
Enhancing Security of Memristor Computing System

Through Secure Weight Mapping
Minhui Zou∗, Junlong Zhou†, Xiaotong Cui‡, Wei Wang∗, and Shahar Kvatinsky∗

†School of Computer Science and Engineering, Nanjing University of Science and Technology
‡School of Cyber Security and Information Law, Chongqing University of Posts and Telecommunications

∗Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology

Abstract—Emerging memristor computing systems have
demonstrated great promise in improving the energy efficiency
of neural network (NN) algorithms. The NN weights stored in
memristor crossbars, however, may face potential theft attacks
due to the nonvolatility of the memristor devices. In this paper, we
propose to protect the NN weights by mapping selected columns
of them in the form of 1’s complements and leaving the other
columns in their original form, preventing the adversary from
knowing the exact representation of each weight. The results
show that compared with prior work, our method achieves
effectiveness comparable to the best of them and reduces the
hardware overhead by more than 18X.

I. INTRODUCTION

Neural network (NN) algorithms are essential elements

across industries such as robotics, visual object recognition,

and natural language processing. They are typically data-

intensive, involving a large number of vector-matrix multi-

plications (VMMs). Conventional computer architectures sep-

arating computation and memory are challenged because of

their ineffectiveness in executing such algorithms. The com-

puting systems based on emerging memristor devices, such as

resistive random-access memory (RRAM) and phase-change

memory (PCM), introduce an in situ solution to improve speed

and energy efficiency. These memristor computing systems can

both store the NN weights and process them in memory, which

avoids a huge matrix data movement between computing units

and memory [1]. As shown in Fig. 1, a memristor computing

system consists of many processing elements (PEs), each

equipped with a group of memristive crossbar arrays and

peripheral components.

The NN weights stored in the memristor crossbars, however,

are exposed to the adversary when the system is turned off

due to the nonvolatility of memristor devices. With access to

the memristor conductance values, the adversary may extract

the well-trained NN models from them. The extracted NN

models could damage the intellectual property of the NN

model designers and may lead to an information leak if the

models are trained with private training datasets. Even worse,

trojans may be inserted into extracted NN models [2] and

then implemented in critical areas such as facial recognition

systems, which could cause security crises. Therefore, it is

important and urgent to protect the NN weights stored in

memristor crossbars.

The straightforward solution is to encrypt the NN weights

and decrypt them each time they are used. For example, [3]

This work was supported by the National Natural Science Foundation
of China (No. 62172224) and the European Research Council through the
European Union’s Horizon 2020 Research and Innovation Programe under
Grant 757259.

Fig. 1. Structure of a memristor computing system and thwarting potential
theft attacks by secure weight mapping.

proposed to encrypt the whole NN model and [4] proposed

encrypting only part of the NN weights. An incremental

encryption method [5] could also be implemented since the

NN inference is processed layer by layer. The methods in-

volve frequent writing operations to the memristor devices

for encryption and decryption of NN weights. Unfortunately,

frequent writing operations to the memristor devices not

only consume high energy and introduce long latency into

the systems [6], [7], they also shorten the lifetime of the

memristor computing systems due to the limited endurance of

memristor devices [1]. [8], [9], and [10] proposed to protect

the NN weights through hiding either the row connections

or column connections between memristor crossbars. Such

methods incur significant area and power overheads due to

expensive implementation of the protection modules. To tackle

these problems, this paper proposes to enhance the security

of memristor computing systems by defending against theft

attacks aimed at the NN weights. The contributions of this

paper are summarized below:
• There are two popular schemes for mapping NN weights

to memristor crossbars. One is biasing the negative

weights to be non-negative and the other is using the dif-

ferential values of pairs of memristor devices to represent

negative weights. For each of the mapping schemes, we

propose a protection method based on encoding selected

columns of weights.
• We present the implementation of the two protection

methods in memristor computing systems. The proposed

methods do not affect the performance of the systems.

We also suggest techniques to increase the security of

the proposed methods by protecting every smaller block

instead of every crossbar group and padding small weight

matrices.

• We compare the proposed methods with prior work on

182

2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/22/$31.00 ©2022 IEEE
DOI 10.1109/ISVLSI54635.2022.00044

three NN models. The experimental results show that the

proposed methods achieve effectiveness on par with the

best of the prior work and generate the lowest hardware

overhead to the systems.

II. BACKGROUND

A. Threat Model and Motivation
We assume that the adversary knows the structures of the

NN models stored in the memristor computing systems. We

also assume that the adversary could access the conductance

values of the memristor devices [10]. With both the NN struc-

tures and weights, the adversary could extract the well-trained

NN models. Hence, in this paper, the goal of the adversary is

to read the NN weights correctly from the memristor devices.

We, in opposition, want to prevent the adversary from realizing

this goal. As shown in Fig. 1, the NN weights are securely

mapped to crossbars so that the NN models extracted by the

adversary could not function normally.

B. Related Work

[8] proposed to obfuscate the crossbar row connections

between the positive and negative crossbars. [9] suggested

hiding the crossbar column connections between consecutive

crossbars. Both these protection methods, however, rely on

high-multiplicity multipliers and demultipliers, which generate

a large hardware overhead. [10] proposed to hide the connec-

tions between the inputs and the crossbar rows. This protection

method is based on SRAM arrays, which demand a significant

amount of hardware area and power. In Section V, we show

that our proposed methods achieve effectiveness comparable

to the best of the related work and are more efficient than

them in terms of area and power.

C. Preliminaries

The most computing-intensive and time-consuming parts

of NN alogrithms are convolution (Conv) layers and fully-

connected (FC) layers. The main computation of FC layers

can be implemented directly with VMMs, which are described

as:

yj =
m−1∑

i=0

wi,j · xi, (1)

where xi(i ∈ [0,m − 1]) is the input feature map, yj(j ∈
[0, n− 1]) is the output, and wi,j is the synapse weight. The

main computation of Conv layers is different but could also

be transformed to be implemented with VMMs.

In memristor computing systems, the input feature maps

are transformed into voltages (V) by using digital-to-analog

converters (DACs) that are applied to the wordlines (WLs) of

the memristor crossbars. The bitlines (BLs) of the memristor

crossbars output the accumulated currents (I). The output

currents are then transformed by using analog-to-digital con-

verters (ADCs). The analog VMMs performed by a memristor

crossbar are described as:

Ij =
m−1∑

i=0

ci,j · Vi, (2)

where ci,j is the conductance of the cell at the ith row and

jth column of the crossbar. Due to the nonlinear imperfection

and immature manufacturing of memristor devices, the con-

ductance value of a memristor device can only be tuned to

limited discrete conductance states, and multiple crossbars are

used to represent high-precision weights [11].

III. NN WEIGHT MAPPING SCHEMES AND PROTECTION

METHODS

An NN weight can be positive or negative, but the conduc-

tance of memristor devices can only be positive. To support

negative weights, different mapping schemes were proposed

[11], [12]. Two popular mapping schemes are biasing the neg-

ative weights to be non-negative [12] and using the differential

values of pairs of memristor devices to represent negative

weights [11]. For the purposes of our discussion, let us denote

the two mapping schemes as mapping scheme 1 and mapping

scheme 2, respectively. Based on these two mapping schemes,

we present two corresponding NN weight protection methods.

A. Mapping Scheme 1 and Proposed Protection

[12] proposed to add a bias to all the NN weights so

that they are all non-negative. After computation, the bias is

then subtracted to restore the correct results. For this mapping

scheme, we propose to protect the NN weights by selectively

encoding the weights. Fig. 2(a) shows an example, where

an input vector (1, 0) is multiplying a column of weights

(012, 102)
T , which is mapped to column 1© and column 2©,

of memristor devices, respectively. Column 1© presents the

weights mapped in the original form. Column 2© presents

the weights mapped in the form of 1’s complements. The 1’s

complement of weight wi,j is determined by

ŵi,j = 2pw − 1− wi,j , (3)

where pw denotes the precision of the weight wi,j . We denote

the weights in the form of 1’s complements as transformed

weights. With the transformed weights, the observed VMM

output for the jth column of weights could be written as

ŷj =
m−1∑

i=0

ŵi,j · xi. (4)

Combining (1), (3) and (4), we get

yj = (2pw − 1)
m−1∑

i=0

xi − ŷj . (5)

Note that
∑m−1

i=0 xi is the sum of inputs. For this example, the

sum of inputs is 1+ 0. Also note that (2pw − 1) is a constant

scalar, and in this example, the scalar is 22−1. The product of

the sum of the inputs and the scalar is the bias, which subtracts

the observed column output ŷj to restore the correct VMM

result. Column 1© and column 2© of the weights receives the

same input vector. For column 1© of weights, the correct VMM

result is just the observed output, while for column 2© the

correct VMM result is calculated by subtracting the observed

output from the bias. The adversary, however, does not know

which column of weights are mapped in the transformed way.

Thus, the adversary has to guess the key for each column.

There are two options for each column of memristor devices.

The correct keys are No and Y es for column 1© and column

2©, respectively. If the input keys are not correct, the VMM

result will be wrong.

183

Fig. 2. Two simple examples explaining (a) the protection method for mapping scheme 1, and (b) the protection method for mapping scheme 2.

B. Mapping Scheme 2 and Proposed Protection

An NN weight wi,j could also be implemented with the

differential value of a pair of memristor devices [11], one of

which is connected with a positive voltage and the other of

which a negative voltage. We denote the conductance of the

two memristor devices as g+i,j , and g−i,j , respectively. Now (1)

is rewritten as

yj =
m−1∑

i=0

(c+i,j − c−i,j) · xi. (6)

Regarding this mapping scheme, we propose to protect the

NN weight by encoding the memristor conductance instead of

the weights. That is

ĉ±i,j = 2b − 1− c±i,j . (7)

Fig. 2(b) shows an example, where an input vector (1, 1) is

multiplying a column of weights (012,−102)T , mapped to

pair 1© and pair 2© of memristor columns, respectively. The

pair 1© is the weights mapped in the memristor devices in the

original form. The pair 2© is in the form of 1’s complement,

the transformed memristor conductance of pair 1©. Combining

(6) and (7), we get
yj = −ŷj , (8)

where we can see that when the memristor conductance of

a pair of columns is encoded, the VMM result is simply the

reverse of the original VMM result. Thus, in order to get the

correct VMM result of the transformed column of weights, we

just need to flip the sign bit of the observed output. For the

pair of columns 1©, the correct VMM result is the observed

output without being flipped, while for pair of columns 2©, it

is flipped. Nevertheless, again, the adversary only has to guess

which column of weights are mapped in the transformed way.

Likewise, there are also two options for each pair of memristor

columns and the VMM result will be correct only when the

input keys are correct.

IV. IMPLEMENTING THE PROTECTION METHODS

We follow the MNSIM [13] architecture. A PE contains

G crossbar groups and each such group consists of a single

crossbar for mapping scheme 1 or a crossbar pair for mapping

scheme 2. Furthermore, each crossbar group is equipped with

some peripheral components such as ADCs and Shfit&Adds.

The proposed methods map selected columns of NN weights

in the transformed form, leaving the other columns in their

original form.

A. Mapping Scheme 1

To correctly output the VMM results of the columns of

weights mapped in the transformed form, a decoder module

is inserted in the PE and is connected to the ADC, as shown

in Fig. 3(a). The decoder module comprises a full subtractor

and a 2:1 MUX.

Assume a column of weights w:,j with its size equal to

the height of the memristor crossbar. Assume also that the

precision of the memristor devices is pm and pw = pm ×G.

Then w:,j is divided into g columns of partial weights (w0
:,j

to wG−1
:,j) and these are mapped to the jth memristor column

across the G crossbar groups, respectively. The VMM result

for wg
:,j (g ∈ [0, G− 1]) is

yj =
G−1∑

g=0

(2pm)
G−1−g · ygj , (9)

where ygj is the partial VMM result of the jth crossbar column

in the gth crossbar group. If w:,j is mapped in the transformed

form, then the partial VMM result for wg
:,j is

ygj = (2pm − 1)

m−1∑

i=0

xi −
m−1∑

i=0

ŵg
i,j · xi, (10)

where ŵg
i,j is the 1’s complement of wg

i,j , and
∑m−1

i=0 xi is

the sum of inputs, which can be calculated by the inputs

multiplied by a column of memristor devices whose values are

all being fixed as 1, as shown in Fig. 3(a). 2pm
∑m−1

i=0 xi can

be calculated by shifting the sum of inputs left by pm bits using

the Shift&Add inside the PE. The bias (2pm−1)
∑m−1

i=0 xi can

then be calculated by subtracting the sum of inputs from the

shifted sum of inputs by using the subtractor of the decoder

module, as in Fig. 3(a). The bias is stored in a register or

buffer within the PE and sent to the decoder module to restore

the correct partial VMM result ygj . The bias only needs to be

calculated once for each input vector. Note the key for the

column of weights w:,j is shared by all the columns of partial

weights (w0
:,j to wG−1

:,j).

Also note that for mapping scheme 1, all the NN weights

are biased. To get the correct layer outputs of an NN layer,

the system needs to collect the sum of the layer inputs to

restore the unbiased layer outputs. [12] proposed using the

last memristor column of each crossbar to calculate the sum of

inputs. Thus we could reuse the sum of inputs for the proposed

method so that no extra memristor devices are required.

184

Fig. 3. Design of the proposed protection methods: (a) For mapping scheme 1, designing and inserting the decoder module for each crossbar group with a
single crossbar; and (b) for the mapping scheme 2, designing and inserting the decoder module for each crossbar group with a positive/negative crossbar pair.

A column of NN weights larger than the number of rows of

a crossbar will be divided into multiple PEs, each generating

a partial VMM output. Only when each partial VMM ouput

is decoded correctly, will the column output be correct. For a

column of NN weights with its size less than the number of

rows of a crossbar, we pad it as further explained in Section

IV-C.

In order not to affect the system throughput, we insert one

decoder module for each ADC. Because of the high overhead

of ADCs and their relatively higher operation frequency than

memristor reading, there are only a limited number of ADCs

for each crossbar group, which are shared by the crossbar BLs

throught multipliers [14]. Thus, for each crossbar group, the

number of decoder modules, equal to the number of ADCs of

the crossbar group, is small. For each column across all the G
crossbar groups, we need a 1-bit key. Each column output is

checked to determine whether we have to do the subtraction

according to the key.

B. Mapping Scheme 2
For mapping scheme 2, each crossbar group contains a

positive/negative crossbar pair. The outputs from the positive

and negative crossbar pair are summed in the analog domain.

Similar to the design of the protection method for mapping

scheme 1, a decoder module is inserted in to the PE and

connected to the ADC, as shown in Fig. 3(b). The decoder

module comprises an inverter and a 2:1 multiplier.

Similarly, a column of weights w:,j are divided into G
columns of partial weights (w0

:,j to wG−1
:,j) and each of

them is mapped to the jth positive/negative column pair of

memristors of all the G crossbar groups. For example, the

column of partial weights wg
:,j (g ∈ [0, G − 1]) is mapped

to a positive column of memristors and a negative column of

memristors, the conductance of which are denoted as cg+:,j , and

cg−:,j , respectively. If the column of weights w:,j is selected

for transformation, then both cg+:,j , and cg−:,j are encoded,

respectively. The correct partial VMM output for wg
:,j is

ygj = −
m−1∑

i=0

(ĉg+i,j − ĉg−i,j) · xi, (11)

where ĉg+i,j and ĉg−i,j are the 1’s complements of cg+i,j and cg−i,j ,

respectively. That is, the decode module needs to reverse the

observed output to get ygj . Again, the key for the column of

weights w:,j is 1-bit and shared by all the columns of partial

weights (w0
:,j to wG−1

:,j). The number of decoder modules

inserted for each crossbar group is equal to the number of

ADCs it has and the throughput of the ADCs is not affected.

C. Increasing the Security of the Proposed Protection Methods

Assume the memristor crossbars are M × N in size. For

the protection methods for mapping schemes 1 and 2, the

trial times for brutal forcing a single crossbar group is 2(N−1)

and 2N , respectively. To increase the security of the proposed

methods, we propose to divide a crossbar (pair) into k blocks

by every x WLs (k = M/x). In fact, due to the resolution

limitation of ADCs, each time only part of the WLs are

activated [15]. We set x as the integer multiple of the number

of activated WLs each time so that the crossbar performance

is not affected. The security of the protection methods for

mapping schemes 1 and 2 becomes 2k×(N−1) and 2k×N ,

respectively. For example, if M , N , and x are 128, 128, and

8, respectively, then the adversary needs to try 21016 and 21024

times to break a crossbar (pair) for the respective protection

methods for mapping schemes 1 and 2, which is sufficiently

secure for current computing power.

For an NN weight matrix that is smaller than the size of a

memristor crossbar, the security is limited. For example, again

if M , N , and x are 128, 128, and 8, respectively, the trial times

to break a weight matrix of size 32×32 is only 232×(32/8). To

increase the security of a small NN weight matrix, we could

pad it with random values within the range of the real minimal

and maximal weight values so that it is the same size as the

crossbars. The fake weight rows (columns) are permuted with

the real weight rows (columns). The relative order of the real

rows (columns), however, remains unchanged from that of the

original small weight matrix. An additional M -bit plus N -

bit keys are needed to indicate the real rows and columns of

weights, respectively.

D. Impact on the System Performance

For a given NN model, the NN weights are securely mapped

to the memristor computing system based on the proposed

protection methods according to the predefined keys. The

mapping is done offline and only once. We assume the keys

are stored in a tamper-proof memory (TPM) embedded in

the system. After setup, each time the memristor computing

system is used for inference, the decoder modules are provided

185

with the keys from the TPM. The inserted decoder modules

connected with the ADCs are non-blocking and the throughput

of the ADCs is not affected. For each decoder module for

mapping scheme 1, only a single cycle is needed to calculate

the bias for each crossbar input vector. The additional 1-

cycle latency could easily be hidden by system parallelism.

The decoder modules perform the subtraction between the

bias and the column outputs or just pass through the column

outputs, which does not incur any latency overhead. For each

decoder module for mapping scheme 2, it reverses or just

passes through each column output, which does not incur any

latency overhead, either.

E. Security Analysis
One potential attack is dividing and conquering. That is,

each time the adversary targets only a single crossbar (group)

column and expects to see higher and lower classification

accuracy of the systems with the correct and wrong keys for

the column, respectively. In this way, the key for the column

is discovered. Then the adversary targets the next column and

continues thus until the keys for all columns are discovered.

This kind of attack, however, does not work in our proposed

technique, because when the majority of the NN weights of

the whole NN models are protected, the classification accuracy

of the systems stays around 10% (for the CIFAR10 dataset

[16]). In fact, through experiments, we found removing the

protection for a number of columns or a whole NN layer

does not necessarily increase the classifying accuracy of the

systems. It may even slightly decrease the classifying accuracy

because of the non-linear characteristics of the NN algorithms.

To conclude, our proposed protection methods are immune

from the divide-and-conquer type of attack.

V. EVALUATION

We tested the proposed protection methods on three NN

models: LeNet [17], AlexNet [18], and VGG16 [19]. These

models are modified and trained on the CIFAR10 dataset with

8-bit weights. The accuracy of LeNet, AlexNet, and VGG16 is

70.27%, 87.01%, and 93.09%, respectively. For comparison,

we implemented the protection methods of [8], [9], and [10]

on the same models. The models are simulated with MNSIM

[13]. The crossbar size for mapping scheme 1 is 256 × 256
and for mapping scheme 2 is 256× 257 with the last column

preserved for calculating the sum of inputs. Each PE has 8

crossbar groups and each crossbar group is equipped with 16

ADCs. Each time 16 WLs are activated. x is set as 32. The

precision of memristor devices is 1 bit. The area of memristor

devices we used for simulation refers to [20], and the digital

part of the system together with the protection modules of all

the protection methods are evaluated based on 28nm CMOS

technology.

The protection method of [8] only applies to crossbar pairs

with crossbar row connections. Hence, the protection method

of [8] was only evaluated for mapping scheme 2. The other

two protection methods [9], [10] were implemented for both

mapping schemes. For simplicity, we denote the mapping

schemes 1 and 2 as m1 and m2, respectively; and denote the

protection methods of the proposed, [8], [9], and [10] as our,

date20, asp21, and sram20, respectively.

Fig. 4. Results comparison of the effectiveness of the protection methods
(lower is better) when protecting only a single layer or all layers for Top:
LeNet, Middle: AlexNet, and Bottom: VGG16.

A. Effectiveness
The effectiveness of the proposed methods is defined as

the prediction accuracy of the extracted NN models by using

random keys. Each experiment was carried out 40 times and

the average results are determined. The lower the accuracy is,

the better the effectiveness of the method. Fig. 4 shows the

effectiveness of all the protection methods by protecting only

a single NN layer or all NN layers. When all the layers are

protected, all the protection methods could lead to the accuracy

of the NN models dropping to approximately 10%, which

means the NN models are no better than random guessing.

On the other hand, when only a single layer is protected,

the effectiveness of the protection methods varies. For all the

models, when only protecting a single layer, [8] could not

protect them well for some layers such as layer 4 of LeNet

while the other methods remain effective for all layers. For

small layers or layers of small models, the proposed methods

together with [9] and [10] remain effective. For the large layers

of the big model VGG16, the proposed methods outperform

[9]. Overall, the effectiveness of the proposed methods is

comparable with that of the most effective method [10].
B. Hardware Overhead

The hardware overhead of the protection methods was

evaluated in terms of the area, power, and key storage of

the protection modules inserted in the memristor computing

186

TABLE I
AREA AND POWER OVERHEADS OF THE PROPOSED METHODS

LeNet AlexNet VGG16

Area
m1 0.0048% 0.1108% 0.0197%
m2 0.0011% 0.0246% 0.0044%

Power
m1 0.0341% 0.0975% 0.0145%
m2 0.0096% 0.0265% 0.0039%

systems. For simplicity, assume the bitwidth of VMM inputs

and outputs are both 8 bits. For the proposed methods, the

protection modules are the decoder modules and the number

of required protection modules for each crossbar group, which

equals that of the ADCs of each crossbar group. For [8], the

protection module comprises 32 16:1 MUXes and 16 1:16

DEMUXes and each crossbar group needs one protection

module. For each 16 WLs, the key storage for each protection

module is 48×4 bits (each MUX or DEMUX needs 4 bits) and

so the key storage for each protection module is 48×4×16 bits.

For [9], the size of a virtual operating unit (VOU) is scaled

as 16 × 16. The protection module includes one 16:1 MUX

and one 1:16 DEMUX and each crossbar group needs one

protection module. The authors, however, did not consider the

module’s bitwidth in their paper. In fact, a single input (output)

or output (single input) of the MUX (DEMUX) is an array of

16 8-bit values. For fairness of comparison, we set the bitwidth

of the MUX and DEMUX in their method as 16× 8. The key

storage for each protection module is (256× 8 + 4× 2× 16)

bits (row activation vectors and the keys for MUX/DEMUX

for each 16 VOUs). For [10], the protection module is a

256 × 256 SRAM array and each crossbar group needs one

protection module. The key storage for each protection module

is 256× 8 bits (the locations of the ”1” bits). We assume, for

the methods of [8]–[10], the keys are shared among all the

protection modules inside each PE to reduce key storage.

Table I lists the area and power overheads of our proposed

methods. For example, the first cell means the area overhead

of the proposed method for mapping scheme 1 for the LeNet

model is 0.0048%. The area and power overheads of the

proposed methods are less than 0.12% and 0.10% for all

models, respectively. The area and power overheads of the

proposed method for mapping scheme 2 are less than that of

the proposed method for mapping scheme 1. The reason is

that for mapping scheme 1, each crossbar group only has one

crossbar while for mapping scheme 2, each crossbar group

has one pair of crossbars. Table II lists the normalized result

comparison of area, power, and key storage overhead for the

proposed methods and the related work. The proposed methods

cost much less in terms of area and power overheads compared

with the other protection methods. The reason is the protection

modules of the proposed methods are made up of simpler

subtractors, inverters and low-multiplicity MUXes. [10] incurs

the largest area and power overheads because it is based on

SRAM arrays, which cost a lot in terms of area and power.

As to key storage, [10] is slightly better than the proposed

methods. [8]’s key storage is 1.43 times that of ours because

of its larger number of MUX/DEMUX.

Overall, the proposed methods outperform the related work

when considering both the effectiveness and hardware over-

TABLE II
NORMALIZED RESULTS OF THE COMPARISON OF AREA, POWER, AND KEY

STORAGE OVERHEADS FOR THE PROPOSED METHODS AND THE RELATED

WORK

Mapping scheme 1 Mapping scheme 2
Area Power Key Storage Area Power Key Storage

Our 1X 1X 1X 1X 1X 1X
date20 [8] – – – 64.80X 64.80X 1.43X
asp21 [9] 18.00X 18.00X 1.02X 43.20X 43.20X 1.02X

sram20 [10] 6417.29X 408.19X 0.96X 3439.05X 979.65X 0.96X

head at the same time.

VI. CONCLUSION
Memristor computing systems are vulnerable to theft attacks

intending to steal the NN weights stored in the memristor

crossbars. To thwart the attack, this paper proposed an effective

countermeasure based on selectively encoding some columns

of weights. Furthermore, we implemented the designed protec-

tion methods in memristor computing systems and added ad-

ditional techniques to increase their security. The experimental

results show that the proposed method achieves effectiveness

comparable to the best of prior work and imposes the lowest

hardware overhead on the memristor computing systems.

REFERENCES

[1] C. Wang et al., “Cross-point Resistive Memory: Nonideal Properties and
Solutions,” ACM TDAES, 2019.

[2] Y. Liu et al., “Neural Trojans,” in ICCD, IEEE, Nov. 2017.
[3] W. Li et al., “P3M: a PIM-based neural network model protection

scheme for deep learning accelerator,” in ASPDAC, ACM, 2019.
[4] Y. Cai et al., “Enabling Secure in-Memory Neural Network Computing

by Sparse Fast Gradient Encryption,” in ICCAD, IEEE, 2019.
[5] S. Chhabra et al., “i-NVMM: a secure non-volatile main memory system

with incremental encryption,” in ISCA, ACM Press, 2011.
[6] M.-F. Chang et al., “19.4 embedded 1Mb ReRAM in 28nm CMOS

with 0.27-to-1V read using swing-sample-and-couple sense amplifier
and self-boost-write-termination scheme,” in ISSCC, IEEE, 2014.

[7] P. Yao et al., “Face classification using electronic synapses,” Nature
Communications, 2017.

[8] M. Zou et al., “Security Enhancement for RRAM Computing System
through Obfuscating Crossbar Row Connections,” in DATE, IEEE, 2020.

[9] Y. Wang et al., “A Low Cost Weight Obfuscation Scheme for Security
Enhancement of ReRAM Based Neural Network Accelerators,” in
ASPDAC, ACM, 2021.

[10] S. Huang et al., “New Security Challenges on Machine Learning
Inference Engine: Chip Cloning and Model Reverse Engineering,”
arXiv:2003.09739 [eess], 2020.

[11] Z. Zhu et al., “A Configurable Multi-Precision CNN Computing Frame-
work Based on Single Bit RRAM,” in DAC, ACM, 2019.

[12] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars,” in ISCA, IEEE, 2016.

[13] Z. Zhu et al., “MNSIM 2.0: A Behavior-Level Modeling Tool for
Memristor-based Neuromorphic Computing Systems,” in GVLSI, ACM,
2020.

[14] W. Wang et al., “Integration and Co-design of Memristive Devices and
Algorithms for Artificial Intelligence,” iScience, 2020.

[15] W.-H. Chen et al., “A 65nm 1Mb nonvolatile computing-in-memory
ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN
AI edge processors,” in ISSCC, IEEE, 2018.

[16] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[17] Y. Lecun, , et al., “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, 1998.

[18] A. Krizhevsky, , et al., “Imagenet classification with deep convolutional
neural networks,” Advances in neural information processing systems,
2012.

[19] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” arXiv:1409.1556 [cs], 2015.

[20] W. Wu et al., “Suppress variations of analog resistive memory for neu-
romorphic computing by localizing vo formation,” Journal of Applied
Physics, 2018.

187

