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Abstract—DNA sequence classification is a fundamental task
in computational biology with vast implications for applications
such as disease prevention and drug design. Therefore, fast
high-quality sequence classifiers are significantly important. This
paper introduces ClaPIM, a scalable DNA sequence classification
architecture based on the emerging concept of hybrid in-crossbar
and near-crossbar memristive processing-in-memory (PIM). We
enable efficient and high-quality classification by uniting the
filter and search stages within a single algorithm. Specifically, we
propose a custom filtering technique that drastically narrows the
search space and a search approach that facilitates approximate
string matching through a distance function. ClaPIM is the
first PIM architecture for scalable approximate string matching
that benefits from the high density of memristive crossbar
arrays and the massive computational parallelism of PIM.
Compared with Kraken2, a state-of-the-art software classifier,
ClaPIM provides significantly higher classification quality (up to
20× improvement in F1 score) and also demonstrates a 1.8×
throughput improvement. Compared with EDAM, a recently-
proposed SRAM-based accelerator that is restricted to small
datasets, we observe both a 30.4× improvement in normalized
throughput per area and a 7% increase in classification precision.

Index Terms—Processing-in-memory, Accelerator, Bioinfor-
matics, DNA classification, Approximate string matching.

I. INTRODUCTION

Bioinformatics has significantly contributed to modern med-
ical care through advances such as personalized medicine and
accurate disease diagnostics. A fundamental task in bioinfor-
matics is taxonomic DNA classification: classifying genomes
by species. This task is accomplished by first establishing a
database of reference DNA sequences representing potential
species and then sequencing a query DNA sample using
sequencing machines that produce numerous short reads (sub-
sequences of the sampled DNA). The goal of DNA classifi-
cation is to determine the most likely species to which the
sample belongs by comparing the reads to the database. As
sequencing machines are prone to sequencing errors and given
that mutations are common even between different samples
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Fig. 1: Overview of the overall taxonomic classification process, and the
specific stages of the proposed ClaPIM classifier.

of the same species, approximate sequence (string) matching
is advantageous when comparing reads to the reference DNA
segments [1]. The classification pipeline is presented in Fig. 1.

As opposed to the common case of exact string comparison,
approximate string matching can tolerate edits up until a pre-
defined edit distance (number of substitutions, insertions, and
deletions) between the two strings. Notice that approximate
string matching also arises in other classification-based data-
intensive applications such as data filtration for security mon-
itoring, digital forensics, and data analytics [2].

Unfortunately, traditional efficient solutions for string
searching (e.g., suffix trees [3]) cannot support approximate
matching. Other classification tools [4] implement approxi-
mate string matching by applying traditional optimal sequence
alignment algorithms such as BLAST [5]; these tools are slow
since they are based on a dynamic-programming approach.
Therefore, an efficient approximate heuristic-based approach
known as k-mer matching (k-mer is a short DNA sub-
sequence) is emerging in modern classifiers. The approach’s
idea is to extract k-mers from the DNA sequences and match
the k-mers rather than the full sequences. Classifiers include
CLARK [6], LMAT [7], Kraken2 [8], KrakenOnMem [9], and
Sieve [10] are using this approach but the main drawback of
these classifiers is that the k-mers are compared using exact
matching, leading to high throughput at the cost of limited
sensitivity.

Conversely, the recently introduced HD-CAM [11] and
EDAM [12] accelerators proposes a heuristic that enables fast
approximate comparisons of k-mers. The algorithm proposed
by EDAM provides higher classification quality than HDCAM.
Still, the main limitation of EDAM stems from the memory
technology on which it is implemented: SRAM-based Content-
Addressable Memory (SRAM-CAM). This memory technol-
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ogy suffers from poor density and performance scalability and
thus cannot support large databases. Scalability is essential
for sequence analysis infrastructures as databases on tens of
billions of bases are common [13].

Since DNA classification is a data-intensive task that com-
pares up to billions of sequences, processing-in-memory (PIM)
platforms are highly suitable. Such platforms enable the data to
be processed directly inside the memory without transferring it
to a centralized processor. This enables PIM to overcome the
“memory wall”, a performance and energy bottleneck arising
from data transfer between the processor and the memory.
Memristive memories are an emerging form of PIM platforms
as they inherently support data storage and computation within
the same memory array [14].

This paper proposes ClaPIM, a novel taxonomic classifica-
tion accelerator based on emerging PIM techniques. ClaPIM
comprises filtering and search stages (Fig. 1) that together
enable efficient sequence classification. The search stage is
inspired by an algorithm proposed in EDAM. Yet, the al-
gorithm is modified to benefit from the massive density of
memristive crossbar arrays (necessary for processing large
databases). Furthermore, we propose an additional filtering
step that drastically reduces the search space to increase energy
efficiency and enable simultaneous in-memory comparisons
for multiple DNA queries. Together, these solutions provide
massive throughput on large datasets while retaining the su-
perior quality provided by approximate k-mer matching. Com-
pared with Kraken2, a state-of-the-art exact-matching software
classifier, ClaPIM classification F1 score is 20× greater while
still providing a 1.8× improvement in throughput. Moreover,
compared to EDAM, ClaPIM provides a 30.4× improvement
in normalized throughput per area (area efficiency) while
also providing an improvement of up to 7% in classification
precision.

This paper makes the following contributions:
• To the best of our knowledge, ClaPIM is the first

scalable PIM-based accelerator for edit-distance-tolerant
classification and is also the first taxonomic classification
solution based on memristive memory.

• We propose a hybrid in/near-crossbar approach which
exploits sensing circuitry towards efficient count and
comparison operations.

• We propose a software filtering stage that improves both
energy efficiency and classification precision on large
datasets by 250× and up to 7%, respectively.

• We propose a parallel query allocation scheme that in-
creases throughput by dynamically activating different
parts of the PIM architecture simultaneously.

II. BACKGROUND

A. DNA Sequence Classification
A DNA sequence is a string comprised of four basic

molecules represented by the letters A, T, G, and C (known
as bases).DNA sequence classification matches an unlabeled
DNA sample to the closest sequence in an existing reference
database. Different classification tasks, such as virus sub-
typing or taxonomic classification, follow the same funda-
mental stages: (1) A metagenomic sample (mixture of DNA

from multiple organisms and entities) is obtained, (2) the
sample is inserted into a sequencer that outputs numerous
small sequences of the DNA known as reads, and (3) each
read is compared against the existing database to associate it
with known sequences. The sequencing errors carried by the
reads, together with the mutations expected between samples
of the same species, oblige classifiers to perform approximate
string matching when evaluating the similarity between strings.

Classification quality is evaluated through a combination of
the sensitivity and precision metrics, defined as follows:

Sensitivity =
TP

TP + FN
,Precision =

TP

TP + FP
, (1)

where true positives (TP) represents the number of correctly
matched strings, false negatives (FN) denotes the number of
strings that should have matched but were not (potentially
due to a sequencing error), and false positives (FP) represents
the number of strings that were falsely matched. Thus, 100%
sensitivity indicates that all true matches were identified,
while 100% precision indicates that all identified matches
were correct. Since sensitivity trades off with precision and
maximizing both metrics is desired, the F1 score is used to
evaluate classification quality. This score is the harmonic mean
of sensitivity and precision:

F1 =
2× Sensitivity × Precision

Sensitivity + Precision
. (2)

Traditional classifiers, e.g., BLAST-based models [15], [4],
apply sequence alignment algorithms to determine the sim-
ilarity between strings. These alignment-based models are
computationally expensive and time-consuming, and thus are
limited when dealing with large-scale sequences. Alternatively,
alignment-free tools have enabled high-throughput processing
of sequencing data primarily due to their computational effi-
ciency. The latter tools, such as Kraken2 [8], mainly exploit
k-mer (read fragment of length k) exact matching heuristics;
however, this results in reduced sensitivity in the presence of
sequencing errors and mutations within k-mers.

HD-CAM [11], on the other hand, proposes tolerating
Hamming distance to find the similarity regions. However,
such technique mainly allows tolerating substitutions while
providing little support to insertion and deletion tolerance.

EDAM [12] resolves this shortcoming by tolerating edit
rather than Hamming distance (i.e., supporting all types of
edits). EDAM achieves edit distance tolerance by comparing
each DNA basepair (a base) not only against the corresponding
base in the query but also against its left and right neighbors.
Each k-mer from the database is stored in a CAM row. Each
cell in the row stores one base. The query is fed to the CAM
for comparison. As the algorithm can tolerate edit distances
(substitutions as well as insertions and deletions of bases), it
provides a 30.9× improvement in sensitivity, and provides a
19.3× (15.6×) higher F1 score than Kraken2 (HD-CAM) for
DNA sequences with high sequencing error rate. However, the
low scalability EDAM suffers from does not stem only from
the low density of the memory technology. One of the apparent
disadvantages of EDAM is that its cell is wire-bounded: every
cell is physically wired to its right and left neighbors. This is
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Fig. 2: Comparing base query[i] against co-located, left-neighbor and right-
neighbor k-mer bases. If not matched, the error count is increased.

a source of potential routing congestion and, therefore, more
scalability limitations.

B. Classification Algorithm

All k-mers (sub-sequences of length k) from different
known genomes are pre-stored in a single database. ClaPIM
assumes k = 64; thus, for each DNA read from the sample,
64-mers are extracted and then queried against the database.
The operating principle of EDAM’s classification algorithm
is based on the observation that an insertion or deletion shifts
part of the data pattern to the right or left, respectively. Hence,
by matching not only the co-located bases but also their left
and right neighbors, it is possible to tolerate insertions and
deletions, as illustrated in Fig. 2. If none of the three candidate
data elements (co-located, left, and right neighbors) matches,
a single element mismatch occurs, and one edit is counted. A
query is considered a hit against the k-mer only if the total
number of edits does not exceed a predefined edit distance
threshold. Lastly, the read is classified by selecting the genome
with the maximum number of query hits for the read k-mers.

C. Base-Count Filter

The base-count filter [16] is a heuristic that aims to quickly
estimate if the edit distance between two sequences exceeds
eth, a predefined error threshold. FiltPIM [17], for example,
uses the base-count filter as a filtering stage for the read align-
ment task. The filter compares histograms of two sequences
S1 and S2. The number of occurrences of each base in S1 is
compared to the number of occurrences of the same base in
S2. For example, if S1 has three more occurrences of A than
S2, we infer that at least three edits exist. For each base B,
we denote the number of its occurrences in the sequence i as
Bi. Generally, two sequences are considered similar (the edit
distance between them does not exceed eth) and will pass the
filter only if:

|A1 −A2|+ |T1 − T2|+ |G1 −G2|+ |C1 −C2| ≤ 2eth. (3)

D. Processing within (Memristive) Memory

Data transfer between processing and memory units is
among the leading factors limiting the performance, scalability,
and energy efficiency of modern computing systems [18]. PIM
platforms may surmount this hurdle by uniting processing
and memory units, especially for data-intensive applications.

Fig. 3: (a) MAGIC NOR gate. (b) Parallel mapping of the MAGIC NOR gate
to crossbar array rows, and (c) parallel computation across crossbars.

In this paper, we employ a memristive memory processing
unit [14] as the underlying PIM architecture, where mem-
ristor crossbar arrays both store the data and perform the
computation. A memristor is an emerging nonvolatile memory
technology that can store data in the form of resistance, logical
‘0’ (‘1’) for high (low) resistance. This resistance is modified
by applying a voltage across the memristor. ClaPIM utilizes
two techniques for computation in/near the memory array: (1)
digital stateful logic and (2) near-crossbar computing. While
digital computing provides more accurate computing, near-
crossbar computing is faster. We aim to benefit from both
worlds.

1) Stateful Logic: An approach for memristor-based logic
where the inputs and outputs of the gates are represented in
the same form of data storage, e.g., resistance for memristors.
A popular stateful-logic technique is Memristor Aided Logic
(MAGIC) [19], in which logic gates are performed on the
resistances of the memristors directly inside the crossbar. The
inputs of the MAGIC gate are the initial states (resistances)
of the input memristors, and applying a fixed voltage Vg to
the memristor terminals results in the resistance of the output
memristor after the computation storing the logical output.
Fig. 3(a) illustrates a MAGIC NOR gate as an example.
The MAGIC NOR gate is crossbar compatible, as it can
be performed using memristor cells within the same row of
the crossbar by applying the voltages on crossbar bitlines.
Moreover, MAGIC supports inherent parallelism as the same
in-row gate can be performed in parallel across numerous rows
(see Fig. 3(b)) and across multiple crossbars (see Fig. 3(c)).

MAGIC NOR is executed in two steps (clock cycles): (1)
initializing the output memristor to logical ‘1’ (low resistance),
(2) applying a voltage Vg across the gate. Since NOR is
functionally complete, all other functions can be performed
using a sequence of MAGIC NORs. For example, in this
work, we perform XOR using five MAGIC NOR cycles (not
including initialization cycles, as they can be performed in
parallel for all output memristors prior to the computation):

a⊕ b = ((a′ + b′)′ + (a+ b)′)′. (4)

Other MAGIC (or different stateful logic) techniques can
also be applied to implement XOR.

2) Near Crossbar Computing: In this approach, data is
transferred to the peripheral circuitry (e.g., for state conver-
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Fig. 5: Mapping of data inside a 128×512 memory crossbar array. The array
is structured to support up to 64-mers (k-mers of length 64).

sion) during the computation [20]. One such technique enables
bulk bitwise near-crossbar logic by performing a read oper-
ation with two (or more) columns activated simultaneously.
By activating multiple memristors per word-line in parallel,
we are essentially sensing the equivalent parallel resistance
of the selected memristors. Then, the sense amplifier’s (SA)
reference is chosen according to the equivalent resistances to
perform different basic operations like AND, OR, and MAJ,
as explained in AlignS [21] and illustrated in Fig.4.

III. CLAPIM ARCHITECTURE

This section proposes the comparison operation performed
in each memristive crossbar and then extends the proposed
architecture to the filtering stage. Finally, the overall architec-
ture and the data flow are presented. We use k-mer and 64-mer
interchangeably as k = 64.

A. Querying within a Memristive Memory Array

The operating principle of ClaPIM’s searching stage is
adapted from EDAM’s classification algorithm. We present
the implementation of the search algorithm within a single
memristive crossbar array. The array is structured to support up
to 64–mers and queries; yet, the same principles, with the same
data mapping technique, can be applied to larger crossbars to
support higher values of k.

We consider 128×512 arrays. 128 rows allow pre-storage
of 128 64-mers from the database as each 64-mer is stored in
a single row. To represent all four bases (A, T, G, C), two bits
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k-mer 0, k-mer 1, k-mer 2, ..., and k-mer 127 are the same strings from Fig. 2.
In steps 1X and 2X, XOR is performed for each bit, to compare the query base
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the results of the comparison. Logical ‘1’ in MX indicates the two bases
matched, where X is C in (a) for the co-located base, L in (b) for the left
neighbor base and R in (c) for the right neighbor base.
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Fig. 7: Step 4: As a three-input MAGIC NOR is performed, logical ‘1’ in bit
i in Edits Vector indicates that the query base i did not match any of the three
bases to which it was compared (three horizontal zeros in MC[i], ML[i], and
MR[i]); thus, it represents an edit.

are required for each base. When a query arrives, it is written
simultaneously to all rows. The data mapping inside the array
is shown in Fig. 5.

For each index i in [0,63], we compare the two columns
containing the query base i to the two columns containing the
corresponding k-mer base i. We use two MAGIC XOR gates
to compare the two bits of the bases simultaneously in all rows
(steps 1C and 2C in Fig. 6a). We repeat this for the query base
i with respect to the left neighbor (right neighbor) k-mer base
i− 1 (i+1), through steps 1L and 2L (1R and 2R) in Fig. 6b
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counter for classification tasks (as the exact number of matches is required).

(Fig. 6c).
A logical ‘1’ in columns MC [i] ,ML[i], or MR[i] represents

a match between the query base i and its corresponding, left
neighbor, or right neighbor base in the k-mer, respectively. A
match occurs only if both bits of the bases match, i.e., only
if the result of both XORs is 0. Thus, to compute MC [i],
a MAGIC NOR is executed (step 3C); the same applies for
ML[i] and MR[i].

Edits Vector bits are calculated in steps 40, ..., 463 serially,
where in step 4i, a three-input MAGIC NOR gate is performed
between the three columns (MC [i],ML[i] and MR[i]) of the
query base i (Fig. 7). A logical ‘1’ bit in Edits Vector indicates
that this query base did not match any of the three bases to
which it was compared (three horizontal zeros in MC ,ML

and MR); thus, it represents a single edit. To fit all these
computations in a single row, we reuse intermediate cells;
therefore, to reset memristor states, initialization cycles are
utilized.

Finally, in step 5, the number of ‘1’s in each Edits Vector
is counted and compared to a certain threshold through a
near-crossbar operation. We perform a single-cycle ‘read and
count’ operation by grounding all the bitlines and connecting
a latched current-based sense amplifier (SA) to the wordline.
Since all bitlines are activated simultaneously, we can measure
the sum of their currents. The SA compares this sum to a
reference current to determine if the number of bitlines storing
logical ‘1’ exceeds the threshold. The circuit design of the
SA, shown in Fig. 9, is based on [22], with the reference
circuit adjusted to support the required threshold. Hence, the
required area for the SA is similar to that of a single-bit SA.
To further reduce the area overhead, we use only 32 SAs for
a 128×512 crossbar, with the appropriate 4:1 multiplexing
circuits, as shown in Fig. 8a. To be able to process all rows,
step 5 is performed four times with 32 different rows selected
each time.

For the general classification case, a single query can match
different k-mers, in different crossbars belonging to other
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N1 N2
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Fig. 9: Schematic of the latched current sense amplifier (SA). OUT and OUTN
are precharged to VDD using PMOS transistors (P1/P4), then the current of
the selected BL and reference are compared by opening N3 and N4 with
VCLP. The cross-coupled transistors (P2, N1/P3, N2) and pull-down NMOS
transistors (N5/N6) push OUT and OUTN to VDD/GND and latch the result.

species. The species with the higher number of hits is selected
to associate the query with a certain species. Therefore, we
are interested in knowing if there is a hit or not and how
many hits were found in each crossbar. Therefore, the output
of the SAs is fed into a counter that produces and returns the
total match count (Fig. 8c). Suppose we are interested only
in detection (detecting specific species in the sample) instead
of classification. In that case, we only need to know if there
is a hit in the reference database. Thus, the periphery can be
reduced, with the counter replaced by an OR gate and the
crossbar returning only a 1-bit hit/miss (Fig. 8b). Finally, a
simple network on chip in a tree-like topology is employed to
gather the hit results from all the crossbars.

In summary, we propose parallel in-crossbar and near-
crossbar operations that are efficiently used towards a query
check against the k-mers stored inside the crossbar.

B. Filtering Stage

Naively performing the search for each query against all
crossbars in massive datasets (up to tens of millions of cross-
bars) will lead to enormous energy consumption. Furthermore,
this will shorten the lifetime of the limited write-endurance
memory devices as they are frequently written.

Therefore, we introduce a filtering stage to produce a more
efficient design. This stage is executed in the CPU before
performing the search in the memristive memory. For each
query, rather than comparing it against all crossbars, the
query is compared only to crossbars containing k-mers with
a potential hit as defined by the filter. To find such k-mers,
the histogram of bases for each k-mer in the database is pre-
computed offline, and all k-mers (of the same species) with
the same histogram are stored together in sequential crossbars
(if more than one crossbar is required). K-mers with different
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histograms reside in different crossbars. This manner of storing
the k-mers hardly affects crossbar utilization. Applying this
method when mapping the k-mers of chromosomes 1, 20, and
21, for example, resulted in crossbar utilization of 98.5%,
99%, and 98%, respectively. Then, we store two numbers
(start and finish indexes) for every potential k-mer histogram,
specifying the range of its corresponding crossbars.

During the operation, the histogram of each query is also
computed. The query will only be compared to crossbars
correlated with all its neighboring histograms: histograms
passing the base-count filter against our query histogram
(see Section II-C). To efficiently perform the tracing of
the crossbars with corresponding neighboring histograms, the
processor maintains a tracing table that contains, for each
possible histogram, a pointer to a complete list of crossbar
ranges belonging to the neighboring histograms, as illustrated
in Fig. 10.

There are approximately 50K different possible histograms
for a string of length 641. The histogram representation is
used as an index to access the tracing table. The tracing table
has 218 rows as each histogram is represented by eighteen
bits (six bits for #A, #T, and #G while #C can be calculated
from these numbers). There are a total of 47, 905 different
possible histograms and thus a total of 47, 905 lists. By setting
an eth of, e.g., 4, each arbitrary histogram will have at most
309 neighboring histograms. Since three bytes will be enough
to represent the largest crossbar index in the chip and two
indexes are needed to represent each range Thus, the size of
each list will be 309 · 2 · 3B = 1854B. Thus, the table will
use 218 · 4bytes+ 47, 905 · 1854 < 90MB of memory.

The number of searches performed in each crossbar will
be substantially reduced since the lookup in a crossbar is
performed only if it has potential hits. This reduction will
considerably increase the lifetime of the devices and reduce
energy consumption as fewer devices are activated per query.

Additionally, the base-count filter boosts the precision of
the classification algorithm since it can discard potential FP
results, which the basic EDAM algorithm would have falsely
matched. For example, let “CAC” be the reference k-mer,
“AAA” be the query, and the edit distance threshold 1. The
edit distance between the two strings is 2 (substitution-match-
substitution); therefore, these two strings should generate
a negative result (a mismatch). While EDAM would have
considered it as a hit (thus generating an FP result), the base-
count filter removes such k-mer from the list of potential hits,
thereby improving the classification precision.

Improvement in throughput can also be achieved by al-
lowing different queries that access different crossbars to be
checked simultaneously. To that end, we propose a batching
step on the CPU that dynamically allocates parallel queries.
The algorithm proceeds as follows. We begin by adding
the first query to the batch. Then, for each new query, if
the query histogram is at least twice 2 · eth apart from
all histograms of the queries already in the batch, this new

1Each histogram is represented by four integers whose sum is 64 (specifying
the number of A, T, G, and C in the string). The number of possible histograms
is equal to the combinatorial problem of distributing 64 identical balls into
four distinct boxes:

(64+4−1
4−1

) (67
3

)
= 47, 905.

Tracing Table

Hist[Query] List specifying the 
crossbars to check

Fig. 10: Extracting the ranges of the crossbars to be checked for the query. The
dark blue rows in the table represent possible histograms for a query (there
are a total of approximately 50K different possible histograms). The light
blue rows are redundant rows representing histograms that will not appear (a
histogram with zero A, T , G and C occurrences, for example).

𝟐𝒆𝒕𝒉
𝟐𝒆𝒕𝒉

𝒅𝒊𝒔𝒕 < 𝟒 ⋅ 𝒆𝒕𝒉

𝟐𝒆𝒕𝒉
𝟐𝒆𝒕𝒉

𝟐𝒆𝒕𝒉

𝟐𝒆𝒕𝒉

𝟐𝒆𝒕𝒉
𝟐𝒆𝒕𝒉

(a) (b)

Fig. 11: The filter aims to add a new query to the batch. First, the histogram
of the new query is determined. The new query will be added only if the
neighboring histograms of its histogram do not overlap with the neighboring
histograms of already chosen queries in the batch. The center of the blue
circles mark the histograms of queries in the batch, while the blue circle
itself marks the neighboring histogram of such queries. In (a), the center of
the orange circle is the histogram of a new query. This new query will not
be added to the batch since its neighboring histograms overlap with already
selected histograms. Conversely, in (b), the center of the green circle represents
the histogram for a new query that will be batched with the others since there
is no overlap between the neighboring histograms.

query will also be inserted. This condition guarantees that
all of the chosen queries have non-overlapping neighboring
histograms, meaning they access different crossbars and thus
can be queried simultaneously. Fig. 11 shows an example of
adding two different queries with two different histograms to
a batch. The center of each blue circle represents a histogram
(#A,#T,#G,#C) of a query already in the batch while
new queries are added. The orange center in (a) represents the
histogram for a new query that will not be added to the batch
since its neighboring histograms overlap with already selected
histograms. On the other hand, the green center in (b) will be
added to the batch as its neighboring histograms, which will be
selected, do not overlap with the already selected histograms.

C. ClaPIM: Putting it Altogether

Figs. 12 and 13 present an overview of the ClaPIM filter-
ing and searching stages, respectively. A memristive chip is
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If
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Fig. 12: The overall flow of the filtering stage.

TABLE I: Memristor: Area, Power and Timing

Attribute Source
Cell Area 9 · 10−4um2 [23]

MAGIC Cycle 3ns [23]
Switching Energy 6.4fJ [23]

SA Latency 36ns This work
SA Energy 11.5pJ This work

assumed to be 8 GB in size (as suggested in [23]), containing
1M crossbars. Therefore, it can support a database of up to
128M 64-mers. For larger databases, several chips are used.
Intel Optane, for example, uses DIMMs that embed up to
512GB [24], thus enabling an 8G 64-mer database per DIMM.

The process starts with the batching step as it simultane-
ously fills a list with different queries to be looked up in the
chips. Then, for each query in the list, the range of crossbars
to be compared against is extracted from the tracing table,
as explained in Section III-B. These steps are performed in
the CPU. The batching and tracing steps are combined in the
filtering stage and pipelined with the PIM search stage. To
ensure that the search operations completely mask the filtering
time, we limit the number of queries that the batching step
examines such that the run time should not exceed the run
time of the searching stage.

The filtering time is independent of the number of chips
used and will not change. Furthermore, the searching time will
not change if more chips are used since the searching is done
simultaneously in all chips. Thus, the limit for the number
of queries checked in the batching size is independent of the
number of chips used.

Finally, the memristive chips receive queries with different
crossbar indices. The queries are serially written to their cor-
related crossbars, and only then the searching stage described
in Section III-A starts in all crossbars for different queries
simultaneously. For each query, the controller of the chip
receives the number of hits against each reference organism
(the sum of the number of hits received from all crossbars
belonging to such an organism) and will classify the queries
accordingly.

IV. EVALUATION

We now present the evaluation of ClaPIM. We begin with
circuit evaluation to determine the latency and accuracy of
the near-crossbar computing via the sense amplifiers (SAs).
Then, the latency of the searching stage is determined to
evaluate the maximally allowed latency for the filtering stage.
The determination process is explained in the performance
evaluation of the filtering stage. After that, the energy and
lifetime improvements provided by the filtering stage are
evaluated. Finally, the classification quality, throughput, and
energy of ClaPIM are evaluated and presented.

A. Circuit Evaluation

Table I lists the area, switching latency, and energy for
the SA and the ReRAM memristive devices used in the
design. The peripheral circuits were designed and evaluated
with Cadence Virtuoso using the iHP SG13S process with
MEMRES PDK, a fabrication-ready CMOS-ReRAM inte-
grated process [25]. To evaluate the correctness of the near-
crossbar count and compare (performed using the SA), exten-
sive Monte Carlo simulations, 1000 iterations, were employed.
The evaluation considered the presence of device mismatches
and process variation for both the memristors and transistors.
Fig. 14 shows the hit confidence of the SA. For example, if the
edit distance threshold (thr) is four, then all rows containing
up to four logical ‘1’s should be considered a hit. The graph
shows that if the row contains three (five) logical ‘1’s, then
there is a 100% (0%) chance of considering the row as a hit.
Nevertheless, for a row containing exactly four logical ‘1’s, the
SA will consider it a hit 79.8% of the times. As an ideal SA
would have provided a step function for each thr, we conclude
that our SA performs adequately.

B. Search Stage Latency

To assess the searching latency of ClaPIM, we counted
and determined the number of cycles needed to perform the
classification algorithm described in Section III-A. As parallel
in-crossbar and near-crossbar operations are used, the exam-
ination of a query can be performed in approximately 6.7µs
(2167 MAGIC clock cycles including initialization cycles, in
addition to four SA cycles).

The search stage latency is affected by the number of SA
attached to each crossbar. Adding more SAs adds more area
overhead to the crossbar and achieves better search latency
since more sensing is done in parallel (less iterations for
step 5). Table II presents the trade-off exciting between area
overhead and latency for a different number of SAs.

C. Filtering Stage Performance

To evaluate the filter’s run time, we developed an optimized
implementation for batching the non-overlapping queries and
extracting their lists of crossbars from the tracing table. As
mentioned in Section III-C, to ensure the filtering and search-
ing stages are well-balanced, we need to limit the filtering’s
run time to 6.7µs as well. The filtering was executed on an
Intel(R) Xeon(R) CPU E5-2683 v4 containing 32 cores, at 2.1
GHz, with 256GB of DRAM, 2400MHz DDR4, 2x 1TB HD,
and 480GB SSD, using eight threads. The filter was limited
to examining 350 random queries at a time. This limitation
resulted in a filtering run time of 6.4µs, allowing an average
of 29 queries to be performed in parallel. Adding the filtering
stage to ClaPIM increases its throughput by 29×.

D. The Filter Effect on Energy and Lifetime of the Design

An in-house simulator2 was developed to evaluate the
improvement enabled by the filter in energy consumption and

2https://github.com/marcelkh13/ClaPIM.git
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Fig. 13: Overview of the PIM searching stage. Each query in the batch is searched for the selected crossbars of different taxons. Each query is associated
with the database that provides the maximal number of hits for the query.
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Fig. 14: Monte Carlo experiments for the memristive model variations. “thr”:
edit distance threshold allowed to consider the row as a hit.

TABLE II: Number of SA used: Area vs Latency Trade-off

#SA Area overhead step 5 latency [ns] Total search
stage latency [µs]

1 0% 4608 11.109
2 0% 2304 8.805
4 1% 1152 7.653
8 2% 576 7.077
16 4% 288 6.789
32 9% 144 6.645
64 16% 72 6.573

128 28% 36 6.537

the lifetime of the design. The filter was assessed using the
following reference DNA: human chromosomes 1, 20, 21,
and SARS-CoV-2, downloaded from the National Center for
Biotechnology Information (NCBI) online data sets [26]. On
average, less than 0.4% of k-mers had a potential hit (0.4%,
0.37%, 0.41% and 0.4% for the human chromosomes 1, 20,
21, and SARS-CoV-2, respectively). This leads to at least
a 250× reduction in energy consumption compared to the

same system without a filtering stage. Nevertheless, querying
in a crossbar involves switching memristor devices, therefore
affecting the memory lifetime, given the limited endurance of
ReRAM devices [27]. As the filtering drastically reduces the
number of crossbars each query should be compared against.
Assuming a uniform distribution over the accessed crossbars,
a 250× increase in the lifetime of the design is also achieved.
Thus, for a memory lifetime of 109 (1012) writes, limited
by the endurance of the most frequently accessed cells while
assuming wear leveling [28] (a technique applied to achieve a
uniform distribution of writes in a row). When activating an
array to perform a searching task, 7 writes per cell are required.
Thus, for the lifetime of the arrays, ClaPIM can perform up to
109 ∗250/7 = 3.5∗1010 (1012 ∗250/7 = 3.5∗1013) searching
tasks.

E. Classification Quality

ClaPIM classification quality is compared to (1)
EDAM [12], an approximates string matching SRAM-
based PIM architecture, (2) Kraken2 [8], a state-of-the-art
software classifier, and (3) HD-CAM [11], a Hamming
distance tolerant content-addressable memory. The hit
confidence numbers from section IV-A were integrated with
ClaPIM’s classification algorithm.

Similar to EDAM and HD-CAM, we evaluated the detec-
tion of single species rather than full classification mode.
A database containing SARS-CoV-2 (and its variants alpha
– B.1.1.7, beta – B.1.351, and gamma – P.1) was used. A
synthetic metagenomic sample was created, containing DNA
reads of SARS-CoV-2 and its variants and the DNA of sev-
eral other organisms: SARS-CoV-1, MERSCoV, Coronavirus
HKU1 and Human Papillomavirus (HPV) 14. All the above
DNA sequences were downloaded from the NCBI online data
sets [26]. The 64-base-long DNA reads in the sample were
extracted from random positions in the DNA sequences of
each of these organisms. Consecutively, sequencing errors (in-
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Fig. 15: Classification quality evaluation. Precision of EDAM, HD-CAM and Kraken2 versus ClaPIM for (a) high and (b) low error rate reads. Sensitivity of
EDAM, HD-CAM and Kraken2 versus ClaPIM for (c) high and (d) low error rates . F1 score of EDAM, HD-CAM and Kraken2 versus ClaPIM for (e) high
and (f) low error rate reads. The black dotted lines specify the working point of ClaPIM’s and EDAM’s classification algorithm. The chosen edit distance
threshold, which provides the highest F1 score, is 9 for the high error rate reads and 4 for the low error rate reads.

sertions, deletions, and substitutions) were randomly injected,
according to two error-rate profiles [29]: (1) Low error reads of
the second generations DNA sequencers (replacement = 3.6%,
insertion = 0.2%, deletion = 0.2%) and (2) high error reads
of the third generation DNA sequencers (replacement = 1%,
insertion = 7%, deletion = 7%). Fig. 15 shows the precision,
sensitivity, and F1 of ClaPIM (with the filter) against EDAM,
HD-CAM and Kraken2, as a function of the user-defined edit
distance threshold. This value is used in EDAM’s, HD-CAM’s,
and ClaPIM’s classification algorithms, while Kraken2 is
unaffected, and thus has a constant value. The value the user
chooses for the edit distance threshold is the one that provides
the best classification quality for the algorithm (highest F1
score). The dotted black lines in the graph show the working
point of the algorithm (the chosen threshold). The upper four
graphs show that adding the filter improved the precision of the
basic algorithm without hurting its sensitivity. The precision

of the classification increased by up to 7% (3%) compared to
EDAM for high (low) error rate reads. Furthermore, compared
to Kraken2, as ClaPIM performs approximate k-mer matching
rather than exact k-mer matching, ClaPIM improved the F1
score up to 20× (1.63×) over Kraken2 for the high (low) error
profile synthetic reads, as can be seen in the lower two graphs.
Compared to HD-CAM, ClaPIM improves the F1 score by
16.2× (1.12×) for the high (low) error profile reads. Using the
Hamming distance tolerance to perform k-mer approximate
matching yields good results for low error reads. However, the
classification efficiency drops significantly when HD-CAM is
applied to high error reads.

F. ClaPIM Throughput and Energy

Table III summarizes the results for ClaPIM (with and
without the filter) and compares them to EDAM and Kraken2.
The results emphasize our design’s scalability over EDAM,
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TABLE III: Comparison of ClaPIM w/ and w/o filter against other sequence classification tools

Units ClaPIM (w/o filter) ClaPIM (w/ filter) EDAM [12] * Kraken2 [8]
Throughput Gbases/min 0.58 16.82 2, 561 9.2

Dynamic Power per Search Against 1 k-mer µW 5.7 0.023 60.16 -
Energy per Search Against 1 k-mer pJ 37.87 0.15 0.09 -

Density k −mers/µm2 2.17 2.17 0.47 · 10−3 -
Area Efficiency = Throughput · Density Gbases/min · k −mers/µm2 1.26 36.5 1.2 -

* EDAM’s numbers are achieved for small databases (≈ 30K). They do not scale for larger databases.

as we improve the density by 4635×. As noted earlier,
EDAM does not scale for large databases. Thus, even though
it provides impressive results for small databases, it cannot
scale to larger, more practical databases. Furthermore, since
the periphery used in both ClaPIM and EDAM designs has
almost the exact area cost, we infer that under the same area
constraints, ClaPIM outperforms EDAM by 30.4×, in terms
of throughput. Compared to Kraken2, ClaPIM improves the
throughput by 1.8×, while, as mentioned before, providing
much higher classification quality. Moreover, as EDAM uses
SRAM, additional leakage power is consumed even when
searching is not performed, while ClaPIM utilizes nonvolatile
devices with approximately zero leakage power.

V. SUPPORTING OTHER PIM TECHNOLOGIES

The design principles presented in this paper can also be
applied to additional PIM technologies beyond memristive
PIM. This arises from the fact that ClaPIM is essentially
built upon bulk bit-wise logic operations (as described in the
searching stage of ClaPIM in Section III-A) that are also
enabled by other memory technologies.

For example, ClaPIM may also be implemented using
DRAM-based PIM such as Ambit [30]. Ambit exploits the
analog properties of DRAM technology to perform bit-wise
operations (AND, OR, and NOT) completely inside DRAM
banks. As these gates constitute a functionally-complete set,
in-DRAM computation can generalize to any logic function.
Therefore, the intra-crossbar searching stage in ClaPIM, which
utilizes bulk bit-wise XOR and NOR, may be performed
through a sequence of in-DRAM logic operations. For the
near-crossbar operations of (1) counting and (2) comparison
in ClaPIM, an in-DRAM implementation may perform (1)
counting via a sequence of full adders and then (2) comparison
by subtracting the count result from the pre-defined threshold.
The most significant bit of the subtraction result will determine
whether the search is a match (as it represents the sign
of the difference). While an in-DRAM mapping may result
in lower throughput as the counting and comparison stages
are performed digitally and not through an efficient analog
comparator, it will simultaneously eliminate concerns with
memristive PIM, such as endurance.

VI. CONCLUSION

As sequenced DNA is prone to sequencing errors, per-
forming classification using approximate matching, rather than
exact matching, provides significantly higher classification
quality. ClaPIM implements a two-stage algorithm – filtering
and searching – to perform efficient classification based on

approximate matching. The filtering stage improves the energy
efficiency and the system’s lifetime and provides higher clas-
sification precision. Additionally, the filtering stage supports a
parallel query allocation that increases the overall throughput.
In the searching stage, as dense memristive crossbars are used,
ClaPIM offers high scalability to support large databases for
classification.

Compared with Kraken2, a state-of-the-art CPU baseline
classifier, ClaPIM provides significantly higher classification
quality and demonstrates a 1.8× improvement in through-
put. Compared with HD-CAM, a Hamming distance tolerant
content addressable memory, ClaPIM achieves higher classi-
fication sensitivity and precision with up to 16.2× higher F1
score. Compared with a recent SRAM-based PIM architecture,
EDAM, which is limited to small datasets, ClaPIM provides a
30.4× improvement in area efficiency and provides 7% higher
classification precision.

Furthermore, ClaPIM principles and ideas presented in this
paper can be easily modified to be implemented using other
PIM technologies, such as DRAM-based PIM [30]. Designs
using other PIM technologies should be studied in the future
and compared to determine the best platform.
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