
1

AritPIM: High-Throughput In-Memory Arithmetic
Orian Leitersdorf, Student Member, IEEE, Dean Leitersdorf, Jonathan Gal, Mor Dahan,

Ronny Ronen, Fellow, IEEE, and Shahar Kvatinsky, Senior Member, IEEE

Abstract—Digital processing-in-memory (PIM) architectures are rapidly emerging to overcome the memory-wall bottleneck by integrat-
ing logic within memory elements. Such architectures provide vast computational power within the memory itself in the form of parallel
bitwise logic operations. We develop novel algorithmic techniques for PIM that, combined with new perspectives on computer arithmetic,
extend this bitwise parallelism to the four fundamental arithmetic operations (addition, subtraction, multiplication, and division), for both
fixed-point and floating-point numbers, and using both bit-serial and bit-parallel approaches. We propose a state-of-the-art suite of
arithmetic algorithms, demonstrating the first algorithm in the literature of digital PIM for a majority of cases – including cases previously
considered impossible for digital PIM, such as floating-point addition. Through a case study on memristive PIM, we compare the
proposed algorithms to an NVIDIA RTX 3070 GPU and demonstrate significant throughput and energy improvements.

Index Terms—Digital processing-in-memory (PIM), parallel computation, arithmetic, fixed-point arithmetic, floating-point arithmetic.

F

1 INTRODUCTION

EMERGING processing-in-memory (PIM) systems at-
tempt to overcome the memory-wall bottleneck by re-

thinking one of the core principles of computing systems:
the separation of storage and logic units. This separation
has been followed since the introduction of the von Neu-
mann architecture in the 1940s, when computing systems
were primarily utilized for serial program execution. Yet,
the recent emergence of data-intensive applications requires
parallel high-throughput execution, causing the separation to
become a massive bottleneck known as the memory wall [1].
Therefore, PIM integrates logic within the memory itself to
bypass the bandwidth-limited memory interface and enable
massive in-memory computational parallelism [2].

PIM architectures supplement the traditional read/write
memory interface with logic [2]. This enables the CPU to re-
quest that the memory perform vectored logic on data stored
within the memory without transferring the data through
the interface, thereby significantly reducing the load on
CPU-memory communication. Early proposals for PIM [3]
involved integrating logic circuits near the memory (e.g., in
the same chip), yet this still requires a fundamental need
for data-transfer between an area dedicated for computation
and an area dedicated for storage [2]. Conversely, recent pro-
posals [4], [5], [6], [7], [8], [9], [10] perform digital logic using
the same physical devices that store binary information. By
performing the logic exactly where the information is stored,
data-transfer is effectively dwarfed [2]. These include works
that exploit content-addressable-memories (CAMs) [8], [9],
[10] to selectively apply write operations according to data
stored in the memory (serving as inputs), and works that
design logic gates from the underlying circuits connecting
the memory devices [4], [5], [6], [7]. Several proposals for
PIM architectures, such as memristive (Figure 1(a,b)) [4],

• O. Leitersdorf, D. Leitersdorf, J. Gal, M. Dahan, R. Ronen, and S.
Kvatinsky are with the Technion – Israel Institute of Technology, Haifa,
Israel. E-mail: orianl@campus.technion.ac.il; leitersdorf@cs.technion.ac.il;
jonathan.gal@campus.technion.ac.il; mor.dahan@campus.technion.ac.il;
ronny.ronen@technion.ac.il; shahar@ee.technion.ac.il.

Fig. 1. Examples of PIM technologies for (a, b) memristive [4], [11], [13],
[14] and (c, d) DRAM [15] memories. These follow (e) an abstract model
of arbitrary bitwise column operations in O(1) latency.

[5], [11], [12], [13], [14] and DRAM-based (Figure 1(c,d)) [6],
[7], [15], have essentially converged to a single abstract
computational model that presents highly unique algorith-
mic capabilities (Figure 1(e)). First, consider the memory
as a collection of m binary matrices, called arrays, each
of dimension r × c. A bitwise operation can be performed
on columns of an array, and in parallel across all arrays,
in a single cycle (O(1) latency). For example, the bit-wise
NOR [4] of any two columns can be computed and stored
in a third column, all in a single cycle. This is possible as
the logic is performed in a distributed fashion amongst the
physical elements within arrays (with shared instructions),
so there is no centralized computing unit that may cause
a bottleneck. This attains massive parallelism for bitwise
operations that bypass the memory interface.

Expanding the massive bitwise parallelism to large-scale
applications requires a strong foundation for fundamental
arithmetic operations (addition, subtraction, multiplication,
and division), for both fixed-point and floating-point num-
bers. While theoretically a functionally-complete set of logic
gates can perform any function, the data layout plays a

2

Fig. 2. (a) The various approaches to in-memory arithmetic developed in recent years. (b) The impact of this paper seen through the algorithms
for the foundational arithmetic functions on both fixed-point and floating-point numbers, and with both bit-serial element-parallel and bit-parallel
element-parallel approaches. The dashed rectangles highlight the three novel methods developed, and the algorithms which they effect.

crucial role in the efficient utilization of PIM. Figure 2(a)
presents an overview of the approaches developed in recent
years; we focus without loss of generality on a single array
(as computation is in parallel across all arrays regardless).
We describe the approaches through N -bit integer vector
addition, where xi refers to the ith element in the vector:

1) Bit-Serial Element-Serial: Two inputs, x1 and y1, are
stored within a single row of an array, and basic
logic gates (e.g., NOR) serially construct an N -bit
adder within that row (utilizing intermediate cells
for temporary results). This has low throughput as
only one addition is performed per array and high
latency as the gates run serially; thus, this approach
is typically not used. Note that column parallelism
(constant-time column operations) is not utilized.

2) Bit-Parallel Element-Serial [13], [16], [17], [18], [19]: m
rows are utilized as intermediate space to perform
multiple parallel gates for the same N -bit adder by
utilizing column parallelism, thereby enabling r/m
adders per array. This provides low latency when
the function possesses parallelism among the gates
(typically best applicable to multiplication [17]), yet
possesses moderate throughput as several rows per-
form a single addition. Furthermore, the relative
area overhead can be high due to the intermedi-
ate cells [17], and the data-transfer between rows
requires additional support for inter-row logic.

3) Bit-Serial Element-Parallel [4], [5], [6], [7], [11], [13],
[20], [21], [22], [23], [24]: This approach performs the
operations of the bit-serial element-serial approach
in parallel across all rows – with the exact same latency
– by exploiting column parallelism. That provides
high throughput as r adders per array are performed
simultaneously with identical latency; however, the
latency remains rather high as gates are performed
serially (a single gate per cycle per N -bit adder).

4) Bit-Parallel Element-Parallel (parallel single-row) [25],
[26]: This recent approach gains both higher through-
put and low latency by introducing partitions [11], [27]

(see Section 5). The partitions dynamically divide
the rows to enable multiple concurrent column op-
erations. The adder is still performed within a single
row (and in parallel across all rows), yet multiple
gates are performed within each row concurrently.
The potential drawback is that partitions may intro-
duce additional physical overhead; however, a re-
cent work has proposed a low-overhead design [27].

We focus on the element-parallel approaches as PIM is best
suited for data-intensive applications which require high
throughput. Figure 2(b) summarizes our contributions for 16
variants of arithmetic functions, establishing a state-of-the-
art foundation for arithmetic in PIM. We propose the first
known general-purpose digital PIM algorithm for a majority
of the combinations (including cases previously considered
impossible, such as floating-point addition [28]), while also
presenting minor and major (> 5×) improvements for oth-
ers. We accomplish this via a combination of three methods:

• Variable Shift: We develop a novel algorithm for
element-parallel variable shifting: each row i starts
with numbers xi and ti, and the output is xi � ti.
While this was previously considered impossible (as
each row can have a different shift [28]), we attain
this efficiently for the first time due to the combi-
nation of in-memory multiplexers and a logarithmic-
shifter approach (without any custom periphery). We
then tackle variable normalization: each row i starts
with number xi, and the output is xi left-shifted
until the MSB is one. This is far more difficult as
the shift-amount is unknown, and yet we attain this
with latency nearly identical to variable shift due to
a technique inspired by a binary search.

• Partition Toolbox: We exploit a unique algorithmic
topology enabled by partitions [27] towards an ef-
ficient toolbox of general-purpose routines. These in-
clude both generalizations of routines proposed in
MultPIM [26], and two novel routines: reduction –
reducing (e.g., AND, OR) bits of multiple partitions

LEITERSDORF et al.: HIGH-THROUGHPUT IN-MEMORY ARITHMETIC 3

to a single bit, and prefixing – each partition receives
the reduction of bits in partitions before it.

• Arithmetic Theory: We provide a new perspective
on historical, lesser-known, algorithms in computer
arithmetic, demonstrating their effectiveness with
element-parallel in-memory computing for the first
time. For example, we utilize Karatsuba [29], [30] for
bit-serial multiplication, parallel-prefix adders [30],
[31] for bit-parallel addition, and carry-lookahead
in division [30], [32], [33] for bit-parallel division.
Interestingly, some of these algorithms are not ef-
fective in traditional systems [30], [33], yet unique
considerations of PIM lead to their effectiveness here.

This paper is organized as follows. Section 2 provides
background on a wide variety of PIM technologies and their
compatibility with the abstract model. We start in Section 3
with bit-serial fixed-point arithmetic to establish the state-
of-the-art approaches and our improvements, and continue
in Section 4 with bit-serial floating-point arithmetic. Sec-
tion 5 then shifts to the bit-parallel fixed-point approach,
introducing bit-parallel addition/subtraction/division for
the first time and improving bit-parallel multiplication. We
combine bit-serial floating-point and bit-parallel fixed-point
in Section 6 to establish bit-parallel floating-point algo-
rithms. Section 7 evaluates AritPIM through a case study of
memristive PIM implemented on a publicly-available cycle-
accurate simulator, and Section 8 concludes this paper.

Throughout, we discuss abstract logic gates (e.g., AND,
XOR, full-adder) and latency complexity (e.g., O(N2) where
N is the representation size) for generality and concise
explanations, with Section 7 reducing these to the un-
derlying gates supported (e.g., NOR) and providing full
implementations that prove correct results (e.g., matching
the IEEE round-to-nearest ties-to-even exactly). We refer to
steps rather than cycles, where each step performs a single
abstract logic gate. Without loss of generality, as we focus
on the element-parallel approaches, we often discuss gates
performed within a single-row, as the generalization to all
rows and arrays is the trivial repetition of the gates. For
fixed-point, we discuss unsigned numbers (for simplicity)
yet the algorithms can extended to signed. Lastly, vi refers
to the ith element of vector v, xi refers to bit i of number x
(0 is the LSB), xi:j is bits i (inclusive) through j (exclusive),
and (x|y) concatenates x (higher bits) and y (lower bits).

2 DIGITAL PROCESSING-IN-MEMORY (PIM)
We discuss two examples of digital PIM, memristive
stateful-logic [4], [11], [12], [13] and DRAM [6], [7], [15], [28],
as well as other PIM technologies. Overall, these include
both architectures that are already commercially available,
and emerging ones with vast potential that are backed by
small experimental demonstrations. We show that all are
compatible with the abstract model assumed in this paper.

2.1 Memristive Stateful-Logic
Memristive PIM with stateful-logic [2] utilizes an emerging
physical device, the memristor, which inherently supports
both storage and logic at the exact same place. Large-
scale memristive memories (storage only) with high density

are already commercially available (e.g., Intel Optane), and
several studies [2], [12], [34] have experimentally demon-
strated logic with memristors on a small-scale. Therefore,
memristive digital PIM has the potential for an efficient
large-scale practical implementation in the future.

Memristors are two-terminal resistive devices with a
unique property: their resistance may be modified through
an applied voltage. By dividing the range of possible re-
sistance values to a binary classification (i.e., low resistance
corresponds to logical one, high resistance corresponds to
logical zero), a memristor can store a single bit through its
resistance. The value of a memristor is read by applying
a low voltage and measuring the current to derive the
resistance, and their value may be written by applying a
high voltage. Stateful-logic performs logical gates [2], [4],
[11], [12], between the resistance states of memristors: for
memristors arranged in the circuit shown in Figure 1(a), the
final resistance state of the bottom memristor (output) de-
pends on the resistance states of the top memristors (input)
at the beginning of the operation due to the voltage-divider
structure which is formed. An additional initialization cycle
is required for the output prior to the gate operation [4].

Notably, memristive PIM may also be implemented
through MRAM devices [13], [14], and possesses several
favorable characteristics. Rather than dividing the resistance
spectrum into ranges for each logical value that may be
prone to errors due to noise, the MRAM device inher-
ently has two stable states that correspond to low and
high resistance. Furthermore, MRAM devices possess excel-
lent endurance compared to other memristive technologies.
MRAM PIM [13], [14] supports the same abstract model as
Figure 1(a), and previous works [13], [14], [19], [24] have
primarily explored the extension of MRAM computing to
bit-parallel element-serial arithmetic.

Memristors are often arranged in dense crossbar-array
structures. Such crossbars consist of vertical bitlines, hor-
izontal wordlines, and memristors at the junctions. When
considering the memristor as a binary storage element, a
crossbar array essentially stores a binary matrix of informa-
tion. The logic functionality of memristors is also compat-
ible with the crossbar-array structure, as the same circuit
observed in Figure 1(a) appears within a row of Figure 1(b).
Interestingly, by applying voltages on bitlines, all of the
rows perform the logic gate in parallel [4]. Essentially, this
leads to a logic operation on columns of bits in a single cycle;
e.g., the bit-wise NOR of two columns computed and stored
in a third column, in a single cycle [4]. Therefore, the logic
functionality within memristor crossbar arrays attains the
abstract model presented in Figure 1(e) (see Section 1).

2.2 In-DRAM Logic

Recent works have demonstrated that Dynamic Random
Access Memory (DRAM) technology (the leading form of
computer memory today) can also support in-memory bit-
wise logic computation by exploiting existing properties
of DRAM cells [6], [7], [15], [28]. Various works have
proposed minor changes (e.g., modifying decoders) to
commercially-available DRAM memory in order to support
in-memory logic gates [6], [15], [28], while other works uti-
lized commercially-available DRAM without modification and

4

already have large-scale experimental demonstrations [7].
Therefore, in-DRAM logic has the potential for practical
large-scale PIM implementation in the immediate future.

DRAM memory utilizes capacitors to store information
through the stored charge. The range of possible charge
levels in a single capacitor is divided into a binary clas-
sification, thereby storing a single bit per capacitor. To
minimize the charge leakage from the capacitor, a single
DRAM cell also includes a transistor connected in series.
The state of a DRAM cell is read by discharging the ca-
pacitor and measuring the voltage using a sense amplifier,
while the state is written by applying a voltage on the
capacitor (thereby changing the stored charge). When three
DRAM cells are connected as illustrated in Figure 1(c),
then all three cells stabilize on a state which is majority
of the states prior to the operation [6], [15]. Therefore,
Maj(A,B,C) = AB+AC +BC is inherently supported by
the DRAM cells. By setting one of the three cells to a known
value before performing the gate, the OR and AND gates
can be performed [15]. Inversion is supported with low-
overhead modifications to sense amplifiers [15]. Note that
the true inputs are typically first copied to these cells (from
other cells using copy operations) due to the destructive-
input property of the logic gates.

DRAM cells are often arranged in dense sub-array struc-
tures. Such structures consist of a grid of DRAM cells, as
shown in Figure 1(d), with buffers and sense amplifiers
to the left1 of the array. We find that the circuit from
Figure 1(c) also exists within every row of the sub-array
in Figure 1(d), thereby enabling parallel bitwise logic-gate
execution. Essentially, bit-wise operations on columns (e.g.,
majority, AND, OR, NOT) within sub-arrays can be per-
formed in O(1) cycles. Therefore, this attains the abstract
model presented in Figure 1(e) (see Section 1).

2.3 Additional PIM Technologies

This section briefly mentions additional PIM technologies
and discusses their compatibility with the abstract model.

2.3.1 SRAM
Computing via Static Random Access Memory (SRAM)
technology performs logic operations using SRAM cells
via the bitlines [23], [35] (similar to in-DRAM computing).
This technique enables bit-wise operations on columns with
constant time within SRAM arrays – supporting the abstract
model. Further, a common form of in-SRAM processing
involves associative computing [8], whereby the output
is conditionally set according to a pattern search on the
inputs. While such PIM architectures have already been
fabricated [9], [10], the current limitation is that the memory
size is limited by the low density of SRAM, thereby only
supporting PIM for workloads with small datasets.

2.3.2 Non-Stateful Memristive
Memristive memory also supports non-stateful logic opera-
tions by performing the logic in the sense amplifiers of each
crossbar (rather than using the memristors themselves).

1. Without loss of generality, we consider the sub-array transposed
for terminology identical to memristive stateful-logic.

Algorithm 3.1 Bit-Serial Fixed-Point Addition
Input: N -bit x, N -bit y in a single row.
Output: N + 1-bit result z in the same row, where z = x + y.

1: carry ← 0
2: for i = 0, . . . , N − 1 do

Compute full-adder serially (e.g., serially executing 9 NOR
gates and utilizing intermediate cells [4], [21])

3: zi, carry ← FA(xi, yi, carry)
4: end for
5: zN ← carry

Pinatubo [36] is a leading example of such an architecture,
providing bit-wise parallel logic operations that adhere to
the abstract model. The drawback of non-stateful logic is the
higher latency and energy consumption over stateful-logic.

2.3.3 FeFET
The Ferroelectric Field Effect Transistors (FeFET) [37] tech-
nology is emerging as a form of memory which can
also inherently support basic logic gates [38]. Similar to
Pinatubo [36], the logic is performed within the sense am-
plifiers and with parallelism identical to the abstract model.
FeFET has the potential for highly compact and energy-
efficient implementation in the future [37].

3 BIT-SERIAL FIXED-POINT ARITHMETIC

This section details in-memory arithmetic algorithms for
bit-serial computation on fixed-point numbers (the sim-
plest case). We begin by introducing the state-of-the-art in-
memory addition/subtraction algorithm [4], [13], [24], [26]
which is based on a ripple-carry approach. We continue
by introducing the state-of-the-art in-memory multiplication
algorithm [20], based on the shift-and-add approach, which
we then improve through Karatsuba [29], [30]. Finally, we
address division by proposing a non-restoring algorithm
which is optimized for element-parallel in-memory logic as
it avoids the conditional subtraction efficiently.

3.1 Bit-Serial Fixed-Point Addition/Subtraction
We start with the simplest arithmetic functions, bit-serial
fixed-point addition/subtraction, as an example of the for-
mat for in-memory arithmetic functions. These algorithms
have been discussed in several previous PIM works [4],
[13], [24], [26] as classic examples to bit-serial arithmetic. We
discuss only addition as subtraction can be derived from
two’s-complement addition.

We begin with a formal description of the task. Assume
that a single-row of an array contains two N -bit fixed-point
numbers, x and y, and some additional intermediate cells that
may be used freely. The algorithm may perform a single
basic logic operation (e.g., NOR, full-adder) per step, with
the inputs and outputs of the gate being cells in the single-
row. The state of the row at algorithm completion should
contain z = x + y stored in a pre-determined range of cells,
as an N + 1-bit fixed-point number (including the carry-
bit). Note that the algorithm cannot read the row at any time
as this will not generalize to an element-parallel approach;
rather, the algorithm must be based exclusively on data-flow.

Algorithm 3.1 details the ripple-carry approach to addi-
tion. The approach utilizes a single intermediate cell to store

LEITERSDORF et al.: HIGH-THROUGHPUT IN-MEMORY ARITHMETIC 5

Algorithm 3.2 Bit-Serial Fixed-Point Multiplication
Input: N -bit x, N -bit y in a single row.
Output: 2N -bit result z in the same row, where z = x ∗ y.

Base case using previous [20]. Note: Nthresh ≈ 20.
1: if N ≤ Nthresh then
2: z ← (0 · · · 0)2 {2N -bit.}
3: for i = 0, . . . , N − 1 do

Compute pi ← AND(x, yi) (serially over N bits).
4: for j = 0, . . . , N − 1 do pij ← AND(xj , yi)

Compute z ← z + (pi � i) using Alg. 3.1.
5: zi:i+N+1 ← zi:i+N + pi

6: end for
Proposed Karatsuba recursion.

7: else
Compute using recursive calls and Alg. 3.1.2

8: t′1 ← (x0:N/2 + xN/2:N) ∗ (y0:N/2 + yN/2:N)
9: t0 ← x0:N/2 ∗ y0:N/2, t2 ← xN/2:N ∗ yN/2:N

10: t1 ← t′1 − t0 − t2
Compute z ← t0 + t1 � N/2 + t2 � N using Alg. 3.1.

11: z ← (t2|t0)
12: zN/2:2N ← zN/2:2N + t1
13: end if

the current carry between the bits, and iteratively computes
the full-adders from the LSB to the MSB. Notice that this
differs from a traditional ripple-carry adder in that all gates
(e.g., NOR) are applied serially to the rows of the memory
(e.g., requiring cells in each row that store intermediate
results). Overall, the latency is O(N) steps. This general
approach is optimized for different PIM technologies in re-
cent works (e.g., CRAM [13], FELIX [11] and MultPIM [26]).
Such optimizations include efficient constructions of the
full-adder from the logic gates supported by memristive
PIM, and the storage of both the carry and the NOT carry
throughout the iterations to save an additional cycle.

3.2 Bit-Serial Fixed-Point Multiplication
We begin this section by introducing the state-of-the-art
approach introduced by Haj-Ali et al. [20], and continue
by proposing an improvement based on the Karatsuba [29],
[30] recursion; while Karatsuba is typically only effective
for extremely-wide numbers [30] (e.g., thousands of digits),
unique considerations for digital PIM enable improvement
for regularly-sized numbers (e.g., 32-bit). The overall task
is: the row begins with N -bit fixed-point numbers x and y,
and contains the 2N -bit result z = x ∗ y after completion.

The shift-and-add approach to multiplication constructs

x ∗ y =
N−1∑
i=0

pi � i, where pi = AND(x, yi). (1)

This approach first initializes the 2N -bit output z to zero,
and then iteratively adds pi � i to z for each i. Only an
N -bit adder is required due to the zeros contained in pi � i
(only N bits are non-zero) and z (top N − i bits are zero
during the ith iteration). The base case in Algorithm 3.2
presents the state-of-the-art PIM algorithm [20] which is
based on this shift-and-add. The algorithm iterates over
each i, computing the ith partial product, pi, and adding

2. By calculating t′1 before t0 and t2, we can reuse the cells that stored
x0:N/2 + xN/2:N and y0:N/2 + yN/2:N for storing t0 and t2 (thereby
reducing the proposed algorithm’s space complexity).

it to the current sum z. The shift is not computed explicitly,
rather the elements in z are merely accessed shifted (the N
columns chosen from the 2N are different in each iteration);
that is, the shift is simulated. Overall, the latency is O(N2).

The Karatsuba [29], [30] approach reduces asymptotic
complexity to O(N log2 3) ≈ O(N1.58) through an optimiza-
tion to the recursive expression for N -bit multiplication.
Consider x = (x1|x0), y = (y1|y0), the separation of
each N -bit number to the upper and lower bits (N/2-bit
numbers). The naive recursion for multiplication notes that,

x ∗ y = x0y0︸︷︷︸
t0

+ (x0y1 + x1y0)︸ ︷︷ ︸
t1

� N/2 + x1y1︸︷︷︸
t2

� N. (2)

Thus, in the naive recursion, an N -bit multiplication re-
quires four N/2-bit multiplications. The Karatsuba approach
reduces the number of N/2-bit multiplications to three by
computing t1 with a single N/2-bit multiplication,

t1 = (x1 + x0)(y1 + y0)− t2 − t0. (3)

In traditional computing systems, this approach is only used
for large-number multiplication [30] as the objective is to
minimize the critical path and bit-level access is not possible.
Conversely, for bit-serial in-memory computing, the latency
is the total number of gates and arbitrary bit-level opera-
tions may be executed. Therefore, we utilize (3) with both
the shift-and-add approach (base case) and Algorithm 3.1
to propose Algorithm 3.2. The algorithm contains a base
case of performing shift-and-add directly if N is small, and
otherwise performs the three recursive calls and computes
the output according to (2) and (3). Overall, the latency is
O(N1.58), providing minor (yet significant) improvements
starting3 at approximately N ≈ 20.

3.3 Bit-Serial Fixed-Point Division
Here, we tackle the most complex operation out of the
four elementary arithmetic operations: division. We begin
with background on restoring and non-restoring division
as theoretical concepts, and then continue by presenting
a novel algorithm for in-memory division that is based
on a customized non-restoring approach. While bit-serial
division does exist [39] (restoring), our proposed algorithm
is based on a different approach (non-restoring) that is better
suited for in-memory computing as it inherently avoids
the conditional subtraction. Such conditional operations (i.e.,
branches) are not directly compatible with the abstract
model which requires that all rows operate in lockstep, thus
they are converted to a sequence of operations that serially
evaluate both branch outcomes and then select the output
with a multiplexer. The overall task is defined as the integer4

division of 2N -bit dividend z by N -bit divisor d, with N -bit
quotient q and N -bit remainder r (i.e., z = qd+ r for r < d).

3. The crossover point Nthresh depends on the latency for a recursive
Karatsuba step (additions/subtractions and the smaller multiplica-
tions) compared to that of naive shift-and-add. The value Nthresh ≈ 20
is found by increasing Nthresh until Karatsuba reduces the overall
latency. This crossover is largely independent of the assumed logic
gates (e.g., NOR) since the compared latencies (Karatsuba step and
shift-and-add) are both primarily proportional to the number of cycles
per 1-bit full-adder; regardless, the exact value may vary slightly.

4. General fixed-point can be derived from such integer division.

6

Algorithm 3.3 Non-Restoring Division (Theoretical)
Input: 2N -bit dividend z, N -bit divisor d
Output: N -bit quotient q, N -bit remainder r, where z = qd + r

and r < d
1: q ← 2N−1, r ← zN−1:2N

2: for i = N − 1, . . . , 0 do
Add/subtract conditional on previous bit from q.

3: if qi then r ← r − d else r ← r + d
4: qi−1 ← (r ≥ 0)
5: r ← 2 · r + zi−1

6: end for
Non-restoring representation corrections.

7: q ← 2 · q + 1
8: if r < 0 then q ← q − 1, r ← r + d

Restoring division [30] is based on conditionally subtract-
ing the divisor from the current remainder, as long as the
result remains non-negative. Formally, rj+1 = 2·rj−qj+1 ·d,
where rj is the jth partial remainder; restoring division
chooses qj+1 ∈ {0, 1} such that 0 ≤ rj+1 < d, implying
qj+1 = 1 if 2rj − d ≥ 0, else qj+1 = 0. Thus, overall it
iterates over: shifting the remainder (computing 2 · rj), and
subtracting d from 2 · rj but only if it remains non-negative.

Non-restoring division [30] enables intermediate nega-
tive remainders to avoid the conditional subtraction. In-
stead of conditional subtraction, it either subtracts or adds
(the benefit is that the choice is known at the end of the
previous iteration). On a theoretical level, qi ∈ {−1,+1}
rather than qi ∈ {0, 1}. Practically, −1,+1 are stored as
0, 1, respectively, and corrections are performed at the end.
Algorithm 3.3 presents the theoretical algorithm for binary
non-restoring division, slightly modified with PIM in mind.

Algorithm 3.4 details the proposed bit-serial fixed-point
divider, based on the theoretical approach from Algo-
rithm 3.3. Specifically, we utilize these optimizations:

1) Conditional Addition/Subtraction: Control-flow for
conditional addition/subtraction (Alg. 3.3, Line 3)
is replaced with data-flow. Similar to [39], we could
compute r − d and r + d (serially), and implement
a multiplexer to choose according to qi; however,
this results in large overhead for the multiplexer
and computation of both r − d and r + d. Instead,
we utilize properties of the two’s-complement rep-
resentation by performing bit-wise exclusive-or of d
with qi, and then performing addition between the
result, r, and a carry-in of qi (Alg. 3.4, Line 3) [30].5

2) Quotient-Bit Update: Updating the quotient bit
(Alg. 3.3, Line 4) is achieved by checking the most-
significant-bit of the remainder (two’s complement).
This is performed as part of the addition (Alg. 3.4,
Line 3), without additional steps.

3) Remainder Shifting: Shifting the remainder (Alg. 3.3,
Line 5) is simulated by the algorithm as the addition
(Alg. 3.4, Line 3) already stores the shifted result.

4) Non-Restoring Correction: Correcting the representa-
tion mismatch (Alg. 3.3, Lines 7, 8) is converted to
data-flow as follows. 2 · q is replaced by a shift of
q that is simulated throughout previous references to

5. Note that this optimization is not possible with restoring division
(e.g., with AND) as the sign of r − d must be computed regardless.

Algorithm 3.4 Bit-Serial Fixed-Point Division
Input: 2N -bit dividend z, N -bit divisor d in a single row.
Output: N -bit quotient q, N -bit remainder r, in the same row,

where z = qd + r and r < d.
1: qN ← 1, r ← zN−1:2N

2: for i = N − 1, . . . , 0 do
Compute using vectored-XOR (serially over the bits of d with

qi+1) and Alg. 3.1, with qi+1 as carry-in.
3: (qi|r1:N)← r + XOR(d, qi+1) + qi+1

4: r0 ← zi−1

5: end for
6: q0 ← r′N−1 {Already shifted.}

Compute using Alg. 3.1.
7: r ← r + AND(d, rN−1)

qi (Alg. 3.4, Lines 1-5). The +1 (Alg. 3.3, Line 7), and
the subsequent conditional −1 (Alg. 3.3, Line 8) if
r < 0, are replaced with q0 ← (r < 0)′ = r′N−1
(Alg. 3.4, Line 6). The conditional r ← r + d if r < 0
is replaced with the addition of the bitwise-and of d
and rN−1 to r (Alg. 3.4, Line 7).

Overall, the latency of the proposed algorithm is O(N2)
steps, with the constant significantly improved over the pre-
vious state-of-the-art restoring division [39] primarily due
to the non-restoring approach being better suited for PIM.
Notice that a Karatsuba-style approach for division [40]
does not improve the worst-case complexity, and thus is not
applicable to in-memory computing (as requiring purely
data-flow implies that latency is limited by the worst case).

4 BIT-SERIAL FLOATING-POINT ARITHMETIC

This section expands the proposed bit-serial fixed-point
arithmetic algorithms to floating-point numbers, thereby
supporting the numerous applications that require floating-
point accuracy. In-memory floating-point addition was previ-
ously considered impossible as the shift operations in the align-
ment and normalization steps inherently require control-
flow that is difficult to perform in an element-parallel
manner [28]. Conversely, we attain an in-memory unsigned
floating-point addition algorithm for the first time by first
proposing a simple (but powerful and efficient) element-
parallel variable shift routine. This routine receives numbers
x (Nx-bit) and t (Nt-bit) in each array row, and outputs
x � t in that row (where the shift amount may be different
for each row). Furthermore, we generalize the proposed vari-
able shifter to a variable normalization routine (left-shifts
each number until the MSB is one) through a technique
inspired by a binary search, thereby also supporting signed
floating-point numbers. Lastly, we demonstrate floating-
point multiplication/division by utilizing their fixed-point
counterparts and the variable shift routine with Nt = 1.

4.1 Floating-Point Representation

This section provides background on the floating-point rep-
resentation [30]. The representation is essentially inspired by
the scientific number format, thereby representing a wide
range of real numbers (e.g., from 2−127 to 2127). Thus, the
representation is crucial for large-scale applications that
process real numbers. We consider the IEEE 754 format,

LEITERSDORF et al.: HIGH-THROUGHPUT IN-MEMORY ARITHMETIC 7

which includes a sign-bit s (1-bit), an unsigned exponent
e (Ne-bit), and an unsigned mantissa m (Nm-bit). The value
of the number x is defined as

x = (−1)s · 2e−b · (1.m), (4)

where b (bias) is a constant value (e.g., 127 for 32-bit), and
the “1.” is known as the hidden-bit. We adhere to the IEEE
standard of round to nearest, ties to even. For simplicity, we
do not consider NaN/Inf/subnormals/overflows, yet the
proposed algorithms could be modified to address these
rare cases (if required by the application).

Arithmetic with floating-point numbers can be signifi-
cantly more complex than fixed-point numbers due to the
alignment and normalization steps, specifically with addition
and subtraction. Counter-intuitively, multiplication and divi-
sion algorithms for floating-point numbers are rather simple
generalizations from fixed-point algorithms. Consider the
multiplication of two floating-point numbers, x1 and x2,

x1 ∗ x2 = (−1)s1 · 2e1−b · (1.m1) · (−1)s2 · 2e2−b · (1.m2)

= (−1)s1⊕s2 · 2(e1+e2−b)−b · ((1.m1) · (1.m2)). (5)

Thus, floating-point multiplication can be reduced to
exclusive-or (XOR) for the sign-bit, addition for the expo-
nent, and then fixed-point multiplication for the mantissas.
Note that if the fixed-point multiplication results in a man-
tissa in the range [2, 4), then the mantissa is right-shifted
once and the exponent is incremented [30]. Floating-point
division can be similarly reduced to the XOR of the sign-
bits, the subtraction of the exponents, and then fixed-point
division of the mantissas (with a single conditional left-shift
and exponent decrement if the mantissa is in [0.5, 1)) [30].

Conversely, unsigned floating-point addition is signifi-
cantly more complex as the input numbers must be aligned
to match exponents before the addition (e.g., 1.2 · 108 + 4.0 ·
107 = 1.2 · 108 + 0.40 · 108 = 1.60 · 108 for base 10). Such
alignment can lead to complex control-flow mechanisms.
Furthermore, addition may also require an additional single
conditional right-shift normalization (e.g., 7.2 · 102 + 4.1 ·
102 = 11.3 · 102 = 1.13 · 103). Overall, the algorithm follows
these steps: (1) computing the difference of the exponents,
(2) shifting the mantissa of the number with the smaller
exponent to match the number with the larger exponent, (3)
adding the mantissas, and (4) normalizing the result.

Interestingly, signed addition, from which subtraction
can be derived, requires a more complex normalization that
left-shifts the mantissa several times until the MSB is one
(e.g., (1.0013 · 101) + (−1.0000 · 101) = 0.0013 · 101 =
1.3 · 10−2) [30]. Therefore, steps (1), (2), (3), remain similar,
while step (4) requires more complex mechanisms.

4.2 Bit-Serial Variable Shift Routine
This section proposes the first in-memory algorithm for
variable shifting through a simple-but-powerful approach
that utilizes simulated in-memory multiplexers and a
logarithmic-shifter approach (requiring no custom periph-
ery at all). The task is defined as follows: the row begins
with Nx-bit integer x and Nt-bit integer t, and the output is
z = x � t6. Note that the shift amount is variable (may be

6. Left-shift is also supported due to symmetry.

Algorithm 4.1 Bit-Serial Variable Shift Routine
Input: Nx-bit x, Nt-bit t, in a single row.
Output: Nx-bit result z in the same row, where z = x� t.

1: z ← x
2: for j = 0, . . . ,min(Nt − 1, log2(Nx)− 1) do

Compute z ← muxtj (z � 2j , z) as follows:
3: for i = 0, . . . , Nx − 2j − 1 do zi ← muxtj (zi+2j , zi)
4: for i = Nx − 2j , . . . Nx − 1 do zi ← AND(¬ tj , zi)
5: end for

Fig. 3. An example execution of the proposed in-memory bit-serial
element-parallel variable shift algorithm with Nx = 8 and Nt = 3. Each
row i right-shifts xi by its corresponding ti through log(Nx) iterations
that construct the shift via multiplexers from shifts of size 20, 21, · · · .

different in each row in the memory array), and recall that
the algorithm must be based exclusively on data-flow.

We first address the special case of Nt = 1. In this case,
z = x� 1 if t0 = 1 and z = x otherwise (t0 = 0); that is,

z = muxt0(x� 1, x) = muxt0(x1:Nx
, x0:Nx

). (6)

where x1:Nx
is zero-extended with an additional bit (at the

MSB). We note that a 2 : 1 Nx-bit multiplexer can be derived
from basic logic gates (e.g., NOR), thereby enabling the im-
plementation of an in-memory multiplexer algorithm [39] (not
a dedicated multiplexer circuit, rather a bit-serial algorithm
derived from a sequence of gates). Therefore, we find that
the case of Nt = 1 can be addressed with a single 2 : 1 Nx-
bit multiplexer algorithm, exclusively through data-flow.

We efficiently extend the special case of Nt = 1 to any Nt

through a logarithmic-shifter approach. The basic concept of
a logarithmic-shifter can be seen in the following example:
shifting x by 11 is identical to shifting x by 1, then by 2, and
then by 8 (the binary representation of 11). Therefore, the
proposed algorithm begins with z = x and then performs
log2(Nx) iterations7 where the jth iteration executes:

z = muxtj (z � 2j , z) = muxtj (z2j :Nx
, z0:Nx

). (7)

Algorithm 4.1 details the overall variable shift algorithm,
and Figure 3 illustrates an example execution across all
rows in an array (in parallel). The overall latency is

7. dlog(Nx)e is computed as part of the algorithm compilation (i.e.,
by the controller as Nx is constant).

8

Algorithm 4.2 Bit-Serial Floating-Point Addition (Unsigned)
Input: Unsigned floating-point x, y (Ne-bit exponents x.e, y.e,

Nm-bit mantissas x.m, y.m) in a single row.
Output: Unsigned floating-point z (Ne-bit exponent z.e, Nm-

bit mantissa z.m) in the same row, where z = x + y.
Exponent difference using Alg. 3.1:

1: ∆e← x.e− y.e.
2: z.e← mux∆e≥0(x.e, y.e) {Maximum.}

Conditional swap using vectored mux:
3: x′.m← mux∆e≥0(x.m, y.m)
4: y′.m← mux∆e≥0(y.m, x.m)

Alignment using Alg. 4.1:
5: y′.m← y′.m� |∆e|

Integer addition using Alg. 3.1:
6: z.m, carry ← x′.m + y′.m

Normalization using Alg. 4.1 and Alg. 3.1 (with Nt = 1):
7: z.m← z.m� carry
8: z.e← z.e + carry

O(Nx log(Nx)) steps. Note that the zero-extension of z2j :Nx

for the upper 2j bits is replaced by performing an AND gate
rather than 2 : 1 1-bit multiplexer at those indices.

4.3 Bit-Serial Floating-Point Unsigned Addition
This section utilizes the novel variable-shift algorithm to
propose the first in-memory floating-point addition algo-
rithm for unsigned8 numbers. Algorithm 4.2 details the
overall algorithm, essentially performing the theoretical
steps for floating-point addition (see Section 4.1), while
utilizing the variable-shift routine (Algorithm 4.1) for the
alignment and single-bit normalization. Absolute value
(|∆e|) is implemented by computing the exclusive-or of
∆e and ∆e ≥ 0 (MSB), and then adding ∆e ≥ 0 using
Algorithm 3.1. The hidden-bit is addressed by concatenating
a 1 to the mantissas and IEEE rounding is addressed us-
ing sticky/round/guard bits [30] (not shown); details are
available in the code repository. We utilize an in-memory
conditional-swap (in-memory multiplexers) to guarantee
that the exponent of x′ is at least that of y′. The overall
latency is O(Nm log(Nm) + Ne) steps.

4.4 Bit-Serial Variable Normalization Routine
To support signed floating-point addition/subtraction as
well, we require an additional routine that is significantly
more complex than variable shift: the input is x in each
row, and the output is both x left-shifted until the MSB
is one and the shift amount stored as a number in the
same row. The difficulty arises from the fact that the shift
amount is not known in advance (and still may be different
in each row). Naive attempts to compute the shift amount
and then perform the variable shift routine (e.g., by using
full-adders to count the number of leading zeros) will lead
to a massive overhead in latency (approximately 300% more
steps). Conversely, inspired by a binary search, we propose
a minor modification to the variable shift routine that adds
a small number of steps (approximately 7%) and solves the
variable normalization task exactly.

We begin by describing the approach through an exam-
ple. Consider Nx = 8, with x = (00000110); thus, the desired

8. This algorithm is only applicable when both numbers possess the
same sign. See Section 4.5 for an extension to signed addition.

Algorithm 4.3 Bit-Serial Variable Normalization Routine
Input: Nx-bit x in a single row.
Output: Nx-bit z, log2(Nx)-bit t, such that the number of

leading zeros in x is t, and z = x� t.
1: z ← x
2: for j = log2(Nx)− 1, . . . , 0 do

Compute tj ← ¬(zNx−2j ∨ · · · ∨ zNx−1).
3: temp← 0
4: for i = Nx − 2j , . . . Nx − 1 do
5: temp← temp ∨ zi
6: end for
7: tj ← ¬ temp

Compute z ← muxtj (z � 2j , z).
8: Omitted as nearly identical to Lines 3, 4 of Alg. 4.1.
9: end for

Fig. 4. An example execution of the proposed in-memory bit-serial
element-parallel variable normalization algorithm with Nx = 8. Each row
i left-shifts xi until the MSB is one, while also producing the shift amount
ti, via shift iterations that consist of a multiplexer and OR reduction.

output is z = (11000000) and t = 5 = (101). The algorithm
proceeds as follows. As the highest Nx/2 = 4 bits of x are
all zero (equivalently, their OR is zero), then t2 = 1 (that is,
t ≥ 4) and thus we already set z ← x� 4 = (01100000). As
the highest Nx/4 = 2 bits of z are not all zero (equivalently,
their OR is non-zero), then t1 = 0 and z is not changed. As
the highest Nx/8 = 1 bits of z are all zero, then t0 = 1 and
z ← z � 1 = (11000000). Therefore, the algorithm correctly
returned z = (11000000) and t = (101) = 5. In general, for
each j = log2(N)− 1, . . . , 0, the algorithm performs:

tj ← ¬(zNx−2j ∨· · ·∨zNx−1), z ← muxtj (z � 2j , z) (8)

The above procedure is analogous to a binary search on the
OR-prefix of x (searching for the first 1 in the word): at each
iteration, the size of the current search window (the interval
which contains the first 1) is decreased two-fold, and the
choice between the left/right intervals is performed by the
in-memory multiplexer (always “pulling” the chosen inter-
val to the left). Algorithm 4.3 details the overall proposed
normalize-shift algorithm, which modifies the variable-shift
algorithm by including the computation of tj within each
iteration. Interestingly, this integrates the computation of t

LEITERSDORF et al.: HIGH-THROUGHPUT IN-MEMORY ARITHMETIC 9

within the variable-shift iterations. The overall latency is

O

log2 Nx−1∑
j=0

(Nx + 2j)

 = O(Nx log(Nx) + Nx); (9)

that is, the complexity remains identical to the
O(Nx log(Nx)) from variable-shift even though the
task is significantly more difficult (since shift is unknown).
Notice that the overhead over variable-shift is only the OR
computations for t, which is O(

∑log2 Nx−1
j=0 2j) = O(Nx)

steps total, leading to the very low increase in latency over
variable-shift (approximately 7% for Nx = 24).

4.5 Bit-Serial Floating-Point Signed Addition
This section utilizes the novel bit-serial variable normaliza-
tion to propose the first in-memory signed floating-point
addition. Subtraction can be derived from such signed ad-
dition by simply inverting the sign-bit of the second input.
The proposed algorithm extends Algorithm 4.2 as follows:
x′.m is replaced with −x′.m if x.s 6= y.s [30] (performed
using data-flow through a technique similar to the Sec-
tion 3.3), and Algorithm 4.3 is utilized at the end to left-
normalize z.m (in addition to the simpler single right-shift
normalization using Algorithm 4.1). The sign of the overall
output is computed through data-flow via an expression
involving ∆s = XOR(x.s, y.s), whether z.m was negative,
and whether x, y were swapped; details are available in the
code repository. Overall, this algorithm possesses the same
properties as the unsigned addition algorithm: the abstract
PIM model is utilized without modifications (i.e., no custom
periphery required), and the algorithm operates within a
single-row via data-flow (enabling element-parallel execu-
tion). The overall latency remains O(Nm log(Nm) + Ne)
steps, yet the constant increases slightly (over unsigned) as
the variable-normalization (Algorithm 4.3) is performed in
addition to the variable-shifting (Algorithm 4.1).

4.6 Bit-Serial Floating-Point Multiplication/Division
As detailed in Section 4.1, these algorithms are derived
naively from the corresponding bit-serial fixed-point al-
gorithms to compute the result mantissa, and fixed-point
addition/subtraction to compute the result exponent. The
variable shift routine with Nt = 1 is used for the final single-
step normalization of the mantissa. The overall latency is
O(Nm

log2(3) + Ne) ≈ O(Nm
1.58 + Ne) steps for multiplica-

tion and O(Nm
2 + Ne) steps for division.

4.7 Related In-Memory Floating-Point Works
The difficulty of in-memory element-parallel floating-point
operations (e.g., variable shifting [28]) has led to little re-
search on the subject. For example, DRISA [28] explicitly
mentions the lack of a variable-shift routine obstructing the
support for floating-point operations. Nonetheless, a few
research works [10], [22], [41] have previously attempted
such floating-point operations. Yet, their algorithms require
content-addressable-memory (CAM) functionality to be in-
tegrated within the arrays (no longer adhering to the ab-
stract model). Specifically, they require the existence of a
search operation which can select certain rows for a mask

Fig. 5. Partitions emerge when switches partition arrays to increase
parallelism, for (a) fully-parallel (all switches disconnected) and (b) semi-
parallel operations (some switches disconnected).

based on the data stored in row, and then only apply column
operations according to the mask. These search operations
are exploited towards variable shift by iterating over all
possible shift quantities (all values of t) and shifting only
the rows which correspond to exactly that shift amount.

Unfortunately, the integration of a CAM within mem-
ristive crossbar arrays may increase the memory area by
approximately 12.5× [42]. This overhead has directly led to
the algorithms not being widely adopted [5], [39]; further,
CAMs may not be compatible with other forms of PIM
(e.g., DRAM). Conversely, our proposed bit-serial floating-point
algorithms require no modifications, are compatible with many ad-
ditional forms of PIM (e.g., DRAM), and, even without resorting
to extra hardware, are faster than the previous works [10], [22],
[41] due to the logarithmic shifter and binary-search approaches.

5 BIT-PARALLEL FIXED-POINT ARITHMETIC

We overcome an inherent limitation of the bit-serial element-
parallel approaches by utilizing an emerging technique of
partitions [11], [27], thereby introducing a highly-unique
computation model that we exploit for bit-parallel element-
parallel arithmetic. While the bit-serial element-parallel ap-
proach provides high throughput from the parallel compu-
tation across all rows and all arrays, the gates within each
row are performed serially (e.g., one NOR at a time). This
leads to high latency and low utilization of the potential
computational power of PIM: all the r · c devices of each
array have inherent logic capabilities, yet we only activate
O(r) devices per cycle. Partitions have recently emerged as
a minor modification to PIM architectures that overcomes
this limitation by enabling multiple concurrent column op-
erations within a single array. Every array is horizontally
divided into k partitions, each sized r × (c/k), which are
connected via k − 1 sets of r switches. This enables con-
current execution in different partitions when the switches
are disconnected, and the ability to efficiently transfer data
between partitions (using column operations) when some
switches are connected through semi-parallel operations, as
illustrated in Figure 5. We exploit this unique computational

10

model towards a suite of bit-parallel element-parallel fixed-
point arithmetic algorithms that vastly improves latency.

This section begins by providing further details on the
computational model of partitions, and the support for
partitions in PIM architectures. We then develop a general-
purpose toolbox for techniques that efficiently exploit the
unique computational model of partitions. We first uti-
lize this toolbox for fast fixed-point addition and subtrac-
tion through the parallel-prefix addition concept [30], [31].
We then present MultPIM [26], the state-of-the-art for bit-
parallel multiplication, and improve it by utilizing the pro-
posed bit-parallel addition algorithm. Bit-parallel division
is more complex than multiplication due to the conditional
operations, and thus we utilize a lesser-known historical
concept of carry-lookahead in division [30], [32], [33] along-
side a novel in-memory carry-lookahead routine.

5.1 Partitions

Partitions have recently emerged [11], [27] as a simple
modification to PIM architectures that vastly improves par-
allelism with a highly-unique computational model. The
dynamically-controlled switches dividing the partitions in
each array allow merging adjacent partitions to perform
gates amongst data stored in different partitions. At the
extreme cases, we find that disconnecting all switches
(parallel) provides maximal parallelism but with minimal
flexibility (each gate is constrained to a single partition),
and connecting all switches (serial) provides minimal par-
allelism but with maximal flexibility (each gate can access
all of the columns of the array). Semi-parallelism refers to
the case where only some switches are connected, providing
intermediate parallelism and flexibility, see Figure 5.

The implementation of partitions has been discussed in
the context of memristive PIM using transistors [11], [27],
and should be applicable to DRAM PIM as well. Further-
more, partitions nearly attaining the model assumed in
this paper are already included in a commercially-available
SRAM processor [9]. Counter-intuitively, the overhead re-
quired for the switches is rather minuscule in comparison to
the array size [11], [27], with the more significant overhead
being the periphery and control required to select all of
the involved columns [27]. Therefore, PartitionPIM [27] pro-
poses a reduced set of semi-parallel operations that requires
various patterns to significantly reduce such overhead; in
AritPIM, we assume this reduced set (minimal model [27]).

Partitions in arithmetic accelerate element-parallel algo-
rithms by enabling multiple concurrent logic gates per func-
tion, see Figure 2(a). We assume in this section that k = N
(representation size is exactly the number of partitions)9.
In this case, the inputs and outputs are stored in a strided
format: e.g., 32-bit integers are stored with a single bit per
partition. This enables O(1) latency for bitwise integer op-
erations (e.g., integer OR of two 32-bit numbers) as all parti-
tions operate in parallel. Arithmetic functions more complex
than bitwise integer operations require semi-parallelism to
share information between the different partitions. Only few
works have explored bit-parallel arithmetic [25], [26].

9. The proposed algorithms can be trivially extended to any k > N ,
and may also be generalized for the case of k < N .

5.2 Partition Toolbox
We present a broad-range of partition techniques, consti-
tuting a general-purpose toolbox for bit-parallel algorithms.
We start by briefly explaining and generalizing the broad-
cast and shift techniques from MultPIM [26], and we then
propose the novel reduction and prefix techniques. Prefix is
complex as it is intuitively serial; yet, inspired by Brent-
Kung [31], we propose an efficient parallel algorithm with
logarithmic time. For the remainder of the text, k denotes the
total number of partitions, pi denotes the ith partition, and
pi.x refers to bit xi of number x (which is stored in pi). We
also assume an abstract single-input identity gate Id(A) = A
for simplicity (e.g., implemented using two NOT gates).

5.2.1 Shift
Each partition stores a bit, and we shift the bits among the
partitions. That is, p2 gets the bit from p1, p3 gets the bit
from p2, etc. This is performed in two steps: odd partitions
copy to even partitions, and then even partitions copy to
odd [26] partitions, see Figure 6. We generalize the above
single-shift to shifting all bits j partitions to the right (e.g,
pj+1 receives from p1, pj+2, receives from p2, ...) in j+1 steps
with the `th step corresponding to all partitions pi such that
i = ` mod (j+1). Notice that this is a deterministic shift (all
rows shift by the same amount), unlike the variable shifting
algorithm proposed in Section 4; Section 6 will combine
these algorithms to attain bit-parallel variable shifting.

5.2.2 Broadcast
We desire to copy a single bit from a single partition (e.g., p1)
to all other partitions. This is achieved by first copying from
p1 to pk/2+1, and then continuing recursively, in parallel,
with the first half and the second half, as shown in Figure 6.
The parallel execution is achieved by disconnecting the
switch between pk/2 and pk/2+1. In total, log2(k) steps [26].

5.2.3 Reduction
Each partition pi stores a bit xi, and we output x1 ◦
· · · ◦ xk, where ◦ is any associative operation (e.g.,
AND,OR,XOR). This is achieved via a logarithmic tree,
as illustrated in Figure 6. For example, in the first cycle,
the partitions are split into adjacent pairs (e.g., p1 and p2
are connected, p3 and p4 are connected) and each section
computes ◦ (storing the output in the partition with the
larger index). The next cycle proceeds by connecting the
partitions that contain the results in pairs (e.g., p2 to p4 are
connected, p6 to p8 are connected). This continues following
a logarithmic tree, until the last partition stores the overall
reduction. Overall, log2(k) steps in total.

5.2.4 Prefix
Each partition pi stores a bit xi as input, and each partition
pi outputs yi = x1◦· · ·◦xi, where ◦ is any associative opera-
tion (e.g., AND,OR,XOR). This generalizes the reduction
technique as the last partition contains x1 ◦ · · ·xk, and is far
more complex as all partitions need to produce an output
(the reduction of all bits up to that partition).

The naive algorithm will propagate through the parti-
tions serially in O(k) steps; that is, compute y2 = y1 ◦ x2

in p2, then y3 = y2 ◦ x3 in p3, and so forth. An improved

LEITERSDORF et al.: HIGH-THROUGHPUT IN-MEMORY ARITHMETIC 11

Fig. 6. The proposed partition toolbox, extending techniques proposed in MultPIM [26]. The illustrations follow a row of partitions (each shown as
two cells for simplicity) as they progress throughout the cycles (vertical axis represents time); the states of the switches (connected or disconnected)
are illustrated in the connections between the partitions (the connectivity at time t reflects the gates that occur between time t and time t+ 1). The
shift technique shifts a single bit between neighboring partitions using two steps, the broadcast technique broadcasts a single-bit from one partition
to all partitions using log2(k) steps, the proposed reduction technique reduces (e.g., AND) bits from all partitions to a single partition using log2(k)
steps, and the proposed prefix technique computes for each partition the reduction of the bits from partitions before it using 2 log2(k)− 1 steps.

algorithm relies on a recursive approach: first compute yk/2
using the reduction technique in O(log2(k/2)) steps, broad-
cast that result to the upper k/2 partitions (as all of their
prefix expressions include the reduction of the lower half of
partitions), and then proceed recursively. Yet, the recursive
approach require O(log2

2(k)) steps total. Conversely, we
propose an algorithm inspired by Brent-Kung [31] that only
requires O(2 log2(k) − 1) steps and is essentially based on
the unique combination of a single reduction operation
followed by a single broadcast operation. Intuitively, the
intermediate results computed in the reduction resemble a
prefix at some indices, and then the broadcast “fills in the
holes” for the other indices by causing internal propagation.
An example execution is shown in Figure 6, with the general
algorithm provided in the code repository.

5.3 Bit-Parallel Fixed-Point Addition/Subtraction

This section demonstrates the first bit-parallel addi-
tion algorithm, inspired by parallel-prefix carry-lookahead
adders [30], [31] and utilizing the prefix technique from the
partition toolbox. The task is defined as follows: each row
begins with two N -bit fixed-point numbers, x and y, stored
in a strided format (i.e., each partition contains a single bit
from x and a single bit from y), and the algorithm computes
z = x + y and stores it also in a strided format.

The parallel-prefix carry-lookahead adder was devel-
oped as a carry-lookahead design that utilizes the unique
prefix operation for low latency with efficient area and en-
ergy; the reader is referred to [30] for a detailed explanation

Algorithm 5.1 Bit-Parallel Fixed-Point Addition
Input: N -bit x, N -bit y in a single row (strided format).
Output: N -bit result z in the same row (strided format), where

z = x + y.
Pre-computation of alive and generate bits:

1: ∀i : pi.A← OR(pi.x, pi.y)
2: ∀i : pi.G← AND(pi.x, pi.y)

Prefix (using logarithmic prefix technique):
3: ∀i : pi.GG, pi.AA← (pi.G, pi.A) ◦ · · · ◦ (p0.G, p0.A) where

(g, a) ◦ (g̃, ã) = (g + ag̃, aã).
Post-computation using shift and XOR:

4: ∀i : pi+1.c← pi.GG
5: ∀i : pi.z ← XOR(pi.x, pi.y, pi.c)

of the adder. Algorithm 5.1 attains this prefix derivation us-
ing the prefix technique10 to propose the first in-memory bit-
parallel addition algorithm. Overall, we require O(log(N))
steps, improving the bit-serial state-of-the-art of O(N) steps.

5.4 Bit-Parallel Fixed-Point Multiplication
This section introduces MultPIM [26], the state-of-the-art
for bit-parallel multiplication which is based on the carry-
save add-shift (CSAS) technique [43], and then improves the
algorithm via the proposed bit-parallel addition algorithm.

The carry-save add-shift (CSAS) technique is a design for
a latched multiplier circuit that computes the product of N -
bit integers with N parallel full-adder units. The motivation
for CSAS begins with carry-save addition: a technique that

10. Note that ◦ : {0, 1}2 × {0, 1}2 → {0, 1}2 (each state is two bits).
Therefore, the prefix technique is generalized to two bits per partition.

12

Fig. 7. The carry-save add-shift (CSAS) [26], [43] technique for mul-
tiplication. Circles are full-adders and squares are latches. Outputs of
full-adders are marked as small circle (sum) and small square (carry).

Algorithm 5.2 Bit-Parallel Fixed-Point Multiplication
Input: N -bit x, N -bit y in a single row (strided format).
Output: N -bit results z, w in the same row (strided format),

where (w|z) = x ∗ y.
1: ∀i : pi.c, pi.s← 0
2: for i = 0, . . . , N − 1 do

Broadcast of bi to all partitions:
3: ∀j : pj .b

′ ← pi.b
Partial product computation:

4: ∀j : pj .ab← pj .a · pj .b′
Carry-save addition, with shift:

5: ∀j : pj .s, pj .c← FA(pj .s, pj .c, pj .ab)
6: ∀j : pj .s← pj+1.s
7: pi.z ← p0.s
8: end for

Proposed Final Addition using Alg. 5.1.
9: w ← s + c

avoids carry-propagation when computing the sum of many
numbers. A carry-save adder receives three N -bit num-
bers, X,Y, Z, and outputs two N -bit numbers S,C, where
S + C = X + Y + Z . This is done without carry-propagation
using N full adders, where the ith adder receives Xi, Yi, Zi

and gives Si and Ci+1 (the ith carry-bit becomes the i + 1th

bit of C). To add many numbers, X1, . . . , Xn, we use carry-
save adders to reduce it to a sum of only two numbers
(fast as carry propagation is avoided), and then perform
that using a single regular adder. Recall from Section 3.2
that multiplication can be expressed as the sum of many
partial products; the fundamental idea of CSAS is using a
carry-save adder for that addition. Similar to Section 3.2,
the circuit exploits the zeros in the partial products and in
the running sum. Figure 7 demonstrates the CSAS technique
through a latched circuit design. For the ith iteration out of
N , the bit bi is provided, all of the N full-adders perform the
carry-save addition between the ith partial product and the
current running sum, and then all of the sum bits are shifted
to the right and the last partition outputs (a ∗ b)i. These N
iterations compute the lower N bits of a ∗ b; for the upper
N bits, either a regular adder is used, or an additional N
stages feed zeros instead of bi for N iterations.

MultPIM [26] utilizes the CSAS technique alongside the
shift and broadcast techniques to propose an efficient bit-
parallel multiplier. Each full-adder unit becomes a partition,
thereby enabling the computation of all the full-adders in
parallel. Furthermore, the partial products are also com-
puted with parallelism as the broadcast technique is utilized
to copy bi to all of the partitions in the ith iteration. Lastly,
the shift technique is utilized to move the sum bits between
the partitions efficiently. By performing N such iterations,

MultPIM computes the lower N bits of the product. These
steps are presented in Lines 1-8 of Algorithm 5.2.11 To
compute the upper N bits of the product, MultPIM proceeds
with an additional N iterations where 0 is provided instead
of bi (full-adders are replaced with half-adders), instead of
computing the sum of S and C directly. This choice was
due to the best adder at the time requiring O(N) cycles, and
thus the latency was identical to performing an additional N
iterations of O(1) cycles each. Yet, the proposed bit-parallel
adder from Section 5.3 can now be utilized instead, provid-
ing a significant advantage as O(N) is reduced to O(logN)
cycles and energy consumption (gate count) is reduced by
approximately 1.6×. Algorithm 5.2 provides the proposed
algorithm for bit-parallel multiplication which utilizes this
optimization. Overall, we require O(N log(N) + log(N))
steps, improving over the O(N log(N) + N) of MultPIM.

5.5 Bit-Parallel Fixed-Point Division

We present the first bit-parallel divider by combining the
concepts of carry-save and carry-lookahead. Division is far
more complex than multiplication due to the conditional
subtraction. While the conditional subtraction was avoided
in Section 3.3 by replacing the control-flow with data-flow,
the challenge here is that the sign of R (determined from the
MSB) is not known if R is in carry-save format (represented
as R = S + C). Therefore, this provides an inherent con-
tradiction between the carry-save format and division. We
overcome this by utilizing a carry-lookahead design similar
to Section 5.3 to efficiently compute only the sign of S + C .

5.5.1 Carry-Save Carry-Lookahead (CSCL)

This section proposes the carry-save carry-lookahead
(CSCL) technique for latched division which combines the
carry-save technique from CSAS with carry-lookahead to
predict the sign of R. The technique is based on a lesser-
known design for parallel division arrays [32] that is tradi-
tionally not used due to the complex layout [30], [33].

The carry-save carry-lookahead (CSCL) division tech-
nique is shown in Figure 8, based on CSAS and Algo-
rithm 3.3. A single-bit of z is inputted and a single-bit
of q is outputted at each of the N iterations. Throughout
the division, r is represented by s, c such that r = s + c
(carry-save format), and addition with r (Alg. 3.3, Line 3) is
achieved via carry-save addition. The sign bit of r (Alg. 3.3,
Line 4) is computed from s, c via carry-lookahead for the
most-significant-bit. Shifting r (Alg. 3.3, Line 5) is achieved
by shifting both s and c. The main aspects of CSCL are:

• Carry-Save Format (Figure 8, black): The remainder r is
represented via s, c such that r = s+c, where s, c are
stored in latches s1, . . . , sN and c2, . . . , cN .

• Carry-Save Addition (Figure 8, orange): Similar
to the bit-serial divider, the conditional addi-
tion/subtraction (Alg. 3.3, Line 3) is achieved via
XOR (Alg. 3.4, Line 3). The addition is performed via
the carry-save technique, utilizing N full-adders, and
shifting the carry bits once (dashed orange arrows).

11. Note that MultPIM [26] was slightly modified to support strided
format for both inputs and outputs.

LEITERSDORF et al.: HIGH-THROUGHPUT IN-MEMORY ARITHMETIC 13

Fig. 8. The latched carry-save carry-lookahead division circuit for N =
4. Latches are squares and full-adders are circles. Solid/dashed line
distinction indicates wires that do not intersect. Initial values are in gray.

Algorithm 5.3 Bit-Parallel Fixed-Point Division
Input: 2N -bit dividend (w|z), N -bit divisor d in a single row

(strided format).
Output: N -bit quotient q, N -bit remainder r in the same row

(strided format), where (w|z) = qd + r.
1: ∀i : pi.s← pi.w, pi.c← 0
2: for i = N − 1, . . . , 0 do

Broadcast of qi+1 to all partitions.
3: ∀j : pj .q

′ ← pi+1.q
Conditional addition/subtraction.

4: ∀j : pj .dq ← XOR(pj .d, pj .q
′)

5: ∀j : pj .s, pj .c← FA(pj .s, pj .c, pj .dq)
First carry shift.

6: ∀j : pj+1.c← pj .c
Compute carry the carry of s + c:

7: Same as Alg. 5.1 with prefix replaced with reduction.
8: pi.q ← XNOR(pN−1.s, pN−1.c, pN .s, pN .c, carry)

Remainder shifting:
9: ∀j : pj+1.s← pj .s, pj+1.c← pj .c

10: end for
Final remainder computation using Alg. 5.1.

11: r = s + c + AND(d,NOT(q0))

• Carry Lookahead (Figure 8, blue): The sign bit of r
(required in Alg. 3.3, Line 4) is computed directly
via carry-lookahead for the addition s + c.

• Remainder Shifting (Figure 8, green): The remainder
shifting (required in Alg. 3.3, Line 5) is achieved by
shifting both sum and carry bits once to the right.

5.5.2 Proposed Algorithm
The proposed CSCL technique is used in Algorithm 5.3. As
in bit-parallel multiplication, each full-adder is represented
via a partition, and inter-partition communication (e.g.,
carry-save, remainder shifting) is achieved with the toolbox
(e.g., shifting, broadcasting). The carry-lookahead for the
last carry is performed by modifying Section 5.3 to perform
reduction rather than prefix. This computes the last carry in
logarithmic time, and is faster than computing all carries as
reduction is faster than prefix12. Overall, this is O(N log(N))
steps, while the bit-serial state-of-the-art is O(N2).

6 BIT-PARALLEL FLOATING-POINT ARITHMETIC

We merge the ideas from Section 4 (bit-serial floating-
point) and Section 5 (bit-parallel fixed-point) for bit-parallel
floating-point arithmetic. Recall that the algorithms from

12. This leads to the benefit of the proposed algorithm over merely
implementing Algorithm 3.3 with Algorithm 5.1.

Algorithm 6.1 Bit-Parallel Variable Shift Routine
Input: Nx-bit x, Nt-bit t, in a single row (strided format).
Output: Nx-bit z = x� t in the same row (strided format).

1: ∀i : pi.z ← pi.x
2: for j = 0, . . . ,min(Nt − 1, log2(Nx)− 1) do

Compute z ← muxtj (z � 2j , z) as follows:
Generalized shift technique:

3: ∀i : pi.z
′ ← pi+2j .z

Broadcast technique:
4: ∀i : pi.s← pj .t

Parallel multiplexer:
5: ∀i : pi.z ← muxpi.s(pi.z

′, pi.z)
6: end for

Section 4 relied on the variable shifting/normalization and
fixed-point counterparts from Section 3. We now show bit-
parallel variable shifting/normalization, and the extension
to bit-parallel floating-point arithmetic follows by replacing
the algorithms from Section 3 with those from Section 5. To
allow fixed and floating point in the same crossbar, floating-
point numbers are stored in strided format like fixed-point
numbers (e.g., 32-bit floats are stored across 32 partitions).

We extend the bit-serial variable-shift and variable-
normalization routines from Section 4.2 using the partition
toolbox. For bit-parallel variable-shift, we utilize the general-
ized shift technique from the toolbox to get z � 2j , and then
use a parallel multiplexer (each partition performs a 2:1 1-
bit multiplexer) to get z ← muxtj (z � 2j , z). Algorithm 6.1
shows this in O(log(Nx) + log2(Nx) + Nx) steps (with a
small constant in O(log2(Nx)+Nx)). For bit-parallel variable
normalization, we also perform tj ← ¬(zNx−2j ∨· · ·∨zNx−1)
using the reduction technique from the partition toolbox.
This provides bit-parallel variable normalization with the
same complexity as bit-parallel variable shift.

7 EVALUATION

We evaluate the AritPIM suite to verify the correctness of
the algorithms, to compare its performance to previous PIM
works and alternative solutions (e.g., GPU), and to facili-
tate its adoption by providing an open-access library with
comprehensive implementations. The remainder of this sec-
tion details the evaluation methodology and provides an
overview of the results, while focusing primarily on the
overall approaches. Further details on the experimental
evaluation are available in the README of the code reposi-
tory13, alongside implementations for all of the algorithms.

7.1 Correctness
The correctness of the proposed algorithms is verified via a
cycle-accurate simulation that consists of a PIM simulator and
the library of the proposed algorithms. The PIM simulator
models a single-row as a binary vector and possesses an
interface for performing in-memory gates: a logic gate (e.g.,
NOR) may be sent to the simulator, and the simulator
internally applies the logic gate. The library consists of im-
plementations of the algorithms in this paper, each receiving
the parameters of the algorithm (e.g., N) and outputting a
sequence of in-memory gates. Together, correctness is veri-
fied as follows: the inputs are manually written to the PIM

13. Available at https://github.com/oleitersdorf/AritPIM

https://github.com/oleitersdorf/AritPIM

14

Fig. 9. Comparison of AritPIM to both the previous state-of-the-art for PIM (where relevant), and GPUs, for 32-bit numbers. The results compare
both Throughput (arithmetic operations per second) and Throughput/Watt (energy). Additional results and details are provided in the repository.

simulator’s internal memory (e.g., integers x, y), a sequence
of logic gates is generated by the library and sent to the PIM
simulator to be applied internally, and then the output (e.g.,
z) is manually read and compared to the expected value
(e.g., x + y). For floating-point numbers, we compare to
python-based floating-point operations (which adhere to the
IEEE-754 standard). For partitions, we adopt the simulator
for the minimal-model from PartitionPIM [27].

7.2 Performance Comparison
We compare the performance of AritPIM to previous PIM
works (where relevant) and to GPU. Figure 9 summarizes
the comparison, demonstrating both significant improve-
ments over previous PIM works (in the few cases where pre-
vious works exist) and vast potential for high throughput
compared to GPUs. Additional results for different param-
eters are available in the README of the code repository
(e.g., cycle counts, energy, area); this section continues by
detailing the methodology that derived these results.

For the comparison to alternative PIM works, we com-
pare the cycle-count of the algorithms when implemented
with the same underlying set of logic gates of NOT/NOR14.
This provides a fair comparison between the algorithms as
the underlying conditions are identical, and thus the only
differences are the algorithmic concepts.

For the comparison to GPU, we consider a specific poten-
tial architecture of PIM and compare to experimental results
from a modern GPU. Specifically, we consider a case-study
of memristive PIM supporting the NOT/NOR gates [4],
[5], with memristor parameters derived from RACER [5],
constructing an 8GB memory from 1024× 1024 crossbars.15

The peripheral correctness and the evaluation of electrical

14. Previous works were modified to assume 9 NORs per full adder
to provide a fair comparison between the algorithmic concepts. Specif-
ically, [20], [39] were upgraded from a 12-NOR full-adder to a 9-NOR
full-adder, and the NOR-based implementation of [26] was adopted.

15. The evaluated vector dimension is 64M elements without loss of
generality (as there are 64M rows in an 8GB memory of 1024×1024 ar-
rays). Yet, AritPIM also supports larger vectors with identical Through-
put and Throughput/Watt by using batches (e.g., 128M -element vector
addition is performed by storing two elements per row per vector, and
then performing two 64M -element vector additions serially).

limitations follow from ongoing works [4], [5], [44] that
explore device and circuit models. These parameters reflect
estimates of memristor performanc [5], and may differ
between technologies; regardless, the overall trends and
orders of magnitude remain and the proposed algorithms
are directly applicable to all of the different forms of mem-
ristive PIM. Therefore, future work may select the most
appropriate technology for PIM according to its specific
parameters, and use the same algorithms from AritPIM.
For GPU, we initialize vectors of 64M numbers in the GPU
memory and measure the GPU performance when perform-
ing vectored operations (e.g., addition) on those vectors.
Specifically, we utilize an NVIDIA RTX 3070 GPU with the
PyTorch [45] profiling tools. Notice that this corresponds to
data-intensive scenarios where the data does not fit within
the cache; furthermore, we observed that the experimental
results are almost identical to the theoretical upper-bound
established by the GPU memory throughput – indicating
that the memory wall is indeed the bottleneck. This obser-
vation also validates that other computational architectures
(e.g., FPGA) subject to the same memory bandwidth will
not outperform the observed GPU performance.

7.3 Adoption
One of the goals of this paper is to provide a foundational
suite of arithmetic operations to advance PIM towards large-
scale applications. Therefore, we have taken the following
steps to facilitate the adoption of the proposed algorithms:
• Uniformity: All of the algorithms conform to the same

interface for the inputs and outputs (e.g., z ← x◦y for
◦ ∈ {+,−, ∗, \} all conform to the same interface).
This simplifies the usage of arithmetic in a PIM
architecture towards an application.

• Open-Access Algorithms: The implementations of the
proposed algorithms are publicly available in the
code repository. This enables their integration within
cycle-accurate simulators for larger applications.

• Verified Results: We provide verified results for the cy-
cle counts, energy, and area, of all of the algorithms,
thereby enabling their usage in a larger application
without requiring a cycle-accurate simulator.

LEITERSDORF et al.: HIGH-THROUGHPUT IN-MEMORY ARITHMETIC 15

8 CONCLUSION

As the memory-wall continues to limit the performance of
modern computing systems, processing-in-memory (PIM)
systems are rethinking the separation of storage and logic
units to provide massive parallelism for bitwise logic within
the memory itself. This paper extends this bitwise paral-
lelism to high-throughput arithmetic in order to provide a
foundation for large-scale PIM applications. We study the
four elementary functions for both fixed-point and floating-
point numbers, and via two emerging computational ap-
proaches of bit-serial and bit-parallel execution – providing
the first algorithms in the literature for a majority of cases.
Overall, this paper may be fundamental in the integration
of large-scale applications with different PIM technologies.

ACKNOWLEDGMENTS

This work was supported in part by the European Research
Council through the European Union’s Horizon 2020 Re-
search and Innovation Programme under Grants 757259 and
101069336, and in part by the Israel Science Foundation
under Grant 1514/17.

REFERENCES

[1] M. Horowitz, “Computing’s energy problem (and what we can do
about it),” in IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2014, pp. 10–14.

[2] N. Xu, T. Park, K. J. Yoon, and C. S. Hwang, “In-memory stateful
logic computing using memristors: Gate, calculation, and applica-
tion,” Physica Status Solidi (RRL) – Rapid Research Letters, vol. 15,
no. 9, p. 2100208, 2021.

[3] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent
RAM,” IEEE Micro, vol. 17, no. 2, pp. 34–44, 1997.

[4] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic de-
sign within memristive memories using memristor-aided logic
(MAGIC),” IEEE Transactions on Nanotechnology, vol. 15, no. 4, pp.
635–650, 2016.

[5] M. S. Q. Truong, E. Chen, D. Su, L. Shen, A. Glass, L. R. Carley,
J. A. Bain, and S. Ghose, “RACER: Bit-pipelined processing us-
ing resistive memory,” in IEEE/ACM International Symposium on
Microarchitecture, 2021, p. 100–116.

[6] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. a. D. Ferreira, N. M.
Ghiasi, M. Patel, M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu,
“SIMDRAM: A framework for bit-serial SIMD processing using
DRAM,” in ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, 2021, p. 329–345.

[7] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM:
In-memory compute using off-the-shelf DRAMs,” in IEEE/ACM
International Symposium on Microarchitecture, 2019, p. 100–113.

[8] J. L. Potter, Associative computing: a programming paradigm for mas-
sively parallel computers. Springer Science & Business Media, 2012.

[9] [Online]. Available: https://www.gsitechnology.com/sites/
default/files/Presentations/GSIT-Gemini-APU-Tech-Paper.pdf

[10] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw,
and D. Sylvester, “A 28-nm compute SRAM with bit-serial
logic/arithmetic operations for programmable in-memory vector
computing,” IEEE Journal of Solid-State Circuits, vol. 55, no. 1, pp.
76–86, 2020.

[11] S. Gupta, M. Imani, and T. Rosing, “FELIX: Fast and energy-
efficient logic in memory,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2018, pp. 1–7.

[12] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart,
and R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic
operations via material implication,” Nature, vol. 464, no. 7290, pp.
873–876, 2010.

[13] Z. Chowdhury, J. D. Harms, S. K. Khatamifard, M. Zabihi, Y. Lv,
A. P. Lyle, S. S. Sapatnekar, U. R. Karpuzcu, and J.-P. Wang, “Ef-
ficient in-memory processing using spintronics,” IEEE Computer
Architecture Letters, vol. 17, no. 1, pp. 42–46, 2018.

[14] M. Zabihi, Z. Zhao, D. Mahendra, Z. I. Chowdhury, S. Resch,
T. Peterson, U. R. Karpuzcu, J.-P. Wang, and S. S. Sapatnekar,
“Using spin-hall MTJs to build an energy-efficient in-memory
computation platform,” in 20th International Symposium on Quality
Electronic Design (ISQED), 2019, pp. 52–57.

[15] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-memory accelerator for bulk bitwise operations using commod-
ity DRAM technology,” in IEEE/ACM International Symposium on
Microarchitecture, 2017, pp. 273–287.

[16] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient processing
in-memory for data intensive applications,” in ACM/EDAC/IEEE
Design Automation Conference, 2017, pp. 1–6.

[17] V. Lakshmi, J. Reuben, and V. Pudi, “A novel in-memory wallace
tree multiplier architecture using majority logic,” IEEE Transactions
on Circuits and Systems I: Regular Papers, pp. 1–11, 2021.

[18] R. Ben Hur, N. Wald, N. Talati, and S. Kvatinsky, “Simple
magic: Synthesis and in-memory mapping of logic execution for
memristor-aided logic,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017, pp. 225–232.

[19] M. Zabihi, Z. I. Chowdhury, Z. Zhao, U. R. Karpuzcu, J.-P. Wang,
and S. S. Sapatnekar, “In-memory processing on the spintronic
CRAM: From hardware design to application mapping,” IEEE
Transactions on Computers, vol. 68, no. 8, pp. 1159–1173, 2019.

[20] A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, “Efficient algo-
rithms for in-memory fixed point multiplication using MAGIC,”
in IEEE International Symposium on Circuits and Systems, 2018.

[21] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu,
N. Peled, and S. Kvatinsky, “SIMPLER MAGIC: Synthesis and
mapping of in-memory logic executed in a single row to improve
throughput,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 39, no. 10, pp. 2434–2447, 2020.

[22] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-memory
acceleration of deep neural network training with high precision,”
in ACM/IEEE International Symposium on Computer Architecture,
2019, pp. 802–815.

[23] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer,
D. Sylvester, D. Blaaauw, and R. Das, “Neural cache: Bit-serial
in-cache acceleration of deep neural networks,” in ACM/IEEE
International Symposium on Computer Architecture, 2018, pp. 383–
396.

[24] J.-P. Wang and J. D. Harms, “General structure for computa-
tional random access memory (CRAM),” Dec. 29 2015, US Patent
9,224,447.

[25] Z. Lu, M. T. Arafin, and G. Qu, “RIME: A scalable and energy-
efficient processing-in-memory architecture for floating-point op-
erations,” in Asia and South Pacific Design Automation Conference,
2021, pp. 120–125.

[26] O. Leitersdorf, R. Ronen, and S. Kvatinsky, “MultPIM: Fast stateful
multiplication for processing-in-memory,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1647–1651,
2022.

[27] O. Leitersdorf, R. Ronen, and S. Kvatinsky, “PartitionPIM: Practi-
cal memristive partitions for fast processing-in-memory,” in arXiv,
2022.

[28] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“DRISA: A DRAM-based reconfigurable in-situ accelerator,” in
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
288–301.

[29] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol.
145, no. 2. Russian Academy of Sciences, 1962, pp. 293–294.

[30] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, New York, 2010, vol. 2.

[31] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,”
IEEE Transactions on Computers, vol. C-31, no. 3, pp. 260–264, 1982.

[32] M. Cappa and V. Hamacher, “An augmented iterative array for
high-speed binary division,” IEEE Transactions on Computers, vol.
C-22, no. 2, pp. 172–175, 1973.

[33] M. Lu, Arithmetic and logic in computer systems, 1st ed., ser. Wiley
Series in Microwave and Optical Engineering. Hoboken, NJ:
Wiley-Interscience, 2004.

[34] Z. Sun, E. Ambrosi, A. Bricalli, and D. Ielmini, “Logic computing
with stateful neural networks of resistive switches,” Advanced
Materials, 2018.

https://www.gsitechnology.com/sites/default/files/Presentations/GSIT-Gemini-APU-Tech-Paper.pdf
https://www.gsitechnology.com/sites/default/files/Presentations/GSIT-Gemini-APU-Tech-Paper.pdf

16

[35] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw,
and R. Das, “Compute caches,” in IEEE International Symposium on
High Performance Computer Architecture, 2017, pp. 481–492.

[36] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo:
A processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories,” in ACM/EDAC/IEEE Design
Automation Conference, 2016, pp. 1–6.

[37] H. Amrouch, D. Gao, X. S. Hu, A. Kazemi, A. F. Laguna, K. Ni,
M. Niemier, M. M. Sharifi, S. Thomann, X. Yin, and C. Zhuo,
“Ferroelectric FET technology and applications: From devices to
systems,” in IEEE/ACM International Conference On Computer Aided
Design (ICCAD), 2021, pp. 1–8.

[38] D. Reis, M. Niemier, and X. S. Hu, “Computing in memory with
FeFETs,” in International Symposium on Low Power Electronics and
Design, 2018.

[39] R. Li, S. Song, Q. Wu, and L. K. John, “Accelerating force-directed
graph layout with processing-in-memory architecture,” in IEEE
International Conference on High Performance Computing, Data, and
Analytics, 2020, pp. 271–282.

[40] T. Jebelean, “Practical integer division with Karatsuba complex-
ity,” in International Symposium on Symbolic and Algebraic Computa-
tion, 1997, p. 339–341.

[41] H. Jin, C. Liu, H. Liu, R. Luo, J. Xu, F. Mao, and X. Liao,
“ReHy: A ReRAM-based digital/analog hybrid PIM architecture
for accelerating CNN training,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 11, pp. 2872–2884, 2021.

[42] J. Li, R. K. Montoye, M. Ishii, and L. Chang, “1 Mb 0.41 µm² 2T-2R
cell nonvolatile TCAM with two-bit encoding and clocked self-
referenced sensing,” IEEE Journal of Solid-State Circuits, vol. 49,
no. 4, pp. 896–907, 2014.

[43] R. Gnanasekaran, “A fast serial-parallel binary multiplier,” IEEE
Transactions on Computers, vol. C-34, no. 8, pp. 741–744, 1985.

[44] M. Zabihi, A. K. Sharma, M. G. Mankalale, Z. I. Chowdhury,
Z. Zhao, S. Resch, U. R. Karpuzcu, J.-P. Wang, and S. S. Sapatnekar,
“Analyzing the effects of interconnect parasitics in the STT CRAM
in-memory computational platform,” IEEE Journal on Exploratory
Solid-State Computational Devices and Circuits, vol. 6, no. 1, pp. 71–
79, 2020.

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative
style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32, 2019, pp. 8024–8035.

Orian Leitersdorf (Student Member, IEEE) re-
ceived the B.Sc. degree from the Technion, Haifa
in 2022, and is currently a PhD candidate at
the Technion, Haifa, Israel. He was a scholar at
both the Technion Excellence Program and the
Lapidim CS Excellence Program, he previously
received the Gutwirth Excellence Scholarship,
and he is currently a recipient of the Jacobs Ex-
cellence Scholarship. Further, he has received
several awards, including the Early Career Re-
searcher Paper Award at the ISITA 2022 confer-

ence. His current research aims to advance digital PIM towards fun-
damental applications (e.g., matrix operations, graph algorithms) while
also addressing challenges such as reliability. Further, his research
interests also include information theory and constrained coding.

Dean Leitersdorf received the B.Sc. and Ph.D.
degrees from the Technion, Haifa, in 2019 and
2022. He was a recipient of several awards,
including the 2018 Best Student Paper award
at OPODIS, 2019 Best Student Paper award at
PODC, the 2021 Jacobs Excellent Paper award
(Technion), and the 2021 Jacobs Excellence cer-
tificate (Technion). His current research interests
are in the fields of distributed graph algorithms,
focusing on distance computations, sparse ma-
trix multiplication and subgraph existence.

Jonathan Gal is currently studying towards his
B.Sc in Computer Science and Mathematics at
the Technion, Haifa, Israel, as part of the Tech-
nion Excellence Program. Jonathan Gal won a
bronze medal in 2015 in the APIO (Asia Pacific
Informatics Olympiad) and the IOI (International
Informatics Olympiad). Between 2016 and 2020
he worked as a software engineer, focusing on
image processing.

Mor Dahan is currently finishing his B.Sc. in
Electrical Engineering at the Technion, Haifa,
Israel. He joined Intel in 2018 as a DevOps
engineer, and since 2020 he has been working
as a hardware designer (focusing on pre-silicon
verification).

Ronny Ronen (Fellow, IEEE) received the B.Sc.
and M.Sc. degrees in computer science from
the Technion, Haifa, Israel, in 1978 and 1979,
respectively. He is a Senior Researcher with the
Andrew and Erna Viterbi Faculty of Electrical &
Computer Engineering at the Technion. He was
with Intel Corporation from 1980 to 2017 in var-
ious technical and managerial positions. In his
last role, he led the Intel Collaborative Research
Institute for Computational Intelligence. He was
the Director of microarchitecture research and a

Senior Staff Computer Architect at the Intel Haifa Development Center
until 2011. He led the development of several system software products
and tools, including the Intel Pentium processor performance simulator
and several compiler efforts. In these roles, he led/was involved in the
initial definition and pathfinding of major leading-edge Intel processors.
He holds over 80 issued patents and has published over 35 papers.

Shahar Kvatinsky (Senior Member, IEEE) is
an Associate Professor at the Viterbi Faculty of
Electrical and Computer Engineering, Technion.
Shahar received the B.Sc. degree in Computer
Engineering and Applied Physics and an MBA
degree in 2009 and 2010, respectively, both from
the Hebrew University of Jerusalem, and the
Ph.D. degree in Electrical Engineering from the
Technion in 2014. From 2006 to 2009, he worked
as a circuit designer at Intel. From 2014 and
2015, he was a post-doctoral research fellow at

Stanford University. Kvatinsky is a member of the Israel Young Academy.
He is the head of the Architecture and Circuits Research Center at
the Technion and chair of the IEEE Circuits and Systems in Israel.
Kvatinsky has been the recipient of numerous awards including: 2020
MDPI Electronics Young Investigator Award, 2019 Wolf Foundation’s
Krill Prize, 2015 IEEE Guillemin-Cauer Best Paper Award, ERC starting
grant, and the 2017 Pazy Memorial Award.

	Introduction
	Digital Processing-in-Memory (PIM)
	Memristive Stateful-Logic
	In-DRAM Logic
	Additional PIM Technologies
	SRAM
	Non-Stateful Memristive
	FeFET

	Bit-Serial Fixed-Point Arithmetic
	Bit-Serial Fixed-Point Addition/Subtraction
	Bit-Serial Fixed-Point Multiplication
	Bit-Serial Fixed-Point Division

	Bit-Serial Floating-Point Arithmetic
	Floating-Point Representation
	Bit-Serial Variable Shift Routine
	Bit-Serial Floating-Point Unsigned Addition
	Bit-Serial Variable Normalization Routine
	Bit-Serial Floating-Point Signed Addition
	Bit-Serial Floating-Point Multiplication/Division
	Related In-Memory Floating-Point Works

	Bit-Parallel Fixed-Point Arithmetic
	Partitions
	Partition Toolbox
	Shift
	Broadcast
	Reduction
	Prefix

	Bit-Parallel Fixed-Point Addition/Subtraction
	Bit-Parallel Fixed-Point Multiplication
	Bit-Parallel Fixed-Point Division
	Carry-Save Carry-Lookahead (CSCL)
	Proposed Algorithm

	Bit-Parallel Floating-Point Arithmetic
	Evaluation
	Correctness
	Performance Comparison
	Adoption

	Conclusion
	References
	Biographies
	Orian Leitersdorf
	Dean Leitersdorf
	Jonathan Gal
	Mor Dahan
	Ronny Ronen
	Shahar Kvatinsky

