) ∀x, y

Iota (ι) step:
8: A[0][0]← A[0][0]⊕RC[ir]

c

9: end for
aThe operator ≪ denotes a rotation (cyclic shift),
br[x][y] denotes the constants that define the rotation amount [2],
cRC[ir] denotes the constants for each round [2].
C[x], D[x] are intermediates, and indexing is modulo 5.

proceeds with the absorbing phase that initializes an internal
state of b ≜ r + c bits to zero and then iteratively performs
an exclusive-or (XOR) with an input block followed by the
Keccak-f routine. The routine considers the state vector as
a 5× 5× 64 binary tensor and applies the operations detailed
in Algorithm 1 and Fig. 1(b). The state vector after the final
iteration is truncated to receive the overall hash1.

B. Memristive Digital Processing-in-Memory (PIM)

Memristors [17] are rapidly emerging as novel physical
devices that inherently support both storage and logic func-
tionalities. Memristors are similar to resistors in that they are
two-terminal resistive devices, yet they also possess a unique
property: a sufficiently-high current can modify their internal
resistance. Therefore, memristors can be utilized for binary
information storage (e.g., designating high resistance as logical

1Extendable-output-functions continue with additional iterations of Keccak-
f as part of the squeezing phase, to generate hash values longer than the state
array. The proposed algorithm can also be generalized to such functions.

Fig. 2. (a) Memristive stateful logic – a single cycle operation across multiple
rows simultaneously. (b) Switches creating four independent partitions.

0 and low resistance as logical 1) as data is written with a
relatively high current and read using a relatively low voltage
(measuring the current and deriving the resistance). Mem-
ristors are typically connected in crossbar array structures,
as shown in Fig. 2(a). Furthermore, memristors inherently
support stateful logic [16] in the resistive domain which sets
the resistance of an output memristor conditional on the states
of the input memristors (e.g., performing NOR) [18]–[20].

The dual functionality of memristors can be exploited
towards the memristive Memory Processing Unit (mMPU):
a general-purpose memory with massive computational paral-
lelism for bitwise operations, originating from three forms:

• Row/column parallelism: By applying voltages on bit-
lines/wordlines of crossbars, we find that several gates
can be performed in parallel within the array itself
(when their columns/rows are aligned across different
rows/columns) [11], [12], as shown in Fig. 2(a).

• Partition parallelism: An overall crossbar may be split
into multiple smaller partitions, using transistor switches
that divide the bitlines/wordlines, to enable further paral-
lelism [20], [23], [24], as shown in Fig. 2(b). This enables
parallel gates within the same row/column, in addition to
the parallelism across multiple rows/columns.

• Crossbar parallelism: The overall mMPU consists of
many crossbar arrays that may operate in parallel [25].



Fig. 3. Overview of the proposed architecture for a (a) single SHA-3 crossbar
array that holds multiple SHA-3 units. (b) A single SHA-3 unit.

III. HASHPIM ARCHITECTURE

We propose to exploit the vast potential of the mMPU
towards an efficient, scalable, and high-throughout SHA-3 al-
gorithm. The benefit of the mMPU over alternative techniques
is both due to the ability to efficiently compute precisely where
the state vector is stored, and the high efficiency of processing
within an array rather than near-array via peripheral circuits.

We detail the proposed architecture within a single crossbar
array as the same operations may be performed in parallel
across multiple crossbar arrays. Consider a crossbar array as
shown in Fig. 3(a), with size of 1024×1024 bits, divided into
378 partitions (27 horizontally, 14 vertically). Each partition
(group of 72×37 memristors) is designated a SHA-3 unit and
is assigned to compute the SHA-3 hash for a specific message.
Thus, the 378 units enable the parallel computation of SHA-3
on 378 different messages within the same crossbar array.

Each SHA-3 unit stores the state-vector corresponding to
that message (throughout the computation) and is responsible
for applying the Keccak-f function on the state-vector. We
choose to map the 5 × 5 × 64 state-vector onto 25 × 64
memristors (similar to [9]) as an analysis of the routines in
the Keccak-f function revealed that this mapping supports
optimal parallelism for the θ, π, χ and ι steps. Regarding the ρ
step, previous works have been unable to implement this step
within the array due to the different rotation amount provided
for each lane (see Fig. 1(c)), and have thus instead required
to read/write the state-arrays and perform the computation
in the periphery. The drawback of such a solution is that
the periphery becomes the bottleneck when scaling (e.g.,
378 SHA-3 units). Conversely, by extending a recent concept
proposed for floating-point operations [24], we demonstrate an
efficient in-array design which circumvents such periphery.

In this section, we detail the proposed design within each
SHA-3 unit for the various steps that comprise Algorithm 1.

A. Theta (θ) Step

We start by reducing the state-vector (see Fig. 1(c)) across
the y dimension using exclusive-or (XOR) operations; that
is, we compute the XOR of every five columns from the
25× 64 state-vector to result in a 5× 64 vector representing

Fig. 4. Overview of the operation of the (a) Theta, (b) Rho, and (c) Iota steps.
The Pi and Chi steps require only row operations and are thus not drawn.

Algorithm 2 Variable Rotation

Input: Nx-bit xi, Nt-bit ti, for every column i.
Output: Nx-bit output zi = xi ≪ ti for every column i.

1: ∀i : zi ← xi

2: for j = 0, ..., log2(Nx) do
3: ∀i : zi ← muxti(zi ≪ 2j , zi)
4: end for
5: return zi for every column i.

C[0], . . . , C[4] (see Algorithm 1) that is stored in the interme-
diate area (see Fig. 4(a)). We compute D[0], . . . , D[4] by copy-
ing C[0], . . . , C[4] to 5 additional intermediate columns (in-
row gates), shifting all of the columns once (in-column gates),
and then computing the XOR with C[0], . . . , C[4]. Lastly, the
original state-vector is updated by computing the XOR of all
columns with the relevant lanes from D[0], . . . , D[4] (e.g.,
D[0] is XORed with the first five columns in the state-vector).

B. Rho (ρ) Step

At the core of this step is a variable rotation: for each lane in
the state vector, we need to rotate that lane by a given number
of bits (determined according to r[x][y] see [2]). The difficulty
in this variable rotation is that, unlike the constant shift in θ,
every lane may contain a different rotation amount [13]. This
is seemingly an inherent contradiction to the operation of the
mMPU as the operation involves data-dependent control flow.

A similar task of in-array variable shifting was recently
considered for in-memory floating-point operations [24]. Es-
sentially, the variable shift is represented as a sequence of mul-
tiplexer operations that are chosen according to a logarithmic-
shifter [26] design, thereby converting the control-flow to data-
flow. We extend this algorithm to the task of variable rotation
(cyclic shifting) in Algorithm 2. To remain in-place (i.e., not
require a copy of the state-vector), we analyze the cyclic
dependencies in the rotation and execute them serially with
a single slice of redundancy for the storage of the state array.

We store the constant shift amounts (r[x][y]) at the bottom
of the crossbar array (ROT in Fig. 3(a)), shared across all
of the units that are aligned vertically (to improve memory
utilization for a negligible latency increase). Therefore, as
shown in Fig. 4(b), we find that each iteration of Algorithm 2
begins by retrieving the relevant bit for the shift amount from
the shared ROT for that vertically-aligned set of units.



C. Pi (π) Step

The step involves reordering the lanes, whereas, at each
time, one lane, A[x][y] is copied to the intermediate area along
with the target lane A[y][2x+ 3y] and then the original lane,
A[x][y], is copied to the target address. This process is then
repeated for A[y][2x + 3y] until all of the lanes in the state-
array have moved (except for A[0][0] that remains in-place).

D. Chi (χ) Step

We convert the expression in Algorithm 1 to a sequence of
NOT, NOR, XOR, and COPY operations (using De Morgan’s
law). Each plane (see Fig. 1(c)) holds five dependent lanes;
hence, all lanes of that plane are inverted and stored at the
intermediate area (later to perform the NOR operation with
the adequate neighbor lane, see Algorithm 1). Lastly, each lane
of that plane is XORed with the NOR result of the neighbor
lanes, and is stored back by a COPY operation.

E. Iota(ι) Step

In this step, an XOR operation is performed on lane A[0][0],
after creating a local copy of the round constant [2], RC[ir] :
ir ∈ [0, nr − 1] from the RC block (see Fig. 4(c)), to each
SHA-3 unit of that row. The new value of A[0][0] is mapped
to the original location as the input A[0][0].

IV. EVALUATION

The HashPIM architecture and algorithm are evaluated on
a 1024 × 1024 crossbar array which contains UXB ≜ 378
independent SHA-3 units that operate in parallel (each of
size 72 × 37). The results are verified by a cycle-accurate
simulator [27] that logically models the crossbar array (with
partitions) and provides an interface for in-memory operations,
while recording latency, energy and area usage. The results
are extended to NXB crossbars. Overall, one SHA-3 round
requires 3,494 cycles (LatencyRound) and consumes 0.765nJ
(EnergyUnit), assuming r = 1088 and MAGIC [19] gate
parameters of 3ns delay (333MHz) and 6.4fJ energy [12].
The expressions for throughput and power are:

TputUnit =
r

LatencyRound
∗ f, (1)

TputSystem = TputUnit ∗ UXB ∗NXB , (2)

PowerSystem =
TputSystem ∗ EnergyUnit

r
. (3)

Table I summarizes our results and compares to other SHA-
3 accelerators (both CMOS-based and memristor-based). The
code repository [27] includes additional results as well as an
explanation for the methodology that led to these results.

V. CONCLUSION

This paper demonstrates the vast potential of the mMPU for
energy-efficient cryptographic hash algorithms through a case
study with the SHA-3 function. We propose a novel variable
rotation algorithm and an efficient mapping that exploits the
inherent parallelism of the mMPU towards high-throughput
SHA-3 execution. This provides a massive throughput per watt
of 1, 422 Gbps/W, improving the state-of-the-art by 4.6×.

TABLE I
PERFORMANCE COMPARISON OF SHA-3 HARDWARE DESIGNS

Work f Tput Tput/W Tput/Area
(MHz) (Gbps) (Gbps/W) (bps/F 2)

65nm ASIC [5] 1K 48 - 7,619
SHINE-1 [8] 2K 33.4 263 21,916
SHINE-2 [8] 2K 54 311 22,227

HashPIM (1 XB) 333 39.2 1,422 9,354HashPIM (2 XB) 78.4

ACKNOWLEDGMENT

This work was supported by the European Research Council
through the European Union’s Horizon 2020 Research and
Innovation Programe under Grant 757259.

REFERENCES

[1] A. Menezes, P. V. Oorschot, and S. Vanstone, “Handbook of applied
cryptography (1st edition),” CRC Press, 1997.

[2] M. J. Dworkin, “SHA-3 standard: Permutation-based hash and
extendable-output functions,” NIST, 2015.

[3] A. Akin et al., “Efficient hardware implementations of high throughput
SHA-3 candidates Keccak Luffa and Blue Midnight Wish for single-and
multi-message hashing,” in SIGCONF, 2010.

[4] P. Pessl and M. Hutter, “Pushing the limits of SHA-3 hardware imple-
mentations to fit on RFID,” CHES, 2013.

[5] M. M. Wong et al., “A new high throughput and area efficient SHA-3
implementation,” ISCAS, 2018.

[6] R. Ramanarayanan, “18Gbps 50mW reconfigurable multi-mode SHA
hashing accelerator in 45nm CMOS,” in ESSCIRC, 2010.

[7] J. Strömbergson, “Implementation of the Keccak hash function in FPGA
devices,” Techical report, InformAsic AB, 2008.

[8] K. Nagarajan et al., “SHINE: A novel SHA-3 implementation using
ReRAM-based in-memory computing,” ISLPED, 2019.

[9] D. Bhattacharjee, V. Pudi, and A. Chattopadhyay, “SHA-3 implemen-
tation using ReRAM based in-memory computing architecture,” 18th
International Symposium on Quality Electronic Design (ISQED), 2017.

[10] C. Yang and Z. Chen, “A processing-in-memory implementation of
SHA-3 using a voltage-gated spin hall-effect driven MTJ-based cross-
bar,” in GLSVLSI, 2019.

[11] N. Talati et al., “Logic design within memristive memories using
memristor-aided logic (MAGIC),” TNANO, 2016.

[12] M. S. Q. Truong et al., “RACER: Bit-pipelined processing using resistive
memory,” in MICRO, 2021.

[13] L. Shuangchen et al., “DRISA: A DRAM-based reconfigurable in-situ
accelerator,” MICRO, 2017.

[14] S. Aga et al., “Compute caches,” HPCA, 2017.
[15] D. Reis et al., “Computing in memory with FeFETs,” in ISLPED, 2018.
[16] S. Kvatinsky, “Making real memristive processing-in-memory faster and

reliable,” in CNNA, 2021.
[17] L. Chua, “Memristor-the missing circuit element,” TCT, 1971.
[18] J. Borghetti et al., “‘Memristive’ switches enable ‘stateful’ logic oper-

ations via material implication,” Nature, 2010.
[19] S. Kvatinsky et al., “MAGIC—memristor-aided logic,” TCAS-II, 2014.
[20] S. Gupta et al., “FELIX: Fast and energy-efficient logic in memory,” in

ICCAD, 2018.
[21] J. Reuben et al., “Memristive logic: A framework for evaluation and

comparison,” in PATMOS, 2017, pp. 1–8.
[22] G. Bertoni, “Keccak,” Advances in Cryptology – EUROCRYPT, 2013.
[23] O. Leitersdorf, R. Ronen, and S. Kvatinsky, “MatPIM: Accelerating

matrix operations with memristive stateful logic,” in ISCAS, 2022.
[24] O. Leitersdorf et al., “AritPIM: High-throughput in-memory arithmetic,”

in arXiv, 2022.
[25] R. Ronen et al., “The Bitlet Model: A parameterized analytical model

to compare PIM and CPU systems,” JETC, 2021.
[26] B. Parhami, “Computer Arithmetic: Algorithms and hardware designs,”

Oxford University Press, vol. 2, 2010.
[27] Available at https://github.com/BatelOved/HashPIM.


