
SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 1

TDPP: Two-Dimensional Permutation-Based
Protection of Memristive Deep Neural Networks

Minhui Zou†∗, Zhenhua Zhu‡, Tzofnat Greenberg-Toledo∗,
Orian Leitersdorf∗, Student Member, IEEE, Jiang Li∗, Junlong Zhou†, Member, IEEE, Yu Wang‡, Fellow, IEEE,

Nan Du§¶, and Shahar Kvatinsky∗, Senior Member, IEEE

Abstract—The execution of deep neural network (DNN) algo-
rithms suffers from significant bottlenecks due to the separation
of the processing and memory units in traditional computer
systems. Emerging memristive computing systems introduce an
in situ approach that overcomes this bottleneck. The non-
volatility of memristive devices, however, may expose the DNN
weights stored in memristive crossbars to potential theft attacks.
Therefore, this paper proposes a two-dimensional permutation-
based protection (TDPP) method that thwarts such attacks. We
first introduce the underlying concept that motivates the TDPP
method: permuting both the rows and columns of the DNN weight
matrices. This contrasts with previous methods, which focused
solely on permuting a single dimension of the weight matrices,
either the rows or columns. While it’s possible for an adversary
to access the matrix values, the original arrangement of rows
and columns in the matrices remains concealed. As a result, the
extracted DNN model from the accessed matrix values would
fail to operate correctly. We consider two different memristive
computing systems (designed for layer-by-layer and layer-parallel
processing, respectively) and demonstrate the design of the TDPP
method that could be embedded into the two systems. Finally,
we present a security analysis. Our experiments demonstrate that
TDPP can achieve comparable effectiveness to prior approaches,
with a high level of security when appropriately parameterized.
In addition, TDPP is more scalable than previous methods and
results in reduced area and power overheads. The area and power
are reduced by, respectively, 1218× and 2815× for the layer-by-
layer system and by 178× and 203× for the layer-parallel system
compared to prior works.

Index Terms—Memristor, deep neural network, permutation-
based protection, security.

I. INTRODUCTION

Artificial intelligence (AI) techniques have enabled ma-
chines to surpass human capabilities in research areas such as
image recognition and have become an integral part of society.
AI uses advanced deep neural network (DNN) algorithms such
as convolutional neural networks to accomplish its tasks [1].
The separation of processing and memory units in modern

†School of Computer Science and Engineering, Nanjing University of
Science and Technology, Jiangsu, China, 210049. ‡Department of Electrical
Engineering, BNRist, Tsinghua University, Beijing, China, 100084. §Institute
for Solid State Physics, Friedrich Schiller University Jena, Fürstengraben 1,
07743 Jena, Germany. ¶Department of Quantum Detection, Leibniz Institute
of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.
∗Viterbi Faculty of Electrical and Computer Engineering, Technion – Israel
Institute of Technology, Haifa, Israel, 3200003.

E-mails: minhui.zou@outlook.com, zhuzhenh18@mails.tsinghua.edu.cn,
stzgrin@campus.technion.ac.il, orianl@campus.technion.ac.il, lijiang@nuaa.
edu.cn, jlzhou@njust.edu.cn, yu-wang@mail.tsinghua.edu.cn, nan.du@leibniz
-ipht.de, and shahar@ee.technion.ac.il.

Well-trained DNN model

Memristive Computing
System

Extract DNN weights

Theft DNN model

Fig. 1. The DNN models loaded in memristive computing systems face
potential theft attacks due to the non-volatility of memristor devices.

computer architecture, however, means that a tremendous
amount of energy is utilized when executing the data-intensive
DNN algorithms [2]. Emerging memristive computing systems
have demonstrated great potential in boosting the energy
efficiency of the DNN algorithms [2], [3]. Their advantage
is their ability to store the DNN weights and process them
in memory, thereby avoiding the tremendous data movement
between the computing and memory units [2].

Despite this appealing advantage, the security of memristive
computing systems has yet to receive sufficient attention.
That is, as shown in Fig. 1, DNN models stored in the
memristive computing systems face theft attacks because of
the non-volatility of memristive devices. While the memristive
devices’ non-volatility might be appealing, it facilitates data
theft attacks, which are real threats [4]–[7] in scenarios of
using memristive devices as main memory. If a memristor-
based Dual In-line Memory Module (DIMM) is stolen, an
adversary can stream out the data stored in the memory from
the DIMM. For memristive computing systems, the current
commercial memristive chips are embedded in boards with
M.2 [8] or PCIe [9] interfaces. Moreover, the memristive
chips may also be equipped with I/Os ports such as GPIOs
and I2C [10]. These universal interfaces and ports allow an
adversary to steal the data from the memristive chips. Thus, the
adversary, having physical access to the memristive computing
systems, could steal the DNN weights stored in the memristive
crossbars by exploiting the data persistence of memristive

0000–0000/00$00.00 © 2021 IEEE

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 2

devices. Once in possession of the DNN weights, the adversary
may reverse-engineer the well-trained DNN models stored in
the memristive computing systems. The stolen DNN models
could be sold illegally to customers, resulting in copyright
infringement and economic losses to the DNN model design-
ers. Additionally, if the models are trained with proprietary
datasets, the stolen models could leak private information, such
as patients’ information in a medical system, as the case may
be.

The existing protection methods for memristive main mem-
ory, such as counter mode encryption [4]–[7] are based on
encrypting the data with conventional cryptographic algo-
rithms and decrypting them while they are being used. The
methods, however, are not suitable for memristive computing
systems because they require frequent writing operations to
the memristive devices, which leads to extra high costs in
both energy and latency. Given that the endurance property
of the state-of-the-art memristive devices is limited [11], the
extra writing operations could also shorten the lifetime of the
memristive computing systems. Even worse, these methods
would open an attack window for the adversary to exploit
when the DNN weights on the memristive crossbars executing
the DNN algorithms are decrypted. Though the time window
may be narrow, the adversary could use side-channel analysis
to pinpoint the exact execution time of each DNN layer and
then turn off the systems to stream out the DNN weights of
those layers. For instance, [12] encrypted only part of the DNN
weights to reduce decryption time. Nevertheless, this partial
encryption method still involves frequent writing operations
to some memristive devices, and the attack windows, though
minor, persist.

Another type of protection method calls for transforming
the DNN weight matrices. It does not rely on encrypting the
DNN weights; thus, the shortcomings of the above methods
are avoided. This type of method provides round-the-clock
security for the DNN weights, i.e., whenever the adversary car-
ries out theft attacks, the DNN weights are always protected.
[13] suggested selectively encoding some columns of weights
as their ones’ complement and leaving the others untouched.
The adversary does not know which columns of weights
are encoded, so the actual representation of the weights is
hidden. This method, however, may increase the output value
range at bitlines (BLs) and thus require a higher-precision
analog-to-digital converter (ADCs) [3]. Another sort of weight
matrix transforming is matrix row/column permutation. The
protection proposed by [14] was to hide the row connections
between crossbar pairs. Conversely, [15] suggested grouping
memristive crossbars into multiple virtual operation units
(VOU) and permuting the VOUs along the column dimension.
Nevertheless, the existing matrix row/column permutation
methods have some shortcomings and challenges that need
to be countered:

(1) Scalability. Both methods assume the crossbar digital-
to-analog converters (DACs) and ADCs are shared among
wordlines (WLs) and BLs, respectively, and that they can
reduce the hardware overheads of their respective protection

methods by exploiting DAC/ADC multiplexing. Typically, for
a 256 × 256 crossbar, they assume that only 16 WLs and
16 BLs are enabled simultaneously1. In fact, the number of
simultaneously activated WLs/BLs (x) varies, depending on
the specific architecture and implementation. For example,
NeuRRAM [16] suggested that it is possible to activate all
the crossbar rows and columns simultaneously using voltage-
mode sensing instead of current-mode sensing. The protection
method of [14] is only applicable when x is 16 because, for
its protection hardware, the output of each multiplexer (MUX)
in the first layer needs to be connected to all the MUXes in
the middle layer. As to the protection method of [15], it is not
applicable when x is 1 or 256 since the crossbar row grouping
mechanism is invalid, and when x is large, such as 128, the
method becomes insecure because the number of VOUs is
minimal.

(2) Vulnerability. Both [14] and [15] only considered the
security of a single protected crossbar or one crossbar pair. In
Section V, we investigated the security aspects of the proposed
TDPP in terms of the entire model, going beyond the analysis
of single crossbars or crossbar pairs. By adopting this broader
perspective, our aim is to provide a more comprehensive
understanding of the security implications associated with our
approach. Additionally, permutation-based protection methods
may be vulnerable to several types of attacks, especially
divide-and-conquer attacks [17]. These potential attacks, how-
ever, were not considered by them, either. As mentioned in
above paragraph, when x is large, the methods of [14] and
[15] becomes inapplicable and insecure, respectively.

(3) Key strategy. The protection hardware of both protec-
tion methods [14] and [15] is dispersed in the peripheral of
every crossbar pair, complicating the peripheral design. Fur-
thermore, for parallel execution of the crossbars, the protection
keys also need to be near the crossbars. The keys would be
stored in volatile memory, such as buffers or registers. Their
papers do not clarify how the keys are generated and shared
among the crossbars.

In this paper, we propose a two-dimensional permutation-
based protection (TDPP) method permuting both the rows and
columns of the DNN weight matrices, which also belongs to
the matrix row/column permutation class. TDPP differs from
previous works and is more advantageous in several ways,
which are summarized below:

• The TDPP method – We offer a new method involving the
permutation of both rows and columns of the weight ma-
trices. Conversely, previous works exclusively addressed
the permutation of a single dimension within the weight
matrices, specifically either the rows or the columns.

• Implementation design – We consider two different mem-
ristive computing systems (designed for layer-by-layer
and layer-parallel processing, respectively) and present
the design of the TDPP method for memristive computing
systems that could be embedded in the two systems. We
include the essential design parameters and key strategy.

• Security analysis – We discuss the security metrics of
the proposed method, including its resistance to brute-

1 [15] considered 8 WLs and 8 BLs for a crossbar size of 128 × 128.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 3

force attacks, divide-and-conquer attacks, and known-
plaintext attacks. Note that permutation-based protection
methods do not guarantee absolute security. Nevertheless,
it aims to enhance security by introducing confusion
and complexity to the arrangement of weight matrix
rows and columns stored in memristor devices, thereby
increasing the difficulty for attackers to extract correct
DNN weights.

• Evaluation by simulation – We evaluated the maximum
security provided by TDPP based on the minimal effort
for divide-and-conquer attacks to succeed. We show that
the TDPP method is highly effective, secure, and scalable.
It delivers up to 1218× and 2815× lower area and power,
respectively, than related works [14], [15].

II. BACKGROUND

A. Preliminaries

a) Main parts of DNN algorithms: The main parts of
DNN algorithms are convolution (Conv) and fully-connected
(FC) layers. These algorithms are dominated by vector-matrix
multiplications (VMMs) because both Conv and FC layers can
be implemented with VMM operations [18]. The weights of
FC layers are in the form of matrices and the weights of Conv
layers can also be transformed into matrices by reshaping
each filter kernel into a column. For simplicity, we assume
the weights of the Conv layers are already transformed into
matrices. Thus, in this paper, both the FC layer weights and
the Conv layer weights are in the form of matrices.

b) Analogous VMMs with memristive crossbars: In
memristive computing systems, the memristive devices are
organized in the form of crossbars. When applying voltages in
the WLs of memristive crossbars, the BLs of the memristive
crossbars output the accumulated currents, which is analogous
to VMMs. The input feature maps of DNNs are transformed
into voltages by using DACs so that they can be applied to
the WLs, and the accumulated current outputs at the BLs are
converted back to digital values using ADCs. Due to the non-
negative conductance values from the memristive devices [19],
a weight matrix is mapped to a pair of memristive crossbars,
i.e., a positive crossbar (XB+) and a negative crossbar (XB-).
Additionally, because of the limited precision of memristive
devices, multiple crossbar pairs are used to represent a high-
precision weight matrix [20].

B. Threat Model

As shown in Fig. 1, the well-trained DNN models are
loaded into the memristive computing systems. Memristive
computing systems are whole chips embedded in boards with
a universal interface such as M.2 or PCIe. We assume the
adversary has physical access to the memristive computing
systems but does not own the stored DNN models and is
motivated to steal them from the systems. The adversary
can insert the memristor-based DIMM into their own host
machine, gaining access to the host memory to know the input
of the first DNN layer to the memristive computing system and
the output of the last DNN layer. We also assume the adversary
can stream out the values of the memristive devices through

𝑤!! 𝑤!" 𝑤!# 𝑤!$

𝑤"! 𝑤"" 𝑤"# 𝑤"$

𝑤#! 𝑤#" 𝑤## 𝑤#$

𝑤$! 𝑤$" 𝑤$# 𝑤$$

𝑥! 𝑥" 𝑥# 𝑥$ 𝑦! 𝑦" 𝑦# 𝑦$

𝑝% = 3,4,1,2
𝑝& = (2,3,4,1)

𝑤#$ 𝑤#! 𝑤#" 𝑤##

𝑤$$ 𝑤$! 𝑤$" 𝑤$#

𝑤!$ 𝑤!! 𝑤!" 𝑤!#

𝑤"$ 𝑤"! 𝑤"" 𝑤"#

𝑥# 𝑥$ 𝑥! 𝑥" 𝑦$ 𝑦! 𝑦" 𝑦#

𝑝!

𝑝"
𝑦# 𝑦" 𝑦! 𝑦$

𝑦$ 𝑦# 𝑦" 𝑦!

Permute

𝑦! 𝑦" 𝑦# 𝑦$Reverse permutation

(a)

(b)

: Reverse order

Fig. 2. (a) A four-element input vector multiples an unprotected 4×4 weight
matrix and outputs a four-element output vector; (b) The rows and columns
of the weight matrix are permuted according to Pr and Pc, respectively;
the input and output vectors need to be permuted and reverse-permuted,
correspondingly, to get the correct VMM results.

the board interface or the I/O ports by exploiting the non-
volatility of memristive devices. This threat model is aligned
with the existing works [12]–[15]. The goal of the adversary
is to read the DNN weights from the memristive devices.
Once possessing the correct DNN weights, the adversary could
extract the DNN models. Our motivation is to prevent the
adversary from reading the DNN weights correctly.

III. THE TDPP METHOD

Fig. 2 illustrates the basic idea of the TDPP method for
protecting our weight matrix example. Fig. 2(a) shows the
VMM operation between a four-element input vector and a
4×4 weight matrix, which is plainly mapped to the memristive
devices. Thus, the adversary could correctly read the weight
matrix values through the corresponding memristive devices.
Fig. 2(b) shows the securely mapped weight matrix: the
rows and columns of the original matrix have been permuted
according to the vectors Pr and Pc, respectively. The vectors
Pr and Pc indicate the permutation patterns, which are the
keys. For example, the vector Pr being (3,4,1,2) means the
1st, 2nd, 3rd and 4th rows of the original matrix have moved
to become the 3rd, 4th, 1st, and 2nd rows, respectively. For
the correctness of the VMM operation, the input vector is
also permuted according to the vector Pr. The output vector
of the VMM operation between the permuted input vector
and the permuted weight matrix has to be reverse-permuted
to get the correct VMM result according to the vector Pc.
The reverse permutation occurs by first reversing the vector,
then permuting the vector, and finally reversing the vector
again. Similarly, the weight matrix of each layer of a model
is permuted independently. Without knowledge of Pr and Pc,
the extracted weight matrices known to the adversary are very
different from the original weight matrices, so the weights of
the model are well protected.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 4

(b)(a) config-1 exclusive config-2 exclusive

Memristor computing systems

Global
AU

Global
buffer

PE PE

PE PE

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

PE

PE

XB+ XB- XB+ XB-!!!

Tile
AU

Tile
buffer

Z
Z Z

Z

(f)

(c)

𝑖𝑛! 𝑜𝑢𝑡!

𝑖𝑛" 𝑜𝑢𝑡"

sel

0

1

0

1

Adding

Pooling

TDPP

Key Storage

Key generator
PUF

PM

Activation

Global/Tile
AU

(e)(d)

2'$!: 2'$!
𝑖𝑛!
𝑖𝑛"

𝑖𝑛"#
𝑖𝑛"#$!

𝑖𝑛"#$"
𝑖𝑛"#$%

𝑖𝑛%
𝑖𝑛&

2'$!: 2'$!

!!! !!! !!!

𝑜𝑢𝑡!
𝑜𝑢𝑡"

𝑜𝑢𝑡"#
𝑜𝑢𝑡"#$!

𝑜𝑢𝑡"#$"
𝑜𝑢𝑡'$%

𝑜𝑢𝑡%
𝑜𝑢𝑡&!!!

!!!

!!!

!!!𝑠𝑒𝑙! 𝑠𝑒𝑙" 𝑠𝑒𝑙"#$%∗"('$!)

BN 1

BN 2

BN 𝑘

!!!
𝑖𝑛!
𝑖𝑛"
𝑖𝑛"&

!!!
𝑖𝑛!
𝑖𝑛"
𝑖𝑛"&

!!!

𝑖𝑛!
𝑖𝑛"
𝑖𝑛"&

!!!

!!!
!!!

!!!

𝑜𝑢𝑡!
𝑜𝑢𝑡"
𝑜𝑢𝑡"&
𝑜𝑢𝑡!
𝑜𝑢𝑡"
𝑜𝑢𝑡"&

𝑜𝑢𝑡!
𝑜𝑢𝑡"
𝑜𝑢𝑡"&

!!!

!!!

!!!

!!!𝑠𝑒𝑙! 𝑠𝑒𝑙" 𝑠𝑒𝑙(∗"&$%∗"(-$!)

Fig. 3. (a) Memristive computing systems config-1 and config-2; (b) An arithmetic unit (AU) with a TDPP hardware module embedded; (c) A 2:2 Benes
Network (BN) consists of two MUXes; (d) A 2b:2b BN made up of two 2b−1:2b−1 BNs and two columns of 2:2 switches [21]; (e) An alternative
implementation of a 2b:2b PM (permutation module) with k 2B :2B BNs; (f) A PM can do partial permutation.

IV. TDPP DESIGN FOR MEMRISTIVE COMPUTING
SYSTEMS

A. Two Different Memristive Computing Systems

Fig. 3(a) shows two memristive computing systems. One
comprises a global arithmetic unit (AU) and a global buffer,
and the other puts a tile AU and a tile buffer in each tile. These
systems are designed for layer-by-layer and layer-parallel
processing, respectively. Denote them as config-1 and config-
2, respectively. Except for the location of the AUs and buffers,
the two systems share a similar design, such as the architecture
of the tiles and processing elements (PEs). As shown in Fig.
3(b), a global or tile AU consists of several digital processing
modules: the adding module, the pooling module, and the
activation module. The system consists of many tiles for
both systems, with each tile composed of multiple processing
elements (PEs). Each PE comprises multiple crossbar pairs.
The precision of both the DNN weights and the memristive
devices determines the number of crossbar pairs. For example,
eight crossbar pairs are needed per PE when the precision
of the DNN weights and memristive devices are 8 and 1,
respectively.

B. Design of the TDPP Hardware

As shown in Fig. 3(b), the TDPP design consists of a
permutation module (PM), a key storage module, and a key
generator.

(1) PM: The PM is used for both permuting the layer’s
inputs and reverse-permuting layer’s outputs. To minimize
the hardware overhead and the system latency, we suggest

implementing the PM using the Benes Network (BN) [21]. Fig.
3(c) shows the structure of a 2:2 BN, essentially a 2:2 switch.
A 2:2 switch could be composed of two 2:1 MUXes. When the
sel signal is 0, the inputs in1 and in2 will be connected to the
outputs out1 and out2, respectively; otherwise, the inputs will
be cross-connected to the outputs. Fig. 3(d) shows the structure
of a 2b:2b BN, constructed by recursively connecting smaller-
size BNs. Generally, a 2b:2b BN consists of (2b−1× (2b− 1))
2:2 BNs. Each 2:2 BN comes with a sel signal, and all the
signals together determine the permutation pattern. Denote the
signals as key, the size of the key sb for a 2b:2b BN equals
the number of 2:2 BNs it contains, described as

sb = (2b−1 × (2b− 1)). (1)

Two benefits are achieved when using a BN-based PM im-
plementation. First, BNs are non-blocking, i.e., at any given
time, all the inputs and outputs of the BNs are connected. The
non-blocking feature is essential to avoid affecting the system
throughput of the memristive computing system. Second, the
number of 2:2 switches required by BNs is optimized, which
is significant if we want to impose minimal hardware overhead
on the system. Additionally, the vector reversing step can be
done using the PM by setting the selection signals of its last
b columns of 2:2 switches to 1 and that of the remaining
switches to 0, without additional hardware.

We can also reduce the hardware overhead of the PM by
implementing it with multiple smaller BNs instead of a big
BN. As shown in Fig. 3(e), a 2b:2b BN could be replaced
by k 2B :2B BNs, where k is the number of 2B :2B BNs and
2b = k×2B . A PM consisting of k 2B :2B BNs still simultane-

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 5

0 1 1 0

1 0 1 0

0 1 0 1

0 0 1 1

Sense amplifier

: eDRAM/SRAM cell

R
ow

 D
ecoder

Fig. 4. The key generator utilizes the startup values of eDRAM/SRAM cells,
which are randomly initialized to 0 or 1 due to process variation [24], [25].

ously connects 2b inputs and 2b outputs. This alternative design
could reduce the hardware overhead of PMs substantially.
For example, a 256:256 BN could be replaced by 16 16:16
BNs to reduce the hardware overhead by approximately 53%.
Note that the hardware-reduced PM design also decreases the
permutation effectiveness and security. Section V-A analyzes
the security of the PM hardware-reduced design, and Section
VI shows that a hardware-reduced PM design can still provide
sufficient permutation and security.

(2) Key storage: The key storage module is an on-chip buffer
comprising any volatile memory technology such as eDRAM
or SRAM. The volatility of the key storage module ensures
the keys are not accessible to the adversary when the systems
are powered off.

(3) Key generator: The key generator generates the PM key.
We suggest the generator be a physical unclonable function
(PUF) from which the adversary cannot steal the key [22].
Note that the global AU and tile AUs are near the global buffer
and tile buffers, respectively, and the global or tile buffer is
usually a volatile eDRAM, or SRAM memory [23]. We can
use the global/tile buffer as a PUF by exploiting the startup
values of its cells [24], [25]. As shown in Fig. 4, the startup
values of the eDRAM/SRAM cells are randomly initialized as
0 or 1 due to process variation. Note that reading the startup
values must be conducted before the system overrides them.
We refer the readers to [24], [25] for detailed PUF design.

C. Embedding TDPP Hardware in Memristive Computing
Systems

In the config-1 architecture, the DNN inference follows a
layer-to-layer processing approach [26], [27]. All the layer’s
outputs will be transferred to the global buffer to be processed
by the global AU. Then, the layer’s outputs will be used as
inputs for the next layers and transferred to the corresponding
tiles. We insert the TDPP hardware into the global AU.

In the config-2 architecture, since each tile is equipped with
an AU, the output of a layer can be transferred directly to other
tiles where the DNN weights of its next layer are located [3],
[16], [23]. This architecture aims at layer-parallel processing
to maximize the crossbar throughput. In this case, we insert a
TDPP hardware module in the AU of each tile, and the key

generator utilizes the cell startup values of the tile buffer. Note
that the cell startup values of each tile buffer are different, and
the key for the PM module in each tile is, therefore, unique.
Inserting TDPP hardware in the AU of each tile will increase
the hardware overhead. We can, however, use the hardware-
reduced PM implementation, as explained earlier, to reduce
the hardware overhead.

D. Key Strategy

For the TDPP method described in Section III, the permu-
tation size for a weight matrix is the same as the original
weight matrix. The layer size of some DNN models, however,
may be enormous, and its corresponding PM – of the same
size – could be infeasible when the hardware overhead is
constrained. To circumvent this problem, we could design a
feasible-size PM and permute the rows and columns of the
large weight matrices part by part separately. Note that in
memristive computing systems, if the height or width of a
layer’s weight matrix is greater than that of the memristive
crossbars, the matrix is divided into multiple submatrices to fit
the size of the memristive crossbars. Each submatrix is mapped
to a PE, and the PEs execute VMM operations in parallel [23].
Denote the size of the memristive crossbars as C×C. Hence,
to be aligned with the crossbar parallelism, the size of the
PM must be no less than the memristive crossbars, i.e., 2b is
at least C. For simplicity and ease of discussion, we set 2b

equals to C. Assume the size of a weight matrix is m × n,
divided into multiple submatrices by the size of crossbars.
The rows and columns of each submatrix will be permuted
independently before being mapped to the PE crossbars. Note
for small-size memristive crossbars, setting 2b equal to C
might compromise security. For example, when C is 16,
according to (1), the key size for a 16:16 BN is only 56, which
might not provide enough sufficient permutation and security.
To address this issue, however, we can set 2b as a multiple of
16, for example, 256. In this case, the rows and columns of
every 256 submatrices will be permuted independently before
being mapped to the PE crossbars.

For a small weight matrix, when its height m or width n
is less than C, it is possible to pad it by programming the
unused memristive cells with camouflage values to increase se-
curity [14], [15]. Usually, however, the unused cells are set into
a high resistance state (HRS), and the corresponding WLs/BLs
are turned off during computing to reduce the sneak paths [16].
Since padding small weight matrices could introduce sneaking
noise, we leave them in HRS in our design. For the weight
matrix of a DNN layer, high level security can be achieved
when each submatrix is permuted with a different key. The
resultant key storage, however, could be overwhelming. For
example, assume a weight matrix of 4094× 4096 in size and
C equals 256. The matrix is divided into 256 submatrices
by every 256 rows and columns, and the rows (columns)
of each submatrix are permuted with a different key using
a 256:256 BN-based PM. According to (1), permuting 256
rows (columns) requires a 1920-bit key. The required key
for the whole weight matrix would be 1920 × 256 bits and
only for permuting the weight matrix’s rows or columns. We

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 6

could reuse the key inside each weight matrix to compromise
between maintaining a sufficiently high level of security and
having reasonably sized key storage. This would mean that
for a layer’s weight matrix, all the submatrices share the same
key and that the key for permuting the rows and the key for
permuting the columns of a submatrix are the same. The keys
for each layer, however, are the same or different than those
of the other layers, depending on whether the architecture is
config-1 or config-2. For config-1, the key is generated using
the cell startup values of the global buffer, and all layers share
the same key. For config-2, each tile is mapped with no more
than a single DNN layer [23], and each tile has a tile buffer.
Hence each layer can have a unique key.

E. Data flow
This section examines the system data flow to understand

the effects of the TDPP hardware on the system in functional-
ity and throughput. For both systems, only the initial input and
final output of the DNN models are transferred between the
host and the memristive computing system; all the intermediate
layer results are stored in the on-chip global/tile buffer.

For the config-1 architecture, each layer’s inputs will be
copied from the global buffer to the TDPP hardware for
permutation and then back to the global buffer. The layer
inputs will then be transferred to the tiles through the network-
on-chip (NoC). The partial outputs from the involved tiles
of a DNN layer are gathered in the global buffer and then
accumulated, pooled, and activated in the global AU. The
aggregated output will go through the TDPP hardware for
reverse permutation as an additional procedure.

Fig. 5 illustrates a simple example of the data flow. Assume
the input of a Conv layer is divided into four input vectors.
The size of each vector is four, as the number of the input
channels. Each input vector will be copied from the global
buffer to the TDPP hardware for permutation and then copied
back to the global buffer, which is ready to be transmitted
to the tiles through the NoC (step 1⃝). In this case, the
Conv kernels are distributed in multiple tiles. Each input
vector will perform VMM operations with the DNN weights
loaded in the tiles, and each tile will output a vector of
partial results (step 2⃝). The partial results are transferred
back to the global buffer and aggregated using the adding
module to get an output vector of size equal to the number
of output channels (four in this example) (step 3⃝). There
are four input vectors, resulting in four output vectors. These
output vectors will be pooled to become a single vector (step
4⃝), which then will go through the activation module (step
5⃝). The TDPP hardware will reversely permute the activated

vector and, finally, copied back to the global buffer, to be
ready for use as the inputs for the next layer (step 6⃝).
Note that the pooling operations and activation operations are
along each output channel. Therefore, the output channels are
preserved. The reverse permutation recovers the correct order
of the channels for the output vector. Hence, the embedded
TDPP does not affect the normal functionality of memristive
computing systems. The PM bandwidth should be at least that
of the global AU or the NoC to maintain a similar system
throughput.

For the config-2 architecture, the partial VMM operation
results from the involved tiles of a DNN layer gathered in
one of these tiles. The tile AU will process the aggregated
outputs and send them directly to the tiles of the next layer.
The next layer will start processing once it gets the necessary
partial outputs rather than waiting for whole outputs from the
current layer [23]. The proposed PM can process a partial
permutation without waiting to complete a whole layer. As
shown in Fig. 3(f), when a PM receives a partial layer output
vector, the partial vector will be padded to become the same
size as a full layer output vector. In this case, the outputs of
the first two output channels will be transferred to the next
layer first. Thus the tile (knowing the key) processes VMM
operations of the corresponding first and last output channels,
which have top priority. The states of the padded elements
will be set as Z (high impedance state). After permutation, the
padded elements will be discarded. Thus, as with the config-1
architecture, the TDPP hardware would not affect the system
throughput for config-2, either.

V. SECURITY ANALYSIS OF THE TDDP METHOD

According to the threat model outlined in Section II-B, the
adversary possesses the capability to read the values of the
memristive devices, allowing them to extract the permuted
weight matrices from these devices. The main objective of the
adversary is to reverse the permutation process and restore
the rows and columns of the extracted matrices to their
original arrangement, which effectively means deciphering
the permutation keys generated by the key generator. Note
that the memristive computing system is integrated into a
single chip, and all components, including the PM, are on-
chip. Consequently, the adversary does not have control over
the sel signals of the PM. Even in the scenario where the
adversary gains control over the sel signals, without knowledge
of the correct permutation keys, they would be compelled to
try different sel signal combinations. This process would be
equivalent to attempting to restore the rows and columns of
the extracted matrices to their original arrangement.

A. Brute-Force Attack

Brute-force attack can be used to attempt to crack any
encryption methods [28]. Assume a DNN model under attack
has L layers, and the size of the ith layer’s weight matrix is
mi × ni (i ∈ [1, L]). According to the key strategy in Section
IV, the number of times a brute-force attack is undertaken
T i
BF to recover the original weight matrix of the ith layer can

be described as

T i
BF =

(B!)k if mi ≥ C or ni ≥ C

(B!)⌊m
i/2B⌋ · (mi%2B)! if ni ≤ mi < C

(B!)⌊n
i/2B⌋ · (ni%2B)! if mi < ni < C

.

(2)
For the config-1 architecture, as the key for each layer is

the same, the effort of brute-force attacking the whole model
is equal to that of attacking its biggest layer. Thus, the number
of brute-force attacks TBF needed to recover all the original
weight matrices of the DNN model can be described as

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 7

Tile Tile

3!4!2! 1!

3!4!2! 1!

3!4!2! 1!

3!4!2! 1!

3!!4!!2!! 1!!

Permutation

(Max) Pooling

Activation
3!4!2! 1!4!!3′!1′! 2!!

Reverse
Permutation

+

Layer outputs

Adding

VMM
operations

①

② ③

④

⑤⑥

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

Input/output vector Input/output channel separator

Layer inputs

Fig. 5. Example of the system data flow: 1⃝ permuting each input vector; 2⃝ permuted input vectors doing VMMs operations with the permuted weights
loaded in tiles; 3⃝ adding partial results from different tiles; 4⃝ pooling aggregated outputs along the output channels (assuming the second output is the max
for each output channel); 5⃝ activating the pooled outputs; 6⃝ reversely permuting the activated outputs to get the correct layer outputs.

TBF = max(T 1
BF , T

2
BF , ..., T

L
BF). (3)

For the config-2 architecture, given that the key for each
layer is different, permuting the weight matrix of each of its
layers could cumulatively make the permutation space even
larger. The model could be reverse-engineered correctly only
after the weight matrices of all the layers are recovered. The
number of brute-force attempts TBF needed to recover all the
original weight matrices of the DNN model can be described
as

TBF =

L∏
i=1

T i
BF . (4)

Large DNN models generally have more layers and are
therefore more resistant to brute-force attacks than small DNN
models.

B. Attacking Small Matrices

Recall that for the config-1 architecture, the weight matrices
of all DNN layers are permuted using the same key. Mapping
a small matrix to a memristive crossbar, however, leaves some
rows or columns in the crossbar unused, which may facilitate
the adversary’s brute-force attacks aiming to recover the
permutation pattern for the whole DNN model. Furthermore,
recall that for both config-1 and config-2 architecture, if the
width or height of a layer’s weight matrix is larger than
that of the memristor crossbars, it is divided into multiple
submatrices, and the key used to permute each submatrix is
the same. A small submatrix being mapped as a memristive
crossbar may also facilitate the adversary’s brute-force attacks
aiming to recover the permutation pattern for the whole DNN
layer.

Fig. 6 shows a simple example. The weight matrix has two
rows, w1 and w2, and four columns, and the crossbar size is
4 × 4. Assume the PM module is based on a 4:4 BN. Thus
the number of permutation patterns is 4!. After permuting the
matrix, its rows become the second and fourth rows of the

permuted matrix, respectively. If we map the permuted matrix
directly to a memristive crossbar, the first and third rows of
the crossbar will be left unused, from which the adversary
can gain some insights into the permutation patterns. That is,
for the permutation pattern used to permutation the example
matrix, the first two permutation inputs are connected to the
second and fourth permutation outputs, respectively, and the
last two permutation inputs are connected to the first and third
permutation outputs, respectively. In this case, the possible
permutation patterns are reduced from 4! to 2!×2!, i.e., reduced
by 83.33%.

To mitigate these attacks, we propose to map the rows or
columns of small (sub)matrices to contiguous crossbar rows
or columns, respectively, and use an index vector to indicate
the correct location of each weight matrix row or column.
As shown in Fig. 6, w1 and w2 are mapped to the first
and second rows of the crossbar. The index vector (0, 1, 0, 1)
means the correct locations for w1 and w2 are rows two
and four, respectively. Without knowing the index vector, the
unused crossbar rows or columns do not expose information
about the permutation pattern used to permute the matrix. The
size of the index vector is equal to the number of rows or
columns of the memristive crossbars. If the matrix size is small
for both the rows and columns, we need one index vector for
the rows and one for the columns. For TDPP, we need, at most,
two index vectors for each tile. The index vectors are stored in
the key storage of the TDPP hardware. Note that those vectors
are generated based on the permutation keys and must not be
stored in non-volatile memory.

C. Divide-and-Conquer Attack

Unlike conventional cryptographic algorithms, permutation-
based protection methods may be vulnerable to divide-and-
conquer attacks. For example, for a weight matrix, instead of
guessing the permutation pattern for the whole matrix at once,
the adversary may target only a small number of weight matrix
rows or columns each time. The adversary expects higher

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 8

𝑤!! 𝑤!" 𝑤!# 𝑤!$

𝑤"! 𝑤"" 𝑤"# 𝑤"$

(0,1,0,1)
➕

𝑤!! 𝑤!" 𝑤!# 𝑤!$

𝑤"! 𝑤"" 𝑤"# 𝑤"$

Permuting

Mapped to
discrete rows

Mapped to
contiguous rows

Fig. 6. A matrix smaller than a memristive crossbar is permuted and
mapped to (left bottom) discrete crossbar rows and (right bottom) contiguous
crossbar rows with an index vector indicating the correct locations of the
matrix rows.

and lower inference accuracy of the extracted DNN model
using the correct and incorrect keys for the rows or columns,
respectively. In this way, the original locations of the rows or
columns may be recovered. Then the adversary will target the
next set of rows or columns and continue until the locations
of all the rows or columns are discovered. In our experiment,
we use LeNet [29]. The example model consists of two Conv
layers and three FC layers. We trained the example model with
the CIFAR10 dataset [30]; the inference accuracy of the well-
trained example model was 76.22%. We then permuted 25,
50, and all 75 rows of the weight matrix of the LeNet model’s
first layer (only permuting the rows); the inference accuracy of
the extracted model was 49.4915%, 28.0103%, and 19.601%,
respectively. That is, when only partial rows of the example
model’s first layer are permuted, the inference accuracy of the
extracted model is higher than when all rows are permuted.

This sort of attack, however, could not work against the
proposed protection technique since, with the majority of
the DNN weights protected, removing the protection of a
small number of rows (columns) does not affect the model
performance and the inference accuracy of the extracted model
stays approximately 10% (for the CIFAR10 dataset). For
config-1, we examined the inference accuracy of the extracted
model by choosing the different ratios of key guess as 0.01
to 1 with 0.01 steps of the permutation key of the example
model. For config-2, we examined the inference accuracy of
the extracted model by guessing the permutation keys of the
1, 2, 3, 4, and 5 most significant layers. The model layer
significance is measured by running the model inference with
only a single layer protected. The lower the inference accuracy,
the more significant the layer is. The PMs for both systems are

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.
00

0.
04

0.
08

0.
12

0.
16

0.
20

0.
24

0.
28

0.
32

0.
36

0.
40

0.
44

0.
48

0.
52

0.
56

0.
60

0.
64

0.
68

0.
72

0.
76

0.
80

0.
84

0.
88

0.
92

0.
96

1.
00

A
cc

ur
ac

y

Ratio of key guessed

Correct key Incorrect key

Fig. 7. For config-1, the inference accuracy of the extracted example model
with guessing the correct and random incorrect keys for different ratios of the
key, while keeping the remaining of the key untouched.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5

A
cc

ur
ac

y

Number of most significant layers

Correct key Incorrect key

Fig. 8. For config-2, the inference accuracy of the extracted example model
with guessing the correct and random incorrect keys of different numbers
of the most significant layers, while keeping the other layers of the model
protected.

based on a 256:256 BN. We compared the results of inputting
correct key(s) and incorrect key(s), respectively, while keeping
the other part of the model protected. Each experiment was
carried out 40 times, and the average results were determined.
The results are shown in Fig. 7 and Fig. 8. For config-1, only
when 74% and above of the key is guessed correctly is the
inference accuracy of the extracted model higher than that
when guessing the incorrect key, i.e., the divide-and-conquer
can succeed. For config-2, only when the keys of all layers
are guessed correctly the inference accuracy of the extracted
model is higher than that when guessing the incorrect key.

We further explored the minimal effort for the divide-and-
conquer attacks to succeed. The minimal effort is defined as
the number of brute-force trial times to discover the minimal
ratio of the key (for config-1) or the keys of the minimum
number of DNN layers (for config-2) required to increase the
inference accuracy of extracted DNN models. The algorithms
are described as Algorithm 1 and Algorithm 2. For config-
1, Algorithm 1 takes the brute-force attack effort TBF as an
input. The output is the minimal effort for the divide-and-
conquer attacks. The algorithm initializes the ratio r as 0.01
and iterates until r reaches 1 with steps of 0.01. For each
iteration, it checks the attack sensitivity of r of the permutation
key. The attack sensitivity is defined as the relativity of the

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 9

inference accuracy of the extracted DNN model when guessing
correctly and incorrectly, respectively, for r of the permutation
key while keeping the remaining of the key untouched. When
the correct-key results show relevant lopsidedness (at least 5%
higher) than the incorrect-key results, we regard the r of the
key as attack sensitive and otherwise attack insensitive.

For config-2, before the algorithm, we sort the model layer
significance list in descending order and store the correspond-
ing layer indexes into a list list1. Algorithm 2 takes list1 and
the brute-force attack effort for each layer T i

BF as inputs. The
output is the minimal effort for the divide-and-conquer attacks.
Firstly, we create a new list list2 to store the index of the
candidate layer set that is attack sensitive. Similarly, the attack
sensitivity is defined as the relativity of the inference accuracy
of the extracted DNN model when guessing the respective
correct and incorrect keys for the layer set while keeping the
other layers protected. The algorithm keeps checking the attack
sensitivity of the accumulating layer set list2 until list2 is
attack-sensitive or all the layers are in list2.

Algorithm 1 Compute the minimal effort for the divide-and-
conquer attacks for config-1

1: Inputs: the brute force attack effort TBF ;
2: Outputs: minimal effort for the divide-and-conquer at-

tacks;
3: for r = 0.01; r ≤ 1; r = r + 0.01 do
4: if r of key are attack sensitive then
5: Break
6: end if
7: end for
8: return r · TBF

Algorithm 2 Compute the minimal effort for the divide-and-
conquer attacks for config-2

1: Inputs: descending sorted model significance list1;
2: Inputs: brute force attack effort for each layer T i

BF , where
i ∈ [1, L] ;

3: Outputs: minimal effort for the divide-and-conquer at-
tacks;

4: list2 = {};
5: while list1 ! = NULL do
6: index = pop(list1);
7: list2.append(index);
8: if list2 is attack sensitive then
9: Break

10: end if
11: end while
12: return

∏L
i=1 T

list2[i]
BF

D. Known-Plaintext Attacks

If the adversary knows the inputs and outputs of the PMs,
then the permutation keys can easily be discovered. For both
systems, the adversary has access to the host memory to know
the input of the first DNN layer to the memristive computing
system and the output of the last DNN layer. The input

of the first DNN layer to the memristive computing system
and the output of the last DNN layer, however, are irrele-
vant to the permutation keys. Only the intermediate results,
permuted input vectors, and VMM operation results before
reversed permutation are relevant to the permutation keys.
The intermediate results, importantly, are stored in on-chip
buffers. For the config-1 architecture, we assume the global
buffer is implemented using eDRAM or SRAM embedded
on the chip. For the config-2 architecture, all the tile buffers
are on-chip. Thus, the adversary cannot directly access the
intermediate results. Indirectly accessing those intermediate
results might be possible through side-channel analysis. Side-
channel analysis against the intermediate layer results could
be thwarted by countermeasures such as inserting fake cycles
or adding noise [31], and those countermeasures could be
combined with TDPP to counter side-channel attacks against
the intermediate results.

Another potential attack involves writing specific-pattern
weight matrices to the memristor crossbars. In this scenario,
the adversary may offload a customized DNN model with
identity matrices as weight matrices to the memristor system.
Consequently, by processing these customized DNN weights
on the memristor crossbars, the input of the first DNN layer,
and the output of the last DNN layer, the difficulty of inferring
intermediate results could be reduced. To mitigate this attack,
a predefined user key can be utilized to encrypt the keys
generated by the key generator within the TDPP module.
Instead of directly using the keys from the generator, they are
XORed with the user key to create the permutation keys. This
way, without the correct user key, the permutation keys remain
hidden from the adversary. This additional layer of encryption
enhances the security of the system.

VI. EVALUATION

In this section, we present our evaluation of the proposed
TDPP method in terms of protection effectiveness, security,
hardware area and power overheads. We tested the proposed
method on four DNN models: AlexNet, VGG16, ResNet18,
and GoogleNet. All the models were modified and trained
on the CIFAR10 dataset, and all the models’ weights were
quantized as 8-bit. The original accuracy of the unprotected
models is 86.58%, 91.21%, 93.27%, and 79.88%, respectively.
We ignored the errors of mapping DNN weights to the memris-
tive devices. For comparison, we implemented the protection
methods of [14] and [15] on the same models. We assume both
methods apply a different key for each PE, that all crossbar
pairs share the key inside a PE, and that the keys of each
layer are different from that of other layers. The evaluation
configuration is listed in Table I. The choices of p, x, T , and B
are {1, 2, 4, 8}, {1, 2, 4, 8, 16, 32, 64, 128, 256}, {20, 40, 60,
80, 100}, and {2, 4, 8, 16, 32, 64, 128, 256}, respectively. The
area of the memristive cells is taken from [32]. The protection
modules of all the protection methods were evaluated based
on 32nm CMOS technology. For simplicity, we assumed all
the inputs, outputs, and intermediate results were 8-bit. Each
experiment was performed 40 times, and the average results
were determined.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 10

TABLE I
EVALUATION CONFIGURATION.

Memristive cell (1T1R) size 0.029 µm2 [32]
Memristive device precision p bit

Crossbar size 256× 256
Number of activated WLs/BLs per cycle x

Number of PEs per tile 8
Number of tiles T

BN size B:B
CMOS process node 32nm

TABLE II
PROTECTION EFFECTIVENESS OF TDPP FOR DIFFERENT B.

AlexNet VGG16 ResNet18 GoogleNet
B=2, config-1, any p, any x 24.77% 15.94% 12.82% 9.99%
B=2, config-2, any p, any x 10.00% 10.00% 10.00% 10.00%
B=4, config-1, any p, any x 10.45% 10.02% 9.88% 10.00%
B=4, config-2, any p, any x 10.00% 10.00% 10.00% 10.00%
B=8, config-1, any p, any x 9.98% 10.03% 10.16% 10.00%
B=8, config-2, any p, any x 10.00% 10.00% 10.00% 10.00%
B=16, config-1, any p, any x 10.01% 10.00% 10.06% 10.00%
B=16, config-2, any p, any x 10.00% 10.00% 10.00% 10.00%
B=32, config-1, any p, any x 10.00% 10.00% 10.02% 10.00%
B=32, config-2, any p, any x 10.00% 10.00% 10.00% 10.00%
B=64, config-1, any p, any x 10.01% 10.00% 9.98% 10.00%
B=64, config-2, any p, any x 10.00% 10.00% 10.00% 10.00%
B=128, config-1, any p, any x 10.00% 10.00% 9.99% 10.00%
B=128, config-2, any p, any x 10.00% 10.00% 10.00% 10.00%
B=256, config-1, any p, any x 10.00% 10.00% 10.00% 10.00%
B=256, config-2, any p, any x 10.00% 10.00% 10.00% 10.00%

A. Protection Effectiveness

The protection effectiveness of a protection method is
defined as the inference accuracy of the protected DNN models
directly extracted by the adversary. The lower the accuracy
is, the better the effectiveness of the method. The CIFAR10
dataset is 10-class; thus, when an extracted model’s inference
accuracy is 10%, the model function is randomly guessing,
which is useless. Table II lists the effectiveness of TDPP for
different values of B. For config-1, when B is above 4, the
extracted DNN models are nearly useless. When B is larger,
the average inference accuracy shows less fluctuation, i.e.,
the model functions strictly as random guessing. For config-
2, the inference accuracy of the extracted DNN models is
10% for any value of B without fluctuation. Based on the
results of Table II, we claim that even when B is very small,
e.g., 4, TDPP remains highly effective for all models for both
systems. Moreover, the protection effectiveness is unrelated to
the parameters p and x because TDPP is at the layer level,
and the inputs/outputs of TDPP’s hardware are not affected
by p or x.

We also compared the protection effectiveness of [14] and
[15]. The method of [14] only applies when x is 16; the
method [15] is not applicable when x is 1 or 256 because the
grouping strategy is invalid for both cases. The results show
that when all layers are protected, the comparison works are
also effective in protecting all the models.

B. Security

The maximum security of the protection methods was
estimated as the minimal effort for divide-and-conquer attacks
to succeed using Algorithms 1 and 2. This evaluation considers

TABLE III
SECURITY OF THE PROPOSED METHOD (LOGARITHMS IN BASE 2) FOR

DIFFERENT B.

AlexNet VGG16 ResNet18 GoogleNet
B=2, config-1, any p, any x 13 13 13 77
B=2, config-2, any p, any x 256 1536 1664 3968
B=4, config-1, any p, any x 77 115 38 230
B=4, config-2, any p, any x 2304 4992 4992 14592
B=8, config-1, any p, any x 256 384 256 512
B=8, config-2, any p, any x 5120 8320 10240 24320
B=16, config-1, any p, any x 538 717 538 717
B=16, config-2, any p, any x 7168 11648 14336 34048
B=32, config-1, any p, any x 691 922 806 922
B=32, config-2, any p, any x 9216 16128 18432 43776
B=64, config-1, any p, any x 986 1126 986 1267
B=64, config-2, any p, any x 11264 19712 22528 53504
B=128, config-1, any p, any x 1331 1498 1331 1498
B=128, config-2, any p, any x 13312 23296 26624 63232
B=256, config-1, any p, any x 1536 1728 1728 1728
B=256, config-2, any p, any x 15360 26880 30720 72960

factors such as PM size, architecture (config-1 or config-2),
and the specific DNN model. Table III lists the security of
TDPP for both config-1 and config-2. The results are shown
as logarithms in base 2. When B is above 8 and 2 for config-
1 and config-2, respectively, the minimal brute-force effort
requires at least 2256 attempts. When B increases, the minimal
brute-force effort also increases significantly. The maximum
security for config-2 is at least one order of magnitude higher
than that for config-1, primarily because, in the former, each
layer’s key is different. The maximum security for config-1
could be improved to be similar to config-2 by applying a
strong PUF [22] as the key generator so that each layer has a
different key. From the results, we conclude that our method
is highly secure when choosing a proper B.

We also compared the related works with a modified Algo-
rithm 2. The original Algorithm 2 keeps checking the attack
sensitivity of increasing the number of DNN layers. In our
experiment settings, the related works apply different keys for
the PEs of each DNN layer. Thus, the modified Algorithm 2
checks the attack sensitivity of increasing the number of PEs
instead of the DNN layers. The comparison results are listed in
Table IV. The maximum security of both [14] and [15] is not
affected by p because, in our experimental setting, all crossbar
pairs inside a PE share the same key. For the protection method
of [14], the maximum security is high since its permutation
is applied to crossbar rows, and the weight matrices of some
DNN layers of the tested models have a large number of rows,
so those matrices are mapped to multiple PEs. Each PE that
applies a different permutation key increases the maximum
security significantly. This method, however, is only applicable
when x is 16 due to the implementation of its protection
module. For the protection method of [15], the maximum
security is also high when x is up to 32. A small x means the
VOUs are small and high-multiplicity MUXes/DEMUXes are
used so that the permutation space is immense. Nevertheless,
as x increases, the maximum security decreases significantly.
For example, when x is 128, [15] randomly divides a crossbar
into two VOU groups, and each group is divided into two
VOUs. Thus, the possible permutation patterns for a single
crossbar is only 2!2, and for all models, the total maximum
security it provides is at most 252, which is insufficient.

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 11

TABLE IV
MAXIMUM SECURITY OF THE PROTECTION METHODS (LOGARITHMS IN

BASE 2) OF [14] AND [15].

AlexNet VGG16 ResNet18 GoogleNet

x=1, any p
[14] - - - -
[15] - - - -

x=2, any p
[14] - - - -
[15] Inf Inf Inf Inf

x=4, any p
[14] - - - -
[15] Inf Inf Inf Inf

x=8, any p
[14] - - - -
[15] Inf Inf Inf Inf

x=16, any p
[14] 18806 60180 21063 18054
[15] 27612 12036 11328 26904

x=32, any p
[14] - - - -
[15] 2693 2081 1958 4651

x=64, any p
[14] - - - -
[15] 385 275 275 697

x=128, any p
[14] - - - -
[15] 40 26 22 52

x=256, any p
[14] - - - -
[15] - - - -

TABLE V
PROTECTION MODULES OF DIFFERENT PROTECTION METHODS.

Config-1 One TDPP hardware module

Config-2 one TDPP hardware module
per tile

[14] 2x (256/x):1 MUXes and x 1:(256/x) DEMUXes
per crossbar pair

[15] one (256/x):1 MUX and one 1:(256/x) DEMUX
per crossbar pair

C. Hardware Overhead

In this subsection, we evaluate the hardware overheads of
TDPP and the related works in terms of area and power. The
overhead is aggregated for the protection module and key
storage and does not include the key generation module.

1) Protection module: Table V summarizes the required
hardware modules for different protection methods. The
Config-1 architecture only needs one TDPP hardware module,
while the Config-2 architecture needs one TDPP hardware
module in each tile. The protection module required by the
method proposed in [14] comprises 2x (256/x):1 MUXes and
x 1:(256/x) DEMUXes. In this method, each crossbar pair
requires one protection module. On the other hand, the size
of a VOU in the method proposed in [15] is scaled as x2,
and the protection module includes one (256/x):1 MUX and
one 1:(256/x) DEMUX. Again, each crossbar pair requires
one protection module. However, the authors of [15] did not
consider the module’s bitwidth. In reality, each input/output
of the MUX/DEMUX is an array of x 8-bit values. To ensure
a fair comparison, we set the bitwidth of the MUXes and
DEMUXes to 8x using their method.

2) Key storage: For the proposed method, the key storage
includes both the key(s) for permutation and the index vectors.
For [14], for each of the x WLs, the key storage for each
protection module is x × 3 × log2(256/x) bits (each MUX
or DEMUX needs log2(256/x) bits) and so the key storage
for each protection module is x× 3× log2(256/x)× (256/x)
bits. For [15], the key storage for each protection module is
(256 × log2(256/x) + log2(256/x) × 2 × (256/x)) bits (row
activation vectors and keys for the MUX/DEMUX for each x

2
8
32
128

0.00%

0.05%

0.10%

0.15%

0.20%

10 20 30 40 50 60 70 80 90 100

BA
re

a
ov

er
he

ad

T

2 4 8 16 32 64 128 256B：

Fig. 9. Area overhead of config-1 compared with memristive crossbars for
p = 8.

2
8
32
128

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

10 20 30 40 50 60 70 80 90 100

BPo
w

er
 o

ve
rh

ea
d

T

2 4 8 16 32 64 128 256B：

Fig. 10. Power consumption overhead of config-1 compared with that of
memristive crossbars for p = 8.

WLs). To reduce the key storage overhead for [14] and [15],
we assume all protection modules inside each PE share the
same key. For the parallel execution of PEs, each PE will have
a corresponding key storage. We assume all the keys are stored
in eDRAM (32nm CMOS), the area and power consumption
are modeled using CACTI [33].

Figs. 9 and 10 show the total area and power overheads of
the proposed method for the config-1 architecture, respectively.
When B is 256, the area and power overheads are maximized,
and are less than 0.16% and 0.26% of that of memristive
crossbars for p = 8, respectively. Lower B would reduce
the overhead. When B is 2, compared with when B is 256,
the overhead could be reduced by up to approximately 74%
and 87% for area and power, respectively. For the config-
2 architecture, the relative overhead compared to crossbars
remains constant regardless of T since each tile is equipped
with a protection module and a key storage module. Fig. 11
shows the area and power overhead compared with that of
crossbars for p = 8.

Note that, for brevity, we only show the results for p =
8. The relative overhead would decrease proportionally as p
decreases. For example, when p is 1, each tile needs 8× more
devices compared to p = 8, and the corresponding relative
overhead is one eighth of that when p is 8.

To compare with the related works, for config-1 and config-
2, we set B as 64 and 4, respectively, to ensure our method
provide sufficient maximum security (more than 2986) for all

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 12

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

2 4 8 16 32 64 128 256

A
re

a/
po

w
er

 o
ve

rh
ea

d

B

Area Power

Fig. 11. Area/power overhead of config-2 compared with that of memristive
crossbars for p = 8.

models. Tables VI–IX list the results for different T , different
x, and different p. For brevity, we only show the results
for p equals 1 and 8, when the gap between TDPP and the
related works is the largest and smallest. TDPP for config-1
shows a significant advantage over that for config-2 and other
protection methods mainly because it only requires one TDPP
hardware module. The advantage increases proportionally with
T . TDPP for config-1 also incurs a lower hardware overhead
than the methods of [14] and [15] thanks to its hardware-
reduced PM implementation. For higher x, the overhead
advantage of TDPP versus the method of [15] declines since a
larger x requires fewer MUXes and DEMUXes for the method
of [15]. Overall, the proposed method incur lower hardware
overhead than the related works regardless of the memristive
devices’s precision, the number of simultaneously activated
WLs/BLs, and the number of tiles.

It is crucial to mention that for the evaluation section,
we explicitly specified the DNN weight precision as 8 bits
and investigated the memristive device precision p ranging
from 1 bit to 8 bits. As for higher-precision memristive
devices (such as 11-bit devices [34]), they have the capacity to
represent higher-precision DNN weights using single devices.
Nonetheless, it is essential to reiterate that the claims of
our proposed TDPP method remain valid, regardless of the
memristive device precision.

Furthermore, it is important to note that our primary focus
has been on the implications of weight matrix permutation
on the model inference accuracy, and we did not consider
the non-ideality of memristor devices or the interconnect wire
resistance. While device imperfections and interconnect wire
resistance could potentially impact the model performance,
it is worth noting that the security of our proposed TDPP
method might be higher in such scenarios. The reason for this
higher security is that the minimal effort required for a divide-
and-conquer attack to succeed in compromising the proposed
TDPP method would likely increase rather than decrease.
However, evaluating the implications of device imperfections
and interconnect wire resistance on our method would neces-
sitate non-trivial and additional work. As a result, we intend
to address and quantify these effects in our future research.

Considering that (1) TDPP achieves protection effectiveness
comparable with the related works, (2) TDPP is very secure
when choosing appropriate size of BN for PM implemen-

tation, and (3) with higher security ensured, TDPP imposes
significantly lower area and power overheads than the related
works considering different precision of memristive devices,
different numbers of simultaneously activated WLs/BLs, and
different number of tiles, we assert that the proposed method
outperforms the related works.

VII. CONCLUSION

The nonvolitility of memristive devices may facilitate at-
tempts by adversaries to steal DNN weights loaded in the
memristive computing systems by exploiting the data persis-
tence. To mitigate this vulnerability, this paper proposed the
TDPP method based on permuting both the rows and columns
of the weight matrices. We considered two memristive com-
puting systems and designed TDPP hardware that can be
embedded in them. Our experiments show that TDPP is very
effective, secure, and scalable. Compared with similar existing
works, the proposed TDPP method’s area and power overhead
demands are up to 1218.1× (area) and 2815.0× (power) lower
and up to 178.1× (area) and 203.0× (power) lower for the
two different systems, respectively. We also showed TDPP’s
security robustness against potential attacks. In the future, we
intend to extend the proposed method to support spiking neural
networks and graph neural networks.

ACKNOWLEDGMENTS

This paper acknowledges the funding by the German
Research Foundation (DFG) Projects MemDPU (Grant Nr.
DU1896/3-1), MemCrypto (Grant Nr. DU 1896/2-1), and
the European Union’s Horizon 2020 Research And Innova-
tion Programme FETOpen NEU-Chip (Grant agreement No.
964877).

REFERENCES

[1] K. K. Parhi and N. K. Unnikrishnan, “Brain-inspired computing: Models
and architectures,” IEEE Open Journal of Circuits and Systems, vol. 1,
pp. 185–204, 2020.

[2] A. Mehonic and A. J. Kenyon, “Brain-inspired computing needs a master
plan,” Nature, vol. 604, no. 7905, pp. 255–260, 2022.

[3] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A Convo-
lutional Neural Network Accelerator with In-Situ Analog Arithmetic in
Crossbars,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). Seoul, South Korea: IEEE, Jun.
2016, pp. 14–26.

[4] S. Chhabra and Y. Solihin, “i-NVMM: a secure non-volatile main
memory system with incremental encryption,” in Proceeding of the 38th
annual international symposium on Computer architecture - ISCA ’11.
San Jose, California, USA: ACM Press, 2011, p. 177.

[5] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient encryp-
tion for non-volatile memories,” ACM SIGARCH Computer Architecture
News, vol. 43, no. 1, pp. 33–44, 2015.

[6] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 263–276, 2016.

[7] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 479–492.

[8] MM1076 / ME1076 M.2 Accelerator Card Product Brief,
Mythic. [Online]. Available: https://mythic.ai/wp-content/uploads/2022/
03/MM1076 ME1076-Card-Product-Brief-v1.1.pdf

[9] MP10304 Quad-AMP PCIe Card Product Brief, Mythic.
[Online]. Available: https://mythic.ai/wp-content/uploads/2022/03/
MP10304-Card-Product-Brief-v20211115-16.pdf

https://mythic.ai/wp-content/uploads/2022/03/MM1076_ME1076-Card-Product-Brief-v1.1.pdf
https://mythic.ai/wp-content/uploads/2022/03/MM1076_ME1076-Card-Product-Brief-v1.1.pdf
https://mythic.ai/wp-content/uploads/2022/03/MP10304-Card-Product-Brief-v20211115-16.pdf
https://mythic.ai/wp-content/uploads/2022/03/MP10304-Card-Product-Brief-v20211115-16.pdf

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 13

TABLE VI
NORMALIZED RESULTS OF AREA OVERHEADS FOR TDPP COMPARED TO THE RELATED WORKS WHEN p IS 1.

x=1 x=2 x=4 x=8 x=16 x=32 x=64 x=128 x=256

T=20

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 3.6× 3.6× 3.6× 3.6× 3.6× 3.6× 3.6× 3.6× 3.6×

[14] - - - - 292.2× - - - -
[15] - 647.1× 430.9× 287.7× 192.3× 128.5× 85.6× 56.5× -

T=40

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 5.1× 5.1× 5.1× 5.1× 5.1× 5.1× 5.1× 5.1× 5.1×

[14] - - - - 420.5× - - - -
[15] - 915.6× 609.6× 407.0× 272.1× 181.9× 121.1× 79.9× -

T=60

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 5.9× 5.9× 6.70× 5.9× 5.9× 5.9× 5.9× 5.9× 5.9×

[14] - - - - 488.0× - - - -
[15] - 1062.6× 707.5× 472.3× 315.8× 211.0× 140.5× 92.7× -

T=80

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 6.4× 6.4× 6.4× 6.4× 6.4× 6.4× 6.4× 6.4× 6.4×

[14] - - - - 530.5× - - - -
[15] - 1155.3× 769.2× 513.6× 343.4× 229.5× 152.8× 100.8× -

T=100

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 6.8× 6.8× 6.8× 6.8× 6.8× 6.8× 6.8× 6.8× 6.8×

[14] - - - - 559.8× - - - -
[15] - 1219.1× 811.7× 541.9× 362.3× 242.1× 161.2× 106.4× -

TABLE VII
NORMALIZED RESULTS OF AREA OVERHEADS FOR TDPP COMPARED TO THE RELATED WORKS WHEN p IS 8.

x=1 x=2 x=4 x=8 x=16 x=32 x=64 x=128 x=256

T=20

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 3.6× 3.6× 3.6× 3.6× 3.6× 3.6× 3.6× 3.6× 3.6×

[14] - - - - 54.5× - - - -
[15] - 101.2× 66.9× 45.0× 30.6× 20.7× 13.7× 8.5× -

T=40

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 5.1× 5.1× 5.1× 5.1× 5.1× 5.1× 5.1× 5.1× 5.1×

[14] - - - - 77.1× - - - -
[15] - 143.1× 94.6× 63.7× 43.2× 29.3× 19.4× 12.1× -

T=60

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 5.9× 5.9× 6.70× 5.9× 5.9× 5.9× 5.9× 5.9× 5.9×

[14] - - - - 141.0× - - - -
[15] - 166.1× 109.8× 73.9× 50.2× 34.0× 22.5× 14.0× -

T=80

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 6.4× 6.4× 6.4× 6.4× 6.4× 6.4× 6.4× 6.4× 6.4×

[14] - - - - 97.3× - - - -
[15] - 180.6× 119.4× 80.3× 54.5× 36.9× 24.4× 15.2× -

T=100

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 6.8× 6.8× 6.8× 6.8× 6.8× 6.8× 6.8× 6.8× 6.8×

[14] - - - - 102.7× - - - -
[15] - 190.6× 126.0× 84.8× 57.6× 39.0× 25.8× 16.1× -

TABLE VIII
NORMALIZED RESULTS OF POWER OVERHEADS FOR TDPP COMPARED TO THE RELATED WORKS WHEN p IS 1.

x=1 x=2 x=4 x=8 x=16 x=32 x=64 x=128 x=256

T=20

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 4.7× 4.7× 4.7× 4.7× 4.7× 4.7× 4.7× 4.7× 4.7×

[14] - - - - 428.4× - - - -
[15] - 954.9× 636.4× 424.4× 283.2× 188.9× 125.9× 83.7× -

T=40

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 8.0× 8.0× 8.0× 8.0× 8.0× 8.0× 8.0× 8.0× 8.0×

[14] - - - - 729.9× - - - -
[15] - 1626.9× 1084.2× 723.1× 482.5× 321.9× 214.5× 142.6× -

T=60

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 10.4× 10.4× 10.4× 10.4× 10.4× 10.4× 10.4× 10.4× 10.4×

[14] - - - - 953.6× - - - -
[15] - 2125.5× 1416.5× 944.7× 630.3× 420.5× 280.2× 186.3× -

T=80

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 12.3× 12.3× 12.3× 12.3× 12.3× 12.3× 12.3× 12.3× 12.3×

[14] - - - - 1126.2× - - - -
[15] - 2510.2× 1672.9× 1115.7× 744.4× 496.6× 331.0× 220.0× -

T=100

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 13.8× 13.8× 13.8× 13.8× 13.8× 13.8× 13.8× 13.8× 13.8×

[14] - - - - 1263.4× - - - -
[15] - 2816.0× 1876.6× 1251.6× 835.1× 557.1× 371.3× 246.8× -

SUBMITTED TO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023 14

TABLE IX
NORMALIZED RESULTS OF POWER OVERHEADS FOR TDPP COMPARED TO THE RELATED WORKS WHEN p IS 8.

x=1 x=2 x=4 x=8 x=16 x=32 x=64 x=128 x=256

T=20

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 4.7× 4.7× 4.7× 4.7× 4.7× 4.7× 4.7× 4.7× 4.7×

[14] - - - - 60.9× - - - -
[15] - 127.9× 85.0× 56.9× 38.1× 25.6× 17.0× 11.1× -

T=40

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 8.0× 8.0× 8.0× 8.0× 8.0× 8.0× 8.0× 8.0× 8.0×

[14] - - - - 103.7× - - - -
[15] - 217.9× 144.9× 96.9× 65.0× 43.5× 29.0× 18.9× -

T=60

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 10.4× 10.4× 10.4× 10.4× 10.4× 10.4× 10.4× 10.4× 10.4×

[14] - - - - 135.5× - - - -
[15] - 284.7× 189.3× 126.6× 84.9× 56.9× 37.8× 24.7× -

T=80

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 12.3× 12.3× 12.3× 12.3× 12.3× 12.3× 12.3× 12.3× 12.3×

[14] - - - - 160.0× - - - -
[15] - 336.2× 223.5× 149.5× 100.2× 67.2× 44.7× 29.1× -

T=100

config-1 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
config-2 13.8× 13.8× 13.8× 13.8× 13.8× 13.8× 13.8× 13.8× 13.8×

[14] - - - - 179.5× - - - -
[15] - 377.1× 250.7× 167.7× 112.5× 75.4× 50.1× 32.7× -

[10] M1076 Analog Matrix Processor Product Brief, Mythic.
[Online]. Available: https://mythic.ai/wp-content/uploads/2022/03/
M1076-AMP-Product-Brief-v1.0-1.pdf

[11] M. Lanza, R. Waser, D. Ielmini, J. J. Yang, L. Goux, J. Suñe, A. J.
Kenyon, A. Mehonic, S. Spiga, V. Rana, S. Wiefels, S. Menzel, I. Valov,
M. A. Villena, E. Miranda, X. Jing, F. Campabadal, M. B. Gonzalez,
F. Aguirre, F. Palumbo, K. Zhu, J. B. Roldan, F. M. Puglisi, L. Larcher,
T.-H. Hou, T. Prodromakis, Y. Yang, P. Huang, T. Wan, Y. Chai, K. L.
Pey, N. Raghavan, S. Dueñas, T. Wang, Q. Xia, and S. Pazos, “Standards
for the Characterization of Endurance in Resistive Switching Devices,”
ACS Nano, vol. 15, no. 11, pp. 17 214–17 231, Nov. 2021.

[12] Y. Cai, X. Chen, L. Tian, Y. Wang, and H. Yang, “Enabling Secure in-
Memory Neural Network Computing by Sparse Fast Gradient Encryp-
tion,” in 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). Westminster, CO, USA: IEEE, Nov. 2019, pp. 1–8.

[13] M. Zou, J. Zhou, X. Cui, W. Wang, and S. Kvatinsky, “Enhancing se-
curity of memristor computing system through secure weight mapping,”
arXiv preprint arXiv:2206.14498, 2022.

[14] M. Zou, Z. Zhu, Y. Cai, J. Zhou, C. Wang, and Y. Wang, “Secu-
rity Enhancement for RRAM Computing System through Obfuscating
Crossbar Row Connections,” in 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE). Grenoble, France: IEEE,
Mar. 2020, pp. 466–471.

[15] Y. Wang, S. Jin, and T. Li, “A Low Cost Weight Obfuscation Scheme for
Security Enhancement of ReRAM Based Neural Network Accelerators,”
in Proceedings of the 26th Asia and South Pacific Design Automation
Conference. Tokyo Japan: ACM, Jan. 2021, pp. 499–504.

[16] W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu,
S. Deiss, P. Raina, H. Qian, B. Gao et al., “A compute-in-memory chip
based on resistive random-access memory,” Nature, vol. 608, no. 7923,
pp. 504–512, 2022.

[17] Y. Liu, L. Y. Zhang, J. Wang, Y. Zhang, and K.-w. Wong, “Chosen-
plaintext attack of an image encryption scheme based on modified
permutation–diffusion structure,” Nonlinear dynamics, vol. 84, pp.
2241–2250, 2016.

[18] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al.,
“Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 715–731.

[19] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-
Based Analog Approximate Computing,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 34, no. 12, pp. 1905–1917, Dec. 2015.

[20] Y. Cai, T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, “Low Bit-Width
Convolutional Neural Network on RRAM,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 39, no. 7, pp. 1414–1427, Jul. 2020.

[21] L. Huang and J. Walrand, “A Benes packet network,” in 2013 Proceed-
ings IEEE INFOCOM. Turin, Italy: IEEE, Apr. 2013, pp. 1204–1212.

[22] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, “A
puf taxonomy,” Applied Physics Reviews, vol. 6, no. 1, p. 011303, 2019.

[23] Z. Zhu, H. Sun, K. Qiu, L. Xia, G. Krishnan, G. Dai, D. Niu, X. Chen,
X. S. Hu, Y. Cao, Y. Xie, Y. Wang, and H. Yang, “MNSIM 2.0:
A Behavior-Level Modeling Tool for Memristor-based Neuromorphic
Computing Systems,” in Proceedings of the 2020 on Great Lakes
Symposium on VLSI. Virtual Event China: ACM, Sep. 2020, pp. 83–88.

[24] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-
based intrinsic physically unclonable functions for system-level security
and authentication,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 3, pp. 1085–1097, 2016.

[25] F. Farha, H. Ning, K. Ali, L. Chen, and C. Nugent, “SRAM-PUF-based
entities authentication scheme for resource-constrained iot devices,”
IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5904–5913, 2020.

[26] Y. Long, D. Kim, E. Lee, P. Saha, B. A. Mudassar, X. She, A. I. Khan,
and S. Mukhopadhyay, “A ferroelectric fet-based processing-in-memory
architecture for DNN acceleration,” IEEE Journal on Exploratory Solid-
State Computational Devices and Circuits, vol. 5, no. 2, pp. 113–122,
2019.

[27] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras,
and Y. Cao, “Impact of on-chip interconnect on in-memory acceleration
of deep neural networks,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 18, no. 2, pp. 1–22, 2021.

[28] D. J. Bernstein, “Understanding brute force,” in Workshop record of
ECRYPT STVL workshop on symmetric key encryption, eSTREAM
report, vol. 36. Citeseer, 2005, p. 2005.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[30] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[31] M. Randolph and W. Diehl, “Power Side-Channel Attack Analysis: A
Review of 20 Years of Study for the Layman,” Cryptography, vol. 4,
no. 2, p. 15, May 2020.

[32] X. Xu, J. Yu, T. Gong, J. Yang, J. Yin, D. Nian Dong, Q. Luo, J. Liu,
Z. Yu, Q. Liu, H. Lv, and M. Liu, “First Demonstration of OxRRAM
Integration on 14nm FinFet Platform and Scaling Potential Analysis
towards Sub-10nm Node,” in 2020 IEEE International Electron Devices
Meeting (IEDM). San Francisco, CA, USA: IEEE, Dec. 2020, pp.
24.3.1–24.3.4.

[33] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). IEEE, 2007, pp. 3–14.

[34] M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani,
B. Chen, X. Jiang et al., “Thousands of conductance levels in memristors
integrated on cmos,” Nature, vol. 615, no. 7954, pp. 823–829, 2023.

https://mythic.ai/wp-content/uploads/2022/03/M1076-AMP-Product-Brief-v1.0-1.pdf
https://mythic.ai/wp-content/uploads/2022/03/M1076-AMP-Product-Brief-v1.0-1.pdf

	introduction
	background
	Preliminaries
	Threat Model

	The TDPP Method
	TDPP Design for Memristive Computing Systems
	Two Different Memristive Computing Systems
	Design of the TDPP Hardware
	Embedding TDPP Hardware in Memristive Computing Systems
	Key Strategy
	Data flow

	Security Analysis of the TDDP Method
	Brute-Force Attack
	Attacking Small Matrices
	Divide-and-Conquer Attack
	Known-Plaintext Attacks

	Evaluation
	Protection Effectiveness
	Security
	Hardware Overhead
	Protection module
	Key storage

	Conclusion
	References

