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Abstract—Online Analytical Processing (OLAP) for relational
databases is a business decision support application. The appli-
cation receives queries about the business database, usually re-
questing to summarize many database records, and produces few
results. Existing OLAP requires transferring a large amount of
data between the memory and the CPU, having a few operations
per datum, and producing a small output. Hence, OLAP is a good
candidate for processing-in-memory (PIM), where computation is
performed where the data is stored, thus accelerating applications
by reducing data movement between the memory and CPU. In
particular, bulk-bitwise PIM, where the memory array is a bit-
vector processing unit, seems a good match for OLAP. With
the extensive inherent parallelism and minimal data movement
of bulk-bitwise PIM, OLAP applications can process the entire
database in parallel in memory, transferring only the results to
the CPU. This paper shows a full stack adaptation of a bulk-
bitwise PIM, from compiling SQL to hardware implementation,
for supporting OLAP applications. Evaluating the Star Schema
Benchmark (SSB), bulk-bitwise PIM achieves a 4.65x speedup
over Monet-DB, a standard database system.

Index Terms—Processing-in-memory, Database, OLAP, Mem-
ristors

I. INTRODUCTION

Analytical processing of relational databases is a business
decision support application, allowing decision-makers to an-
alyze their business data [1]. Often, these analyses require
summarizing large sections of the database, taking a long
execution time [2], mostly on transferring data from the
memory to the CPU. Summarizing large sets of data to few
results hints that this application can benefit from processing-
in-memory (PIM) techniques.

PIM techniques come in various types and technologies [3—
10], all operate on data at (or close to) where it is stored, i.e.,
the memory. In this paper, we are interested in accelerating an-
alytical processing of relational databases with a specific PIM
technique called bulk-bitwise PIM [3-7]. Bulk-bitwise PIM
is characterized by utilizing the memory cell arrays to both
process the data and directly store the result. Thus, computing
with bulk-bitwise PIM can minimize data movement. As data-
intensive applications invest most of their time and energy
in memory access [11-13], our approach for accelerating
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analytical processing consists of reducing the required memory
accesses by the host. We do so by leveraging the in-place
processing of bulk-bitwise PIM to distill the information stored
in memory, transferring as little information as possible to the
host. Data transfer reduction is possible because databases can
be transferred into PIM memory once and used many times.

Note that using bulk-bitwise PIM in this way is orthogonal
to the host processor type (e.g., CPU, GPU, FPGA) since any
host requires to get the information from the memory. Further-
more, using bulk-bitwise PIM to reduce the data movement
out of the memory cell arrays is complementary to other PIM
techniques where dedicated processing units are placed close
to the memory arrays. These dedicated processing units can
act as the hosts for the bulk-bitwise PIM technique, profiting
from the same reduced data transfer.

In this paper, we combine the thread from several of our
previous works [3, 14, 15] to show how analytical processing
for relational databases can be supported with bulk-bitwise
PIM. As the processing capabilities of bulk-bitwise PIM
depend on the data arrangement within the memory arrays,
we show how to arrange the database relations within the
memory arrays, creating a dedicated data structure for bulk-
bitwise PIM. We then identify the basic primitive of bulk-
bitwise PIM that can reduce data transfer with this new data
structure (i.e., filter and aggregate). Afterward, we show how
more complex database operations are supported for the star
schema database [1,16] (i.e., GROUP-BY and JOIN), allowing
execution of full queries. Using this support, we can execute
the full Star Schema Benchmark (SSB) [16]. We evaluate these
techniques with a memristive bulk-bitwise PIM design [3, 14]
using the gem5 [17] simulation environment.

II. BACKGROUND
A. Relational Databases and Analytical Processing

The relational database is a data model organized into one
or more relations (tables). Each relation is constructed as
multiple records and attributes (shown in Fig. 1a), represented
by the relation’s rows and columns, respectively. Records are
independent, holding information belonging to a single item
with a single value for each attribute. Each relation has an
attribute (or a set of attributes) that uniquely identifies the
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Fig. 2: A star schema illustration.
records in the relation and is called the key of that relation.
When a relation has an attribute that has values from a key of
another relation, this attribute is called a foreign key.

Queries on the database are questions about the data held in
the database. In analytical processing, queries require finding
all records fulfilling certain conditions on their attributes and
summarizing (e.g., sum, average, max) one or more attributes
across the found records [1,2]. This summarizing can also be
requested per subgroups of the found records, where subgroups
are defined according to unique values of some attributes. This
division for subgroups is called a GROUP-BY operation.

When a query includes conditions involving attributes from
multiple relations, records from the different relations are
matched according to these conditions. The operation of
matching records is called a JOIN. When the condition be-
tween the relations’ attributes for JOIN is equality, the JOIN
is named equi-JOIN. For analytical processing queries, JOIN
operations are usually the most time-consuming part of query
execution [18].

A common database structure for analytical processing is
the star schema [1,16]. An illustration of the star schema
structure is shown in Fig. 2. In this schema, there is a
single large relation, called the fact relation, and several small
relations called the dimension relations. The fact relation has
a foreign key to each of the dimension relations. In the star
schema, JOIN operations required by queries are, by and
large, only equi-JOIN between a dimension relation’s key
and its respective fact relation foreign key [1]. All the SSB
benchmark [16] queries use only this kind of JOIN.

B. Bulk-Bitwise PIM

Bulk-bitwise PIM uses the memory cell arrays as processing
units, which can be implemented with DRAM or emerging
nonvolatile memory technologies [3—7]. Because of the regular
structure of these arrays, the supported operations are bitwise
logic operations (e.g., AND, NOT, NOR) between array rows
or columns (shown in Fig. 3). When multiple memory cell
arrays operate concurrently, the effective operation is a very
wide bitwise operation, i.e., bulk-bitwise operations. As such,
bulk-bitwise PIM can process data where it is stored and
exhibit high computational bandwidth.

To support virtual memory, bulk-bitwise PIM operations
are restricted to use and rewrite data within a single virtual
page [3], usually a huge page. This way, when a program sends
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Fig. 3: A 3 X 4 memory array with a column-wise logic operation.

a PIM operation to memory with a virtual address, the virtual
address can be translated in the standard fashion and the PIM
operation is routed by the hardware to its designated place.
To perform the same operation on several pages, however,
the same operation has to be sent to each page separately. In
addition, since the PIM computation is tightly coupled with
the layout of data in the memory cell arrays, data for PIM has
to be structured in a specific, dedicated way. To allow software
in virtual memory fine-grain control over the layout of data
structures within the cell arrays, the mapping of addresses to
cell array location is part of the bulk-bitwise programming
model [3]. The specified mapping is on the page offset bits of
the virtual address since they do not change on virtual-physical
address translation, giving the virtual space software control
over these bits.

To guarantee program correctness, the ordering rules of PIM
operations with the standard memory operations (e.g., loads,
stores) have to be defined [14]. Having well-defined ordering
rules for bulk-bitwise PIM requires the PIM memory and host
caches to be coherent, supported by the host hardware [14].

III. THE RELATION DATA STRUCTURE

A database relation is stored in a memory cell array, as
shown in Fig. 1. It is necessary to store data in a certain way
so it can be directly processed without further movement since
the processing capabilities of bulk-bitwise PIM are directly
connected to the layout of data within the memory cell array.
To this end, each record is set across a cell array row, and each
attribute spans several columns. In this data structure, column-
wise operations can be used to process all records in parallel.
Some cell array columns, however, have to remain empty to
store the PIM results before they are read from the memory.
Note that a record’s bytes are not consecutive in virtual address
space due to the address mapping.

If a single array row is not enough to hold all the attributes
of a relation, the relation’s attributes must be split on more
than a single cell array. These additional cell arrays are put
on different pages and might require moving data between the
pages using standard loads and stores.

IV. BULK-BITWISE PIM PRIMITIVES

This section presents the basic database operations using
the relation data structure and bulk-bitwise PIM capabilities.
These database primitives reduce the required data transfer
between the host and memory.

A. Filter

A filter operation, shown in Fig. 4a, checks a condition
across all relation records. This operation filters all records
for a query or a single subgroup in a GROUP-BY operation



Condition on attributes Aggregate attribute

——t —

1o
(@) )

+ [0 Memory Cell E

Fig. 4: Tllustration of PIM primitives: (a) filter and (b) aggregation. The results
are marked with red cells.

(Section V-B). The condition checking is done with PIM,
where the result is a single bit per record. The resulting bit is
stored in the same cell array column across all cell arrays of the
relation. Hence, to assert which record passed the condition,
the host only needs to read a single bit per record instead of the
condition’s attributes per record. The data transfer reduction
depends on the number of attributes in the condition, the
attributes’ lengths, and the data itself (as non-PIM techniques
are data depended [2]).

To support the filter primitive, the PIM module instruc-
tion set includes comparison operations (e.g., equality, less-
than), logic operations (e.g., AND, OR, NOT), and arithmetic
operations (e.g., addition, multiplication). These operations
are supported for both an attribute with an attribute and an
attribute with an immediate. Additionally, these operations are
supported for multiple attribute lengths.

B. Aggregation

The aggregation operation, shown in Fig. 4b, reduces a
specific relation attribute, across all of the relations, to a single
value (e.g., sum, average, max). This reduction, however,
includes values only from selected records. This selection is
done by first filtering the records according to the condition
(as in the filter primitive in Section IV-A). Instead of reading
the filter result, it is used to generate a masked version of
the attribute to be aggregated (without overwriting the original
attribute). The mask operation nullifies the non-selected values
so they will not affect the aggregation operation. The masked
attribute is then aggregated, according to the desired operation,
within each cell array, resulting in a single value per cell array.
Afterward, the host reads the single value from each cell array
and aggregates them to complete the operation. Hence, the host
only has to read a single value per cell array per aggregation.

For example, when summing an attribute, the attribute’s
bits are ANDed with the filter result bit to create the masked
attribute. Hence, the unselected records have a zero value in
the masked attribute, while the selected records’ values remain
the same. Summing the masked attribute will have the same
result as summing only the attribute for the selected records.
The host reads the single values in each cell array and sums
them together, producing the final result.

Since the aggregation operations are performed value by
value, they must be commutative and associative. Hence, the
PIM module supports the aggregation operation for sum, min,
and max within each cell array. Other aggregation operations
can be supported as a combination of commutative and as-
sociative aggregation. For example, to perform an average (a
non-associative operation) on an attribute, the attribute is first
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summed. Then, the filter result is also aggregated using sum,
resulting in the count of the selected records. The host then
divides the total sum of the records by their count to produce
the average.

C. Evaluating PIM Primitives

To evaluate the performance of the PIM primitives, we
used the TPC-H benchmark [19], a relation database analytical
processing benchmark. The baseline compared to is an in-
house implementation of an in-memory database [2], where
the entire database is stored in DRAM main memory. The
baseline ran on the same system as with PIM and executed
the same query section as the PIM system. A full evaluation
description and more analysis are presented in [3].

The speedup and memory accesses reduction (LLC misses)
for the PIM over the baseline are shown in Fig. 5. The queries
are divided into two groups, full queries and filter-only queries.
Full queries can perform the entire query, including the
required aggregations, while filter-only queries can perform
only the filter part of the query. Since the aggregation performs
a more substantial data transfer reduction, it also achieves a
significantly higher speedup. We also see that the data transfer
reduction is similar in magnitude to the speedup, supporting
our approach that bulk-bitwise PIM speedup comes from the
data transfer reduction.

V. SUPPORTING THE STAR SCHEMA

Using the PIM database primitives and understanding their
strengths and weaknesses, more complex operations can be
designed and supported. This section presents the support for
JOIN and GROUP-BY for the star schema. Full details and
full evaluation are presented in [15].

A. Supporting JOIN

JOIN requires matching records from different relations,
where the matching itself is data-dependent. Hence, perform-
ing JOIN requires many data movements, which conflicts
with the goal of data movement reduction. To avoid this,
JOIN is accomplished by pre-computing the required JOIN
output and storing the relations as a single JOINed relation.
Pre-computing a JOIN operation is a known technique to
accelerate query execution, appearing as denormalization [20]
or materialized views [21]. Storing a pre-computed JOIN,
however, has drawbacks. Characteristics of the star schema
and bulk-bitwise PIM can mitigate these drawbacks.

A significant drawback of pre-computed JOINs is their
flexibility. If a query requires a different JOIN than the one
pre-computed, then the pre-computation is not helpful, and
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Fig. 6: Execution time relative to one_xb for the Star Schema Benchmark (SSB) benchmark queries.

the required JOIN has to be performed. For the star schema,
most JOIN operations are an equi-JOIN between a dimension
relation and the fact relation on the dimension key [1, 16].
All of the JOIN operations of the SSB [16] benchmark are of
this type. Hence, we cover and accelerate the vast majority of
cases by storing the fact relation equi-JOINed to all dimension
relations on their key.

Using pre-computed JOINs also complicates mainte-
nance [20,21]. Since JOIN operations duplicate data, perform-
ing an UPDATE on a pre-computed JOIN requires changing
many entries. Using bulk-bitwise PIM, however, alleviates this
drawback. The filter primitive can efficiently find all records to
update. Furthermore, PIM operations can perform the update
itself, not requiring reading any value from PIM memory (i.e.,
implementing a PIM MUX with the filter result as select [15]).

B. Supporting GROUP-BY

Performing GROUP-BY can be simply done by using PIM
aggregation for every subgroup, aggregating subgroups one
by one. The number of subgroups, however, can be large.
Performing many aggregations may result in long latency, high
energy, and high power, and reduce the lifetime of the PIM
module due to the limited endurance of memory cells [3].

To mitigate these deficiencies of PIM aggregation, a stan-
dard CMOS logic circuit is added to the memory cell array
peripherals. The circuit performs the aggregation by reading
the masked attribute to be aggregate value by value from its
cell array. The circuit aggregates the read values and writes
the final result back to the cell array. Thus, the latency, energy,
and power of the aggregation primitive are reduced compared
to a pure bulk-bitwise PIM aggregation. Furthermore, the PIM
module lifetime is increased, as cells are written only at the
end of the aggregation operation.

Nevertheless, the latency of the entire GROUP-BY opera-
tion can still be high if there are many subgroups. We note that
aggregation can be performed in another way. The records for
the query (for all subgroups) can be filtered, then read record-
by-record by the host. The host then classifies and aggregates
the records in their subgroups. This host aggregation technique
is dependent on the number of records in the query and is
independent of the number of subgroups. PIM aggregation,
however, depends on the number of subgroups and not the
number of records in the query. Hence, it is beneficial to
have PIM aggregating a few large subgroups, leaving many
small subgroups to host aggregation, exploiting the strength
of each method. To divide the subgroups between PIM and
host aggregation, a performance model is used along with an
estimate for subgroups’ sizes [15]. This estimate is done by

taking a small sample from the database. This GROUP-BY
technique is adapted from an in-cloud processing work [22].

C. Star Schema Evaluation

We evaluate our solutions on the SSB benchmark [16].
The execution times are shown in Fig. 6. We compared three
versions of PIM. one-xb stores records of the JOINed relation
in a single memory cell array. two-xb is where the JOINed
relation’s records are vertically split into two memory cell
arrays, having the fact relation’s attributes in one array and all
of the dimension relations’ attributes in another array. pimdb
is the same as one-xb, only the PIM aggregation (PIM-gb)
is performed with pure bulk-bitwise operations (without the
added aggregation circuit). Two baselines are compared, mnt-
reg and mnt-join. These baselines run Monet-DB [23], a real
in-memory database system running on real hardware. The
mnt-reg and mnt-join hold the SSB database in its standard
and pre-computed JOIN, respectively.

The best execution time is for one-xb, having a geo-mean
speedup of 7.46x and 4.65x over mnt-reg and mnt-join,
respectively. two-xb is 3.39x slower (in geo-mean) than one-
xb since many data transfers are required between the memory
cell arrays of the relation. two-xb, however, still has 1.37x
speedup on mnt-join. The cases where a non-PIM execution is
faster than a PIM execution (Q2.1, Q3.1, and Q4.1) are where
the PIM execution does not achieve a significant data transfer
reduction. In these cases, the number of records required
by the query is high. Due to the data structure of the PIM
relation, most of the relation’s records are transferred to the
host, resulting in little to no data reduction and removing the
advantage of PIM. See [15] for more details and discussions.

VI. CONCLUSIONS

This paper shows how to support analytical processing of
relational databases using bulk-bitwise PIM. Our bulk-bitwise
PIM technique aimed to reduce the required data transfers. By
substituting serial data accesses to memory with very wide and
short operations within the memory, we achieve a significant
speedup over von Neumann machines.

We first designed a data structure suited for bulk-bitwise
PIM. Then, we identified and supported primitive operations
(filter and aggregate), performing relevant functionality and
reducing data transfer. These primitives were evaluated and
studied. Based on these primitives, we support more com-
plex operations (JOIN and GROUP-BY) and evaluated a full
database benchmark (SSB) for a system based on memristive
bulk-bitwise PIM. We believe this work will inspire other
research for further adaptation of applications for bulk-bitwise
PIM.
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